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VELOCITY DEPENDENT BOUNDARY CONDITIONS FOR
THE DISPLACEMENT IN A ONE DIMENSIONAL
VISCOELASTIC MATERIAL

KENNETH KUTTLER

Introduction. Conservation of mass and momentum in one dimen-
sion may be written as

)
(0.1a) po(X) = p(t, X) 52,
ov 0o
(0.1b) ro(X) 5 = 5%

where v is the velocity, po(X) is the initial density, X is the material
coordinate, y the spatial coordinate, and o is the stress. These
equations do not depend on the material under consideration. It is
convenient to introduce the Lagrange mass variable [17], = defined by

x:Axm@Mz

Then writing (0.1b) in terms of the Lagrange mass variable,

ov Oo
(0.2) prilw

It is assumed in this paper that ¢ = —(P + ¢) where P is pressure
and q is the part of the stress due to viscosity. We also assume internal
energy is constant so that it makes sense to let

P=P(V)

where V is the specific volume, V' = p~! for p the density.
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We write the stress in terms of a pressure which is a function of
specific volume because we do not exclude the possibility that the
material is a gas or a fluid. In fact, we are interested in the possibility
of phase changes in the material which could be a solid, liquid or gas.
The function of state, P, is therefore not required to be monotone so
that for some values of pressure, a number of different values for specific
volume are possible in the steady state. It seems more traditional to use
spatial coordinates when dealing with fluids but our use of the material
coordinate in this context is certainly not unique [17].

Let u = y — X be the displacement. Then from (0.1a)

(0.3) V(t,z) = g—;‘ + Vo(a).

The viscous stress is proportional to the spatial velocity gradient,
Ov/dy, the case ¢ = —6(0v/0y) where § is constant, being a well known
example called Navier Stokes viscosity. Changing to the Lagrange mass
variable this becomes

_ 00w
V oz
so in this paper ¢ is of the form
Ov
0.4 —a(V)—.
(04) a(V)5!

where a(V) > 0. Typically o will not be bounded above and also

Vlim a(V) = 0. If we take o to be constant, the mathematical
—00

treatment is much easier, but this assumption, which might be suit-
able for solids, is not appropriate for a general material undergoing
phase changes involving gasses or liquids because if one assumes this
and changes to spatial coordinates, the viscous stress is of the form
—(6/p)(0v/0y). This says that for a given value of the spatial velocity
gradient, dv/0y, the viscous stress is large when the density is small
and small when the density is large.

Writing (0.2) in terms of the displacement yields the partial differen-
tial equation

O _ (_p(v) + a(VIuw),

(0.5) 5
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where V' = u, + V. Letting the Lagrange mass variable lie in the
interval [0, 1], it would be of interest to consider initial-boundary value
problems for (0.5). The most extensively discussed [4, 5, 13, 14,
17, 18] boundary conditions for this problem are those in which the
displacement is given to be 0 at each end of the interval [0,1]. That
is, the ends of the material are fixed. But it also seems reasonable to
specify the stress at the ends of the interval. This leads to boundary
conditions of the form

(0.6a) ~P(V(t,0)) + a(V (£, 0))usa(t, 0) = ko,
(0.6b) —P(V(t,1)) + a(V (¢, 1)) uge(t, 1) = ki,

where kg and k; are given. In several earlier papers [7, 8, 9, 10] k; is
taken to be a negative constant. This corresponds to forces that tend
to compress the material. In [8], the k; were also allowed to depend
on t. However, it would be of interest to allow these k; to depend not
just on t but also on the velocity of the ith end of the material and to
eliminate all restrictions on the sign of k;. The consideration of such
boundary conditions is the main goal of this paper.

For example, consider a standard oil pump consisting of machinery on
the surface of the ground and a very long “sucker rod” which is moved
up and down by gravity and this machinery. We treat this “sucker rod”
as a one dimensional continuum. The machinery exerts a force on the
upper end of the rod which depends on displacement of that end and
possibly on velocity while the bottom end experiences a force which is
directed upward when moving down, and down when the end is moving
up.

There is another reason for allowing the prescribed traction forces
to depend on velocity. Imagine that a constant force is applied to
one end of the material and that the end is moving in the direction
of the applied force at high speed. it follows that the power supplied
by whatever produces this force must be very large, but real machines
typically do not have limitless power. Thus, without some estimate on
the velocity of the end, a constant applied force is overly idealized. For
weak solutions of (0.5) and (0.6), the best that can be said is that the
velocity of each end is in L%(0,T) [9]. Regularity theorems are available
in the case where the initial velocity and specific volume are in H(0,1)
[10], but even in this setting, the estimates for the velocity of each end
can involve very large constants, especially when the viscosity is small.
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The exact description of the traction forces are in (3.2) and (5.6) of
this paper. The idea is to consider a given traction force as a sum of
two forces, one which acts opposite in direction to the velocity (like air
resistance), and the other force being supplied by something that has
finite power. Thus one of these produces dissipation while the other
can amplify the motion somewhat but does not have limitless power.

If the boundary conditions for (0.5) involve a given constant com-
pressive force at one end while the other end is fixed, it can be shown
[9] that our viscous damping causes decay to a steady state even for a
non-monotone equation of state just as in [15]. Furthermore, the very
interesting result of [15] that discontinuous steady states can occur as
long time limits even if the initial data is smooth is also obtained in
[9] along with the result that discontinuous specific volumes are never
obtained as long time limits for any boundary conditions unless the
equation of state is non-monotone. The boundary conditions in the
present paper are more general so one could ask for minimal conditions
under which decay to a steady state will be assured. It will be nec-
essary to restrict the boundary conditions from those considered here,
but such a project is a topic for another paper.

