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ISOTOPIC HOMEOMORPHISMS AND
NIELSEN FIXED POINT THEORY

MICHAEL R. KELLY

ABSTRACT. Given a topological manifold, M, and an
embedding h : M — M we define a certain class of balls in
M called isotopy-standard-for h. The existence of such balls
is established and also the following fixed point removability
criterion is given: if B is isotopy-standard-for h, and h|B has
index zero, then there is an isotopy with support on B taking
h to a map which has no fixed points in B.

1. Introduction. For a large class of compact topological spaces,
Nielsen theory provides a way to estimate the number of fixed points
for any given self-map. If X is a compact polyhedron and f: X — X
a self-map, then the Nielsen number, N(f), has the two important
properties given below:

(1) N(f) is a lower bound for the number of fixed points of f : X —
X,

(2) N(f) is a homotopy invariant (i.e., homotopic maps have the
same Nielsen number).

The definition of N(f) and some of its properties can be found in either
[2] or [5]. Loosely, it gives the number of fixed point classes of f which
have nonzero index.

A very natural question—and one of general interest—concerns the
realizability of the Nielsen number as a lower bound. Specifically,
given f : X — X does there exist a map g homotopic to f having
exactly N(f) fixed points? The first affirmative results were due to
Nielsen (maps on the torus) and Wecken (maps on PL manifolds of
dimension greater than two). Results by a number of authors have
since culminated in the following theorem due to Jiang [6].
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Theorem 1.1. Suppose that X is a compact polyhedron which is not
either (1) a polyhedron with local separating points or (2) a surface with
negative FEuler characteristic. For f: X — X define

MF[f] = mgin{# Fix (g)|g is homotopic to f}.

Then MF[f] = N(f).

This theorem is best possible in the sense that counterexamples exist
under either condition (1) or (2). (See [2, 8, 10].) On the other
hand, if we restrict our attention to homeomorphisms in the case
(2), as a consequence of the Nielsen-Thurston classification of surface
automorphisms the following theorem holds.

Theorem 1.2 [4]. If F is a compact, orientable, surface and
h:F — F is a homeomorphism, then M F[h] = N(h).

Remarks. (1) It cannot always be arranged that the minimizing
map in Theorem 2 is also a homeomorphism. Jiang [7] pointed out
that for an orientation reversing involution of the pair of pants no
homeomorphism will work. However, the minimum can always be
achieved by an embedding into the interior of M.

(2) If in place of N(h) we were to use the relative Nielsen number,
N (h, h|OF), as defined by H. Schirmer [12], then this new minimum
can be achieved by an actual homeomorphism. Details appear in [9].

Given a topological manifold M, the results of Theorems 1.1 and 1.2
can be combined to give the following theorem.

Theorem 1.3. If M is an orientable topological manifold, then for
any homeomorphism h : M — M, we have M F[h] = N(h).

2. Homotopy vs. isotopy in Nielsen theory. Theorem 1.3 is a
result about a homotopy invariant (the Nielsen number) in the category
of topological manifolds and homeomorphisms. But in this category
isotopy is perhaps more natural to consider. Certainly, N(h) is an
isotopy invariant and a lower bound for the number of fixed points. In
the paper [7], Jiang raised the question of the realizability of this lower
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bound. When dim (M) = 2, this follows immediately from Theorem 1.3
and the fact that homotopy implies isotopy in dimension two. Here, and
in what follows, we take isotopy to mean isotopy through embeddings
when necessary.

In higher dimensions, standard techniques (for example, the use of
the Whitney trick in [7]) don’t seem to apply. Also, problems of a local
nature may occur. For example, if IV is a topological ball in M which
contains exactly one fixed point, a, in its interior there is the following
removability criterion,

Proposition 2.1 [5, p. 13]. If index (h,a) = 0, then h is homotopic
to a map g which agrees with h on M\N and Fix (g) "N = @.

The analogous result using isotopy in place of homotopy is unknown.
The purpose of this paper is to obtain a partial analog to the above
proposition as well as some other corresponding results. In the next
section we define a certain class of balls in a manifold called isotopy-
standard. Various properties are discussed including the following
result.

Theorem 2.2. Let M be a topological manifold and h : M — M
an embedding into the interior of M. If B is an n-ball in M which is
isotopy-standard-for h and with index (h, B) = 0, then h is isotopic to
g with support on B so that Fix(¢9) N B = @. If M and h are smooth,
then so is g.