Our approach to proving existence and uniqueness for global solutions
is fundamentally different from the usual procedure for problems such
as these. One normally obtains estimates on local classical solutions
and then uses these estimates to extend these local solutions to global
ones. Here, we modify the constitutive functions and global weak solu-
tions are obtained under these modifications which are realistic exactly
when suitable pointwise bounds on the strain or specific volume can be
obtained. These estimates are then established and an ”approximate”
problem is determined whose solutions have the property that on the
global time interval of interest, the specific volume or strain remains
in the unmodified region of the constitutive functions. The resulting
solutions are weak, not classical, but the procedure has the advantage
of allowing the consideration of problems of extreme generality. For ex-
ample, in [9] it was not even necessary to require a(V), the coefficient
of viscosity, to be a continuous function of V. Neither is it necessary to
have any smoothness on the body force or initial data. There is some
interest in such generalization [17]. Also, this approach adapts well to
the inclusion of memory dependent terms and can be used as a basis for
developing numerical methods which can be shown to converge to the



VELOCITY DEPENDENT BOUNDARY CONDITIONS 583

solution of the boundary value problem of interest. If more smoothness
is assumed on «, P, the initial specific volume, and the initial velocity,
one can obtain regularity theorems for these weak solutions duplicat-
ing, and generalizing the boundary conditions of, more standard results
[10]. These regularity theorems involve some fairly subtle arguments
because of the nonlinearity in the viscosity. Everything is much easier
if «(V) is a constant. For example, in [15] a clever transformation
is used to reduce some initial boundary value problems to the form
u' + Au = f(u) where A generates an analytic semigroup. This makes
possible the use of a very well developed theory, but attempts to adapt
this method to (0.5) have been unsuccessful. The problem is not semi-
linear and it seems impossible to transform it into a semilinear problem.
Furthermore, the boundary conditions (0.6) in which ky and k; are al-
lowed to be functions of velocity, while they are physically reasonable,
introduce additional nonlinearities which complicate the mathematics.
It would be interesting to determine the extent to which the regularity
theory of [10] can be generalized to the velocity dependent boundary
conditions considered in this paper.

Although no one has dealt with prescribed velocity dependent trac-
tion forces before this, partial differential equations having a formal
resemblance to (0.5) have been extensively studied. In [4], a system of
nonlinear wave equations with nonlinear viscosity is considered. If this
system is specialized to one dimension, it does not contain (0.5) as a
special case because we do not assume that P is monotone and the vis-
cosity term here would only be a special case if a(V) is a constant. We
also make fewer demands on the regularity of the constitutive functions.
The isentropic gas model considered by Kanel and discussed in Smoller
[19] is formally similar to our (0.5) but does not include the nonmono-
tone function of state. Furthermore, there are no boundary conditions
at all, the treatment being for the initial value problem on the real line.
Probably the paper most closely related to what we are discussing here
is [5]. This is the first paper to deal with a nonmonotone equation
of state along with the Navier Stokes viscosity, V ~1(8v/dz) for v the
velocity. Like [4], the boundary condition is of zero displacement on
the boundary. The paper by MacCamey [14] involves a viscosity term
formally similar to ours, but the coefficient of viscosity is assumed to
be bounded away from zero while the function of state corresponding
to our P is assumed monotone. Because of the form of the viscosity,
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this paper by MacCamey is not a special case of [1].

Sections 2—4 of the paper are devoted to developing existence and
uniqueness of global solutions to the initial boundary value problems
for (0.5) in which the constitutive functions have been modified. In
these sections, we assume a global Lipschitz condition on P and we
assume the coefficient of viscosity «(V') is bounded away from zero and
infinity contrary to reasonable physical assumptions. We also make no
assumptions on the sign of the given traction forces k; because there is
no need to do so. It is not until Section 5 that we include physically
reasonable assumptions on «, P, and the traction forces and show
that these physically reasonable assumptions can replace the unrealistic
Lipschitz assumptions and bounds on the viscosity coefficient.

Let E be a subspace of H'(0,1) closed in H'(0,1), which contains
the test functions. For example, E could be {u € H'(0,1) : u(1) = 0}
or E could be H'(0,1). We do not specify E because each choice
of E will determine “stable” boundary conditions and we want to
retain as much generality as possible. We will eventually insist that
E contain {u € H'(0,1) : u(1) = 0} which eliminates H;(0,1), the
space appropriate for studying zero displacement boundary conditions.
This case has been dealt with elsewhere [9]. Let ¢ € C§°(0,T; E). This
means that ¢ is an infinitely differentiable map from (0,7") to the space
E which vanishes at 0 and at 7', ¢(¢) being an element of E for each ¢.

Multiply (0.5) by ¢, integrate by parts and use (0.6). This yields for
all ¢ € C§°(0,T; E) the equation

(0.7a)

T ,1 T 1 T /1
—/ / utgatda:dt+/ / a(V)utwgawdmdt—/ / P(V)p, dzdt
o Jo o Jo o Jo
T

= /0 [kl (t, ut(ta 1)’ u(tv 1)) (p(t, 1) — ko (t, ut(ta 1)7 u(t’ 0)) Lp(t, 0)] dt

to which we add the initial conditions
(0.7b) ut (0, z) = vy (z), u(0,z) =0.

Stable boundary conditions are obtained by choosing E while varia-
tional conditions are determined by the above variational form of our
problem. For example, if E = H!(0,1), we obtain both boundary
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conditions (0.6). If E = [u € H*(0,1) : u(1) = 0], we obtain a zero
displacement condition at 1 and the condition (0.6a) at 0.

We will always study (0.7) in the abstract form described in the
following sections. We let H = L?(0,1) and identify H and H’, the
dual space of H. Thus we may write F C H = H' C E’. The symbol
(f,u) will denote the value f(u) where f € E’, the dual space of E, and
u € E, while the symbol (u,v) will denote the value of an inner product
in a Hilbert space. Since FE is a Hilbert space, we can define the Riesz
map, R : E — E' by (Ru,v) = (u,v). When we write “” we mean
d/dt. More precisely, the “/” will denote differentiation in the sense of
E’ valued distributions. Thus for ¢ € C§°(0,7) and f € L'(0,T; E'),
we consider f as an E’ valued distribution according to the rule

fo=— / £/ ()dt,

and we say f' € L'(0,T; E’) if there exists g € L'(0,T; E'), necessarily
unique, such that

for all ¢ € C5°(0,T). It is well known [12, 6] that if f € L2(0,T; E)
and f' € L*(0,T;E"), then f € C(0,T; H), the space of continuous H
valued functions.

The symbol L?(0,7T’; X) will denote the space of measurable X valued
functions which are square integrable. The symbol W (0, 1) is the space
of functions in L!(0,1) whose weak derivatives are also in L1(0,1).

Supporting theorems. Let V and W be reflexive Banach spaces
with V dense in W (V = W where closure is taken in the topology of
W) and for u € V, |ju|ly > ||u||lw. Thus we may consider W’ C V'.
Let B : W — W' be a linear operator satisfying

(1.1) (Bu,u) >0, (Bu,v) = (Bv, u)

for all u,v € W. Let A : L?(0,T;V) — L%*(0,T;V"’) be an operator
satisfying

(1.2a) A is hemicontinuous (}in(l)(A(u + tv),w) = (Au, w))
—
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For some A > 0,
(1.2b) A+ AB is strictly monotone,

Re (Au,u) + A(Bu, u)

1m
llul|—o00 (||

(1.2¢) = 00,

where B is considered as a map from L?(0,T;V) to L2(0,T;V’)
according to the rule (Bu)(¢t) = B(u(t)) and |lul| in (1.2c) signifies
the norm in L?(0,T;V), the space of measurable, square integrable, V'
valued functions [3]. Let

(1.3) X ={u € L*0,T;V) s.t. (Bu)' € L*(0,T;V")}

where the ' denotes d/dt in the sense of V' valued distributions.

Under these conditions, the following Theorem is a special case of
Theorem 1 of [6].

Theorem 1.1. Ifu € X, t — B(u(t)) is equal to a function in
C(0,T; W') almost everywhere.

We will denote the continuous function whose existence is the con-
clusion of Theorem 1.1 by Bu. Then we have the following theorem
which is a special case of Theorem 5 of [6].

Theorem 1.2. If f € L2(0,T; V') and ug € W, there exists a unique
u € X satisfying

(1.4a) (Bu)' + Au = f in L*(0,T;V"),

(1.4b) Bu(0) = Buy,

Now let F be a reflexive Banach space, and let H be a Hilbert space
(these will be the spaces mentioned in the introduction) with
(1.5a)
ECH. E dense in H (in topology of H), Il lle>] g
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Then, identifying H and H', we write

(1.5b) ECH=H CFE.

Let

(1.5¢) 9,9 € L*(0,T; E')

where the ' on g signifies E’ valued distributions, and suppose M :

E — E' satisfies

(1.6a) M is bounded
(1.6b) }im M(u+ tw) = Mu
—0
(1.6¢) (Mu — Mv,u—v) > §*p(u — v)?

where p is a seminorm satisfying

(1.6d) lullfy = p(u)? + |ulf-
Let
(17&) ug € E, wy € H

and suppose
(1.7b) 9(0) — Muy = wy

Then with (2.5)—(2.7) we obtain the regularity theorem of [9]

Theorem 1.3. There exists a unique solution to

(1.8a) W+ Mu=g

(1.8b) u(0) = uo, u € L*(0,T;E), ' € L*(0,T; E").
This solution has the reqularity properties

(1.8¢) u, u' € L*(0,T;E), v € L>(0,T; H)
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Preliminary considerations. In this section, assume

(2.1a) |[P(V1) — P(V2)| < Ko|[Vi = V2,
(2.1b) |[P(V)] < Co

and

(2.1c) Ky>aV)>§>0

for some constant K. Also let o be continuous and let 8 be defined
by

\4
(2.2) BV) = /1 a(s)ds.

Letting E be a closed subspace of H*(0, 1) containing C§°(0,1), define
mappings Q(u), M, and N from E to E' by

(2.3a) (Q(u)w,v) = ((ua + Vo)wa, ve) n,
(2.3b) (Mw, vy = (B(wz + Vo), ) H,s
(2.3¢) (Nw,v) = —=(P(wz + Vo), vz)H.

Let V = L2(0,T; E), V' be it’s dual space, and define ) by

(2.4a) YV={ueV:v eVandu €V =L*0,T;E")}.
(2.4Db)

— ! "
[ell, =l wll, + 1wl +1u" 1,

We want to consider the problem

(2.5a) ' + (Mu) + Nu=f
(2.5b) u(0) =0, u'(0) = vy

(2.5¢) ue)y
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where f € V' = L?(0,T : E') and v; € H = L*(0,1). In particular, we
want to consider the dependence of solutions to (2.5) on f.

Theorem 2.1. There exists a unique solution to (2.5). Furthermore,
if uy, is the solution to (2.5) with f, replacing f and if f, — f in V'
then up, — u nV and u, — u in Y.

Proof. Let R be the Riesz map of E onto E’ and let w; € E be such
that
vy + M(0) = Rwy.

Consider the system

eor (5 9) () (o) = (8)
and initial condition

m (£ (819
satisfying

(2.6¢) u,w €V, (Rw),u" € V'

It follows from Theorem 1.1 and 1.2 that there exists a unique
solution to (2.6). In using these theorems, V= E x E, W = E x H,
H = L*(0,1), and B is given by

o= (5 9)

(0= ()

It is clear that if u solves (2.5), then if u’ + Mu = Rw, (w,u)? solves
(2.6). Conversely, suppose (w,u)? solves (2.6). Then since (Rw)" € V',

while A is given by

(2.7) w' = R™'(Rw) = R™'(f — Nu) € V.
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Furthermore it follows from Theorem 1.3 applied to bottom line of
(2.6a) that v’ € V.

Therefore,

(2.8) (Mu)' = Qu)u' € V',

and from the above,

(2.9) u'—i—Mu:/O(ffNu)ds—i—vl%—M(O),

u'(0) = vy, u(0) =0.