The above theorem can be used to reduce the realizability problem
(of achieving the Nielsen number as a minimum) to the problem of
finding certain isotopy-standard balls in M. This is indicated in the
following consequence of Theorem 2.2.

Corollary 2.3. Suppose h : M — M is an embedding and
By, ..., By are isotopy-standard balls in M satisfying

(1) BiNBj =@ ifi#j
(2) Fix(h) C U7, B;
(3) Suppose v is a path in M with 0y C Fix(h). If v U h(y) is
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null-homotopic then 0y C Bj for some j.
Then h is isotopic to an embedding having exactly N (h) fized points.

Proof. Conditions (2) and (3) in the hypothesis imply that each fixed
point class is contained in some Bj;. Proposition 3.1 reduces to one
fixed point in each class and Theorem 2.2 can be applied to remove
those which have zero index. As the Nielsen number gives the number
of fixed point classes with nonzero index, this is the desired embedding.
mi

3. Isotopy-standard balls in manifolds. We first give some
notation which will be used throughout this section. For n > 2, write
R" = R? x R"2 and identify R? x {0} with C. Let O denote the
origin in the complex plane, C (or in R™). Let

Vi={z€C(Cllz| <1} and V2={z€eC(C|z| <2}
Let Ey = {O} C C, and for each integer k > 0, let
Ep={t-z]zF=1,0<t<1,z€C}.
With J denoting the interval [—1,1] in R, let
V=V xJ'""2CR" and for k>0,

Qi = {af; € R"|dist (z, Ey) < %4-2}

Notice that QN (R?x {0}) is a disk contained in V5 and that V NQy is
an n-ball as is each component of Q\int (V). These components each
meet V N Qj in an (n — 1)-ball.

Let M™ be a compact, connected, topological manifold of dimension
n. As techniques from differential topology will be applied to certain
subsets of M, we will assume, for convenience, that M is smooth
away from a finite set of points. If OM = @, let h : M — M be
a homeomorphism, otherwise let A be an embedding of M into the
interior of M. Let B be a smooth n-ball in M, and suppose that h
restricted to B is a smooth map onto its image.
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Definition. We say that B is isotopy-standard-for h if there exists
a smooth, locally flat disk D in M, a nonnegative integer k, and a
homeomorphism of triples

¢ : (Bah(B)vD) — (VvaaV2)

such that the following conditions are satisfied:
(c1) Fix(h)NOB =@,

(c2) ¢php™1(V1) C Vs, and it is orientation preserving; php=1(V\ V)N
Vo =0,

(c3) for each x € B\D, dist (¢(h(z)), Va) < dist (¢(z), Va).

Remark. In what follows, the dependence on the homeomorphism is
usually suppressed, in which case we just write isotopy-standard.

Example. Suppose z is a hyperbolic fixed point of A such that the
dimension of the unstable manifold, W*(z), is one (see [3]). Suppose
further that the stable manifold contains a one-dimensional invariant
subspace, L. If h is orientation preserving on each of these subspaces,
then small regular neighborhoods of « form isotopy-standard balls. The
locally flat disk D is contained in the product L x W*(z). This idea is
developed further in Proposition 3.3.

Example. Suppose dim (M) = 2 and N is a disk in M which
satisfies (i) h(ON) is transverse to 0N with no fixed points on ON,
(ii) N\h(N) # @ and (iii) N N h(N) is a disk. Under these conditions
we may assume, without loss of generality, that both N and h(NV) are
contained in R2. Now if h is orientation preserving, then N is an
isotopy-standard ball.

If B is isotopy-standard, then it is easy to see that all the fixed points
in B are Nielsen equivalent. By condition (c3) they must all lie on the
disk D. Our first result says that they can all be merged together to
form a single fixed point.

Proposition 3.1. Suppose that B is an isotopy-standard ball. Then
h is isotopic to h' with support on B such that B is an isotopy-standard
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ball and Fix (k') N B consists of exactly one point.