Using (2.8) in (2.9), we see that u solves (2.5). Multiply (2.5a) by
and do fot . This yields

SO 3l ~ [ (Plas) + Vol o) s
(2.10) [ (el + L6 ),
= [t
Using (2.1) we obtain
;ww@—%m@+aéﬁa@ﬁwsnmw(ﬂﬂw@@dﬁug
ran/T( [ o '

Adding 6fg |u'(s)|i ds to both sides we can get

t
1) WOF - o +6 [ () ds
0

5 t
<K + )+ 5 [ o) s



VELOCITY DEPENDENT BOUNDARY CONDITIONS 591

where K is a constant depending on §. By Gronwall’s inequality, there
exists a constant M = M(T.,4,||f|,, Co, |v1],,) such that

212) (ol I ], R, < M

Now let u,, be the solution to (2.5) with f replaced with f,,. Using
(2.9) we can write:

1 2 ¢ 2
3100 = (O, +6 [ [us() = (o) ds

< [ ([ 1560 = 20l ) ) = w1, 5
+BbAt(/SWAH—umUNHW>WA®—um@NHM

0

It is routine to obtain the inequality

ww—%@@fémw—%w@w

t s
SKHf*aniﬁK/o (1+s)/0 [u(r) = un(r)|? drds

where K is some constant depending on d, Ky and 7. Thus, an
application of Gronwall’s inequality yields

R13) () = w0, + [ lu(e) ~ w52 ds

2
S K|f = fall?, 072,
Therefore, u, — win V if f, — fin V'

To get the weak convergence in ), it remains to show that u], — v/’
in V and that u], — «” in V'. But this is routine from the estimate
(2.12) along with the strong convergence of u,, to w. This proves the
Theorem. |

3. Existence. For u € Y, let f(u,u') € V' be given by

(f (u, '), v) =/ Fea (t, 4/ () (1), u(t)(1))v(¢)(1) dt
(3.1) 0

T
*A Ko(t, o (£)(0), u(t)(0))u(t)(0) dt
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where for ¢ =0, 1,

(3.2a)
|ki(t7217z2) - ki(tvwlaw2)| < K1(|Z1 - wl‘ + |Z2 - w2|)a

(3.2b) |ki(t, z1,22)| < K,

for some constant K.

Lemma 3.1. If u, — u in Y, then

(3.3a)

up ()(1) = w'()(1), 4 ()(0) = &/ (-)(0)  in L*(0,T)
(3.3b)

un()(1) = u()(1),un()(0) = u(-)(0)  in L*(0,T)
(3.3¢)

ftn,uy) = f(W/,u)  in )V

Proof. Let W be a reflexive Banach space satisfying:
ECWCH

with the imbedding of E into W compact and also let W C C([0, 1])
with continuous injection. For example, let W = H3/4(0,1). By a well-
known result in Lions [11, p. 58], u,, — w in Y implies that u!, — u' in
L2(0,T; W). Therefore, u,(-)(e) — u'(-)(e) for e € {0,1}. This proves
(3.3a),(3.3b) is similar. Finally (3.3c) follows from this and (3.2a).

Theorem 3.1. There exists a solution to the problem

(3.4a) u + (Mu) + Nu = f(u,u’)
(3.4b) u(0)=0, W (0)=v,€H
(3.4c) ue).

Proof. By (3.2b). ||f(w,w')||v, is bounded independently of the
choice of w € Y. For w € Y, let §(w) be the solution of the problem.

' + (Mu) + Nu = f(w,w'),
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u(0) =0, «'(0)=wv € H,
ue .

Then by (2.12) # maps Y into a bounded subset of . Lemma 3.1
implies that 6 is weakly continuous on this bounded subset of ). By
the Tikhanov fixed point theorem [2], # has a fixed point in ). This
proves Theorem (3.1). o

4. Uniqueness. Establishing uniqueness of problem (3.4) is not so
easy and we will only do so under additional assumptions. In addition
to (2.1) assume

(4.1a) |P'(V1) — P'(V2)| < Ko|Vi — Ve
and
(4.1b) la(V1) — a(V2)| < Ko|Vi — V2

Also assume Vp € H1(0,1) in addition to being in L>°(0,1).

We will use the following lemma.

Lemma 4.1. Let u, v’ € V, and let w(-,-) be a Borel measurable
representative for v’ ()(-) and u;z (-, ) a Borel measurable representative

for U/ (+)(+)/0z. If up = u(0), define

(4.2a) ug (t, ) = ugg(z) + /0 Uz (s, ) ds
(4.2b) u(t, ) = ug(z) +/0 u(s, ) ds.

Then

~ Ou ou'(t)
uw(ta ) = %(t) a.c., utz(ta ) Oz a.e.,
Ug(+y-) = %( ,+) in the sense of distributions,
Utg (- 1) = %( ,+) in the sense of distributions.
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Because of this lemma, we adopt the convention that if u, v’ € V,
u(+, -) will be the above measurable representative. Also welet V (¢, z) =
Vo(z) + ug (8, ).

Another lemma which will be of use is

Lemma 4.2. Let X, Y and Z be three Banach spaces with X
reflexzive, X CY C Z, || Iy < || |lx and the injection map of X
into Y is compact. Then for all € > 0 there ezists a constant K. such
that

[ully < ellullx + Kc|lullz

for allu e X.

This is a well-known lemma due to Lions [11, pp. 58, 59].

Now define, for u a solution to problem (3.4),

x t
43)  q(tz) = / o (8)(2)dz + / P(V(s,2))ds — B(V(t, z)).
0 0
It is routine to show that in the sense of distributions
(4.4) gz = v1 — (B(V0))e € L2((0,T) x (0,1)).

It follows that there exists a set of measure zero, D C [0, T] such that
for all t ¢ D, x — q(t,z) is absolutely continuous a.e. and for ¢t ¢ D,
the following holds for a.e. z € [0, 1]:

(4.5a)
q(t,z) = q(t,0) + /0 q:(t, ) dz

(4.5b) — 4(t,0) + / " vi(2)dz — B(Vo(a)) + BVH(0)).