Proof. For each p € bd(V) U bd(Qy) let [, denote the segment in
R" from p to O. Define a map g : V — Q} by sending [, linearly onto
lphe—1(p) With O being sent to O. Since V is convex and Q is star-
shaped, ¢ is well-defined; and from (cl) it follows that Fix (¢g) = O.
Let h'(p) = ¢ L ogo¢(p) for p € B and h'(p) = h(p) for p ¢ B.
Then by the disk theorem [3; p. 185] h’ is isotopic to h. Clearly,
Fix (k') N B = ¢~*(0). Finally, B is isotopy-standard. For given
x € B\D, then ¢(z) € I, for a unique point p € ¢(0B) and

dist ((h'(x)), V) < dist (¢(x), V2)
iff  dist (9(¢(x)), V2) < dist (¢(), V2)
iff dist (9(p), V2) < dist (p, V2).

This last inequality holds because g = ¢ph¢ ! on ¢(0B) and the ball B
is isotopy-standard. u]

Given h : M — M and a set X which denotes either a compact set
of fixed points, an open set in M, or the closure of an open set having
no fixed points on its boundary, let index (h, X) denote the topological
index for the fixed point set of h on X. See [2] or [5] for the definition.
From the proof of Proposition 3.1, if B is any isotopy-standard ball we
know that

index (h, B) = index (', ¢ *(0)).

If U and V are subspaces of M with U open in V and h(U) C V,
then we may consider the restricted index for the map h|U : U — V
denoted index (h|U,Y) where Y C U is similar to X above. In general,
for p € Fix(h) and p € U C M, index (f,p) may not be equal to
index (f|U, p) but for an isotopy-standard ball B we have

Lemma 3.2. index (h',¢~1(0)) = index (W'|D N B, ¢~1(0)).

Proof. We show that index (¢h'¢1,0) = index (¢h'¢ Vi, O).
Define a map g : V — R" as follows. For p € V U Qy, let ¢(p) denote
the point on V2 such that dist (p, ¢(p)) is minimal, and let s, denote the
segment joining p to ¢(p). Let A : V' — [0, 1] be any continuous function
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satisfying (1) A(0V) =0 and (2) if z € N = {y € V|dist (y, 0) < 1/2}
then A(z) = 1. Now, for x € V let p = ¢h'¢ 1(z) and define
g(z) = (1 = Xz))p + (A(z)) - ¢(p) € sp. Clearly, g is homotopic to
®h'¢~'rel V. Also, condition (c3) of the definition of isotopy-standard
ensures that Fix (g) = O. Thus,

index (¢h'¢~!, 0) = index (g, O) = index (g, N).
Now apply 1.3.2(3) in [5] to get
index (g, N) = index (g|V;, N N V}) = index (g|V4, O).

The result now follows as g|V; = ¢h'¢~1|V;. o

This section is concluded by showing that, in the smooth category,
isotopy-standard balls which cover the entire fixed point set do exist.
This result doesn’t directly apply to Corollary 2.3 as the construction
will not address the third condition in the hypothesis of 2.3. For the
proof of existence, we will use the notion of a hyperbolic fixed point.

Definition. Given a smooth embedding f : M — M, a point
xz € Fix(f) is said to be hyperbolic if Df, is a linear isomorphism
of T M, for which all of its eigenvalues have modulus different from 1.
In this case there is a splitting of TM, = E} @ E} where both E} and
E% are D f,-invariant,

Ef ={v e TM, | [|IDf()|| < |v[|}
and

Ef ={veTM, | [[Df:(v)|| > [[v|[}-

Proposition 3.3 (Existence of isotopy-standard neighborhoods).
Let f : M — M be either a diffeomorphism (if OM = &) or a
smooth embedding into int(M). If dim (M) = 2, we assume that f
1s orientation preserving. Then f is isotopic to h : M — M such that
Fix (h) is finite and each fized point is contained in an isotopy-standard
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ball. Moreover, these balls can be chosen inside any open set containing

Fix (h).

Proof. First, by standard transversality techniques (see [1]) arrange
that Fix (f) is a 0-dimensional submanifold and, hence, a finite set of
points. Also, for each z € Fix(f), Df, : TM, — TM, is such that
Df, has no eigenvalues of modulus one. Thus, all fixed points are
hyperbolic.

First consider the case dim (M) = 2. If ¢ € Fix(f) is such that
either of the eigenvalues of D f, has modulus less than one, then small
regular neighborhoods of = are isotopy-standard. Otherwise, f is locally
expanding at z and, hence, has