Using (4.5) and (2.9), a little computation shows that for ¢ €
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Cee(0,T; E),

(46) - / a(t,0)(p(t, 1) — @(t,0)) dt

:‘/OTga(t,l)[/Olvl(z)dz/Olu'(t)(z)dz} dt

+ / B(Vo(0)[ip(t,1) — p(t, 0)] dt
+/0 /0kl(s,u'(s)(l),u(s)(l))go(t, 1)dsdt
- /0 /0 ko (s, (5)(0), u(s) (0)) (1, 0) ds dt

If E = H(0,1), (4.6) gives no information about g(¢,0) so from now
on we assume
(4.7) E D {uec H(0,1):u(l) =0}
Therefore, we may take ¢(¢,1) = 0 and ¢(t,0) € C§°(0,T). Therefore
(4.6) implies

(4.8) q(t,0) = —3(V5(0)) —/0 ko(s,u'(s)(0),u(s)(0))ds a.e.t.

Therefore, enlarging D, if necessary, (4.5) implies that for ¢ ¢ D,
m(D) =0,
(4.9)

t

q(t,z) = 7/ ko(s,u'(8)(0),u(s)(0))ds — B(Vo(z)) + /0“” vy (z) dz,

0

for a.e.x. Letting

(4.10a) b(t) = —/0 ko(s,u'(5)(0),u(s)(0)) ds,
(4.10D) a(z) = —B(Ve(2)) + /0 " n(2) dz,

‘We obtain
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Lemma 4.3. If q is given by (4.3), there exists a set of measure zero
D C[0,T] such that fort ¢ D

(4.11) q(t,z) = b(t) + a(z) a.e. x

where a(-) € H*(0,1).

Now suppose u; and ug are two solutions to (3.4). Let the corre-
sponding specific volumes be denoted by V; and V3, respectively, and
let the exceptional subsets of [0,7] be D; and Ds. Let D = Dy U Ds.

Also let b;( — fo ko(s,u}(s)(0),u;(s)(0))ds.
Lemma 4.4. For each € > 0 there is a constant K. such that

(4.12) by (2) — ba(2)]

t
< [ elun(s) = )l + Kelui(s) -~ w5(9)], ds
0

Proof. Let n > 0 be given and use Lemma 4.2 with X = H'(0,1),
Y =C(0,1), Z = L?(0,1) to obtain

|u1.()(0) — ua(s)(0)] < [luy(s) —ua(s)ll,, .,
< nllui(s) —ua(s)ll, + Knlui(s) —us(s)],,

Then using (3.2a) and the inequality
(5)0) - O < [ 1640) - G0, &

one obtains

[b1(2) = ba(2)]

§K1(1+T)/0 (nllui(s) = ua(s)l , +Eylur(s) —us(s)l, ) ds.

which implies (4.12) since 7 is arbitrary. O
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From Lemma 4.3, we can obtain for ¢ ¢ D, the equations

vitte) =57 [Tt + [ Phs.))
—a(z) — bi(t)) a.ex

(4.13)

for 1 =1,2. It follows from this that for ¢ ¢ D,
(4.14)  |[Vi(t,z) — Va(t, z)|

SK@mw—%wm+Am@m—w@wwMHmw—mw@

where K is a constant. From now on, K will be used to denote some
constant. K may depend on 7. From (4.12),

(4.15) |Vi(t,x) — Va(t,z)| < K{|u'1(t) —uy(t)],
+/0 Vi(s,2) — Va(s, 2)| ds

¢
+/0 (elui, (s) — ung (5], + Kelui(s) — U'z(S)IH)dS}-
Taking fol of both sides of (4.15), we have that for a.e.t,

(4.16)  [V1(t) — Va(t)]

rl

< w{I(0 - w0,
+ [ 1) -, ds
[ ) b6, Rt 6) ), ) s
Using (4.13) we may write that for a.e.x
Vialtor) = 07 ([Tt + [ P06, ds — ale) - 000
(@) + [ P02Vl ds — ' (0))
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for + = 1,2. The formula is clear formally. To verify that V;, exists,
see the discussion in [10, pp. 99-100]. This formula also shows that

(417) ||‘/iz||L°°(O,T;H) < K7 i= 1727

since (87!) is bounded. Some computations using (4.1) yield

mmwrw%mMSK@Mw@—%@un
+/0 Vils,z) — Va(s, )| ds
+/'mmmw@—w@wwﬁ
(4.18) 0 .
+K[u’2(t)(x)|+/0 |V2z|ds+a’(w)@
-{muw—%wu

+Anuam—w@wnw+mm—mm}

When the righthand side of (4.18) is multiplied and fol is applied to
both sides, one obtains, after some simplification, the inequality

(419) [Vaa(0) = Ve, < K{Ju0) - w300,
+ [ -T2, + Wialo) - Vs, )

+buw—@w@
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As an example of the type of argument used in the simplification,

/ </ |V2z|ds/ Vi - V2ds>dx
:/ (/ \sz\dr/ i v2d5>dx
///"@z’"fﬂ\l‘/lsw) Va(s, )| dr ds de
:///|V2z(7"733)\|V1(8,x)—Vg(s,w)|drdmds

<K/ (IVa(s) = Va(3)], + [Via(s) = Vau(s)] )
/0 /0 Voo (r, )| dr dz
<K/ (IVa(s) = Va(s)| | + [Vaa(s) = Vau(s)| ) ds

because of (4.17).

Returning to (4.12), (4.19) implies
(4.20) Vi (t) — Vau(t)] | < K{Uﬁ(t) —us(t)],,
[ A = Vo), + Vials) ~ Vaalo)] ) s
[ o)~ ], + Hl ) ), 0
Therefore, from (4.20) and (4.15), we obtain for all ¢ ¢ D,
(4.21) [IVa(t) = Va (@)l

1
wl(o,1)

< K{u'l(t) —us(t)] +/0 (Va(s) = Va(s)l

Wll(O,l)

[ luta6) o), + K () — ),
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Lemma 4.5. If f(t) < a(t) + b(t) + Kfot f(s)ds almost everywhere
< a(

and b is increasing, then f(t) < a t)—i—b(t)eKt—}-fOt a(s)eX(t=%) ds almost

everywhere.

Using Lemma 4.5 in (4.21) with a(t) = K|u}(t) — uh(¢)|g and b(t),
the last integral in { }, we obtain for a.e.t.,

(4.22) [[Va(2) = Va (@)l < Kluy (t) — us(t)],

W11(0,1) -
t
+ K/ |ui(s) — u'2(s)|HeK(t_S) ds

0

t
F R [ elul (5) = (9)], + el ()~ ui(s)], ds
0
for K independent of €.
This implies

Theorem 4.1. Let u; and ug be two solutions to (3.4). Then for all
€ > 0 there exists a constant, K, depending on € and T such that
(4.23)

O, < [ ()=t 6)], + Kl () = s (s), s
K (1)~ (1)),

With estimate (4.23), we proceed with the uniqueness proof. Since
u1 and us both solve (3.4),

1 t
§\u1(t) - ’ng(t)|i +/ (Nuy — Nug,u} — ub)ds
0

(4.24) +/0 (Q(ur)u] — Q(uz)ub, uy — uy) ds

t
=Auwmm—ﬂ%wa%f%Ms



VELOCITY DEPENDENT BOUNDARY CONDITIONS 601

The third term equals
t
425) [ (@)l — )i ) ds
0
t
+ [ (@) - Quz))us, s — up) s
0
and we estimate the second term in (4.25). This term is bounded by
t 1
@260 [ [ (@) = aVa)usu(s) @) (uho o) (2) = . (9))) dods
0 0

< K / / Vi (5, 2) — Va(s, 2)] [uho (5) (@) [tk (3)(2)
— ) (5) (@) da ds

< K / IVi(s) - Va(s)ll, . / iy (3)() 1t (5) ()
— ) (5) (@) | da ds

<Ko [ M6 =%, | 6@ e
— ub,(s)(z)|dz ds.

By Theorem 4.1, this is less than

t s
(421) K, / [ / (el () — e ()] + Kl (r) — ()], ) dr

K (s) - u;<s>H] (It ()] [t (5) — by ()] ) ds.

Splitting this into pieces we consider

t S

A=k, / / oty () — ()] il ()], (ot (5) — o ()] ds,
t s

B= KoK / / iy () — ()], drluds, (5)]. [ta(s) — ta(s)] dis,

t
C= KoK/ |uy (5) — ua(s)],, udy (s)l|urz (s) — g, (s)],, ds,
0
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and estimate these terms, the second term of (4.25) being dominated
by their sum. An application of Fubini’s theorem on A followed by
Holder’s inequality yields

t
@28) AR, T [ (o) - (o) ds

A similar procedure applied to B yields

t 1 t 1/2
B < Kool ([ ol ) ([ o) - ar)

which implies

t
B < Kol , 7% [ uda(o) ~ o (91 ds
(4.29) .
KoK |, T [t (1) = w30, .

where K depends on €. Note that the K is just a name for a constant
and the K in (4.29) is not the same as the K in the preceding inequality.

t 1/2
¢ SKOK( [ 16) = o a0 ds)
0 H H

([ 1l = a1, ) -

t
< Kok | [ hao) = 0, ds
(4.30) s Jo
K
o AU EACTATR S
t
< ey [ fuhas) = o (9), ds
0 H

t
w8k ([ 1 6) = 500 s 0,
0 H H
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It follows from (4.30), (4.29), and (4.28) that if ¢ is chosen small
enough, then A + B + C is dominated by an expression of the form
5 [t 9
@31) 5 [ (o) = uiul? ds

+KAhMﬂ—%® (1+ [uby (5)[ ) ds

K 2
H H

(Note that (2.12) gives an estimate for [|us| that depends only on T,
§, lv1| ., K1, and Cy.) With (4.31), we return to (4.24) using (3.2) and
(2.1) we can obtain
1 2 ! 2
30 O, +6 [ faa(s) ~ ()
g ! ! ! 2
<5 [ (o) — a2 s
t
I [0 a6 ) 5 9) — 0, ds
0
(4.32) )
FEo [ = Val, s = i, ds
0

ras [ (100 - )12
# [ k) = o2 ar) a

where C' = C([0, 1]). The last term in (4.32) is dominated by

t
26,(147) [ () - I do,
0

and therefore, using Lemma 4.2 on this along with some elementary
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inequalities on the term involving |V; — Va|g, we can obtain
1 / 2 ! 2
2 lur(t) —uwa ()], + — |U11 — U, (s)]] ds
SK/U+MMMUM®7%®F@
0 H H

V)

t t
1)
K [ WVi-VaPds+ g [ g, -l d

t
+K [ a9 - w1 ds,
0 H

from which we obtain, after changing K,
t
() = O, + [ lui(s) - whe(s) ds
H 0 H
t
<K [ @ (9 lu(s) -~ w5, ds
0 H H

t
+K/ Vi — Val? ds.
0 H

The last term is dominated by a term of the form

t s
K[ ] 1) = a0, drds
0 Jo "

where K may depend on T'. It follows that
t
(433) [0 = (0P + [ (o) s, (O, ds
H 0 H
t
<K [ R [l46) - uho)P
0 H H
b [ el )2 | ds
0 H

An application of Gronwall’s inequality yields the desired theorem.

Theorem 4.2. If in addition to (2.1), (4.1) holds, and V, € H*(0, 1),
and if E DO {u € H' : u(1) = 0}, then the solution to problem (8.4) is
unique.
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Different assumptions. The assumptions on P and « given in
(2.1) and (4.1) are not reasonable for many examples. In particular,
one would expect P and « to have an asymptote at V = 0, and one
would also expect that limy _, . a(V) = 0. However, we show in this
section that the study of (3.4) under more reasonable assumptions for
P and « can be reduced to the problem discussed in Sections 2—4. Here
we assume

(5.1a) a, P, P’ are locally Lipschitz on (0, 00),

IfV € [a,b], 0 < a < b < oo, then there exist constants K, and &4
such that

(5.1b) 0<dap <a(V) < Ky

(5.1c) —oo= lim G(V),  oo= lim B(V),

(51d)  P(V)>0, lim P(V)=0, lim P(V)=oo.
Voo V=0

(5.1e) limsup P'(V) < 0
V04

Now we will examine the prescribed stress k; and kg more carefully.
To begin with we assume that the material does not lie in a vacuum
and so

(5.2) ki(t,v,u) = Li(t,v,u) + si(v)

where [; is an applied stress from some sort of machinery and s; is a
stress that results from air pressure and air resistance.

We assume that whatever produces the applied stress, [;, has finite
power. Thus

(5.3) |l:(t, v, u)v| < M/2
for some constant M. The term s; has the form

(5.4a) s1(v) = —m —h1(v),  so(v) = —mo + ho(v),
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where

(5.4b) hi(w)(v) >0,  hi(0)=0, m >0.

The n; are forces which result from air pressure when the ith face of
the material is at rest. These forces are modified when v # 0 by adding
the forces +h;(v). From (5.2)—(5.4) we obtain

ki(t,v,u) +m = l(tv,u) —m —hi(v) +m

(5.5a) =1y (t,v,u) — hy(v),

and similarly,

(5.5b) ko(t,v,u) + no = lo(t,v,u) + ho(v).
Therefore from (5.4b) and (5.3),

(5.6) (k1(t,v1,u1) + n1)vr — (ko(t, vo,uo) + mo)ve < M,

and we shall assume that (5.6) holds for some positive constants 79 and
71 if the material is not in a vacuum.

If the material is in a vacuum, {; = k; and we assume (5.3) along with
(5.7) /me<m
1

Let 0 < a <1 < b < oo and let ay, and P,, equal o and P
respectively for V' € [a,b], and let aqp and Py, satisfy (2.1) and (4.1).
Also let

§
(5.80) Bun(V) = /1 o (y) dy

\% \%
(5.86)  W(V)= /1 Ply)dy,  Wap(V) = /1 Pa(y) dy,

and choose Py in such a way that for V' > 1, Wy (V) < W(V) and
Pab(V) < P(V)



VELOCITY DEPENDENT BOUNDARY CONDITIONS 607

Let u be a solution of (3.4) in which a and P have been replaced by
agp and P,p. Then, multiplying (3.4a) by v’ and doing fot , we obtain

SR~ Sl - /Wab (t,2)) do
(5.9) / W (Vo) da + / (a(V)idy(s), 1 (5))  ds
= [y as

because we take a < ag < 1 < by < b where Vy(z) € [ag, bo] a.e.
Now suppose (5.6) holds. The last integral on the right in (5.9) equals

(5.10) / (ka(s, 0 (5) (1), u(s) (1)) + ) (5) (1) ds
- / (Ko, (5)(0), u(s)(0)) + 7o) (5) (0) dis
- / ((m + (1 — 2)m)u(t) (z)). d,

which is bounded above by

(5.11) Mt+(m +770)/0 IU(t)(ﬂc)ldﬂc—/0 (@m + (1= z)no)ux(t)(z) dz

The second term in (5.11) is bounded above by

(m1 +0) / W (s)] ds

which is no larger than

(5.12) (m +m0)* + T/o |u'(s)|f{ ds.

Therefore, (5.9) implies
1 1 1
—|d' () < f/ W(Vo)dac—i—/ War (V) tdz
2 " 0 0
t
(5.13) Fn b +T [ (o) ds
0

1
+MT7/ (zm + (1 — z)n)Vdx + C,
0
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where C' is a constant depending on Vy. Since Wy (V) < W(V) for
V > 1, we obtain

WP <o+ [ W ds
(5.14) /0

+A[W@Wﬂ4mn+u—wMQde

where C'is a constant depending on Vp, T, ng, and ;. The integrand of
the last integral in (5.14) is bounded above since 7y and 7, are positive
and limy _,, P(V) = 0. Therefore, Gronwall’s inequality implies

(5.15) WP <c,

for some C' depending on Vy, T, o and n;. If (5.3) and (5.7) hold it is
also routine to obtain (5.15). This proves:

Lemma 5.1. Let u be a solution of (3.4) in which o and P are
replaced with agp and Py, respectively. Then there exist ag and by with
0 <ap <1<by < oo such that |u'(t)|u is bounded independently of
the choice of a < ag and b > by.

Let ED {u€ H'(0,1) : u(1) = 0}, and let
(5.15) / "W (0)(2) dz — Bup(V (1)) = r(t, 7).
0
Choose J large enough that
(5.16a) Cc-J<0, r(0,z) = /w v1(2)dz — B(Vo(z)) < J,
0

and if 3(V) < C — J, then
(5.16b) —(P(V) + ko(t,v,u)) <0

for all t € [0,7] and w,v. In (5.16), C is the constant of Lemma 5.1,
bounding [u'(t)| .-
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By (5.1e), there exists v > 0 such that for V € (0,7), P'(V) < 0.
Letting J also be large enough that 3~1(C — J) < 7, we may assume
that P,, was chosen such that (5.16b) holds for P,, replacing P,
whenever (V) < C — J. Now make ag smaller if necessary such that

(5.17) 0<ap< B YHC-1J).

By the choice of F, one can show that in the sense of distributions,
ri(t,x) = —Pup(V(t,z)) — ko(t,u (t)(0), u(t)(0)) a.e.

It follows that there exists a set of measure zero, B, such that for z ¢ B,
t — r(t,z) equals an absolutely continuous function a.e.t and
(5.18)

Nt$)=T®¢ﬂ*:A —(Pab(V(s,2)) + ko(s, ' (5)(0), u(s)(0))) ds.

From Lemma 4.1, t — r(t,z) is continuous for a.e.x. and so we may
conclude that the above formula holds for all ¢ € [0, T7.

Lemma 5.2. Ifz ¢ B, then r(t,z) < J+1 for all t € [0,T].

Proof. If the lemma is not true, there exists ¢ B and ¢ € [0,T] such
that r(t,z) = J + 1 but r(s,z) < J + 1 for all s < ¢t. Hence
(5.19)

r(t,z) —r(s,x) = / —(Pap(V(r,z)) + ko(r,u' (r)(0),u(r)(0))) dr

By continuity of s — r(s,z), we can conclude that for all s close
enough to ¢, r(s,z) > J. Pick such an s. Then if r € (s,t),
Bab(V(r,z)) < C —J < 0. This implies S(V(r,z)) < C — J also
(if B(V(r,x)) > C — J, then V(r,z) > B~YC — J) > ap and so
Bap(V(r,z)) = B(V(r,z)) > C —J contradicting Bap(V (r,z)) < C'—J).
Therefore, by the validity of (5.16b) with P, replacing P, the integrand
in (5.19) is negative. Thus J +1 = r(t,z) < r(s,z) < J+1, a
contradiction. |

We conclude from Lemma 5.2 that r(¢,z) < J + 1 for all * ¢ B and
t € [0, T]. Consequently, for all a < ag and b > by,

(5.20) C—J—-1<Bu(V).
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Now let ag < 7HC — J —1). If V(t,xz) = ag, then B(V (¢, z)) =
Bab(V(t,2)) = B(ap) < C — J — 1 contradicting (5.20). Thus for a.e.x,
V(t,z) > ap for all ¢t € [0,T].

Letting N > max{P(V) : V > ao} + sup{|ko(t,v,u)| : t €
[0, 7], (v,u) € R?*}, (5.18) shows that

[r(t,z)| < NT + |r(0, )|,

and so there exists a constant, — R, independent of a and b such that
—R < r(t,z), and so

(5.21) Bap(V(t,x)) < C + R.

Let by > B~ YC + R). 1If V(t,z) = by, then B(V(t,z)) =
Ba(V(t,z)) = B(bo) > C + R. This contradicts (5.21) and so
V(t,z) # by for all t € [0,T]. Therefore, for a.e.x, V(¢t,z) < by for
all t € [0,T]. This proves the following

Theorem 5.1. Let E 2 {u € H*(0,1) : u(1) = 0}, let Vo(z) be
bounded away from 0 and oo, and let (5.1) and either (5.6) or (5.7) and
(5.3) hold in addition to (3.2). Then there exists a solution to problem
(3.4) satisfying 0 < ag < V(t,z) < by < oo for a.e.x. If Vo € H*(0,1),
this solution is unique.

Proof. This follows by picking a < ag and b > by for the ag and
by described above. If u solves (3.4) with ag, and P, replacing o
and P, the above argument has shown that ag < V(¢t,z) < by and so
(V) = a(V) and P,y (V) = P(V). i

In this section we have considered prescribed stress satisfying (5.2),
(5.3), and (5.4). It seems reasonable to assume that |/;(¢, v, u)| should
satisfy (3.2a) and (3.2b), but then we would have to conclude h;(v) is
bounded. It might be more desirable to not make this assumption. To
remove it, let

hi(v) if |v] <n
(5.22) hin(v) =4 n ifo>n
-n ifv<—n



VELOCITY DEPENDENT BOUNDARY CONDITIONS 611

and denote by P(n, a,b) the problem (3.4) in which P is replaced with
P,p, 3 is replaced with 3,5, and h; is replaced with h;,. Also let P(a,b)
denote problem (3.4) in which h; has not been replaced. Then (5.9)
and (5.10)—(5.11) imply that, for u, a solution to P(n,a,b),

1 1
§|U%(t)|i - §|U1|i

+ / (em + (1= 2)n0) V(b 7) — W (Vs (1, 2))d
(5.23) " .
+ [ W) o+ 6 [ (o) ds

t
<MT 4 (s ) + T [ [ (5, ds.
0

Since P(V) > 0, limy 04 P(V) = o0, and limy_,o P(V) = 0, we
can assume that ag is small enough and by is large enough that for
a < ag and b > by there is a lower bound, —J, for the function
V — (zm + (1 — 2)no)V — Wep(V) which is independent of such aq,
b, and z € [0,1]. Therefore, an application of Gronwall’s inequality in
(5.23) yields a constant, C, independent of n such that

(5.24) [unllLoe 0,5y + lunll, + lnll 0,75y < C-
It then follows from (3.2a) that f,(ul,,u,) is bounded in V' from

which we may conclude that ||u,[|, is bounded independently of n.
Therefore, there exists a subsequence, still denoted by n, such that

(5.25) U, = uin Y.

Applying (3.3a) and (3.3b), we may take a further subsequence and
assume that for a.e.t, and e =0 or 1,

(5.26) U, ()(e) = ' (t)(e),  un(t)(e) = u(t)(e).

Therefore, for a.e.t,

(5:27)  hn(un (8)(1) = R (@' (£)(1)),  hno(uy (£)(0) = ho(w/ (£)(0)),
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assuming hg and h; are Lipschitz continuous. Thus
(5.28) fo(un,ul) = flu,u') in V.

Let w be the solution to (2.5) where f = f(u,u’). By Theorem 2.1
u, — w in V. It follows from (5.25) that v = w. Therefore u is a
solution to P(a,b).

Since (3.2b) is no longer assumed to hold, some changes are necessary
in estimating the specific volume. We assume that, in addition to (5.1),
there exist constants a; and b; with 0 < a; < by such that

(5.29a) P is decreasing on (0, a;] U [by, 00),
and
1
(5.20b) / P(V)dv =
0

One defines, for z, y € [0,1] and u the solution of P(a,b),
y
alte,) = [ w0 = BulVEw) - V)L

Then the procedure of [9, Section 4] is used to estimate the specific
volume independent of a and b for all a small enough and b large enough.
Since (3.2b) was not used in Section 4 of this paper, we obtain:

Theorem 5.2. Delete assumption (3.2b) but assume (3.2a) holds
for l; and k; given in (5.2). Also assume (5.29) in addition to (5.1).
Then there exists a solution to (3.4) and constants ag and by, ag > 0,
such that V(t,z) € [ag, bo]| a.e.z. If the initial specific volume Vy is in
H'(0,1) and if E D {u € H'(0,1) : u(l) = 0}, then the solution is
unique.
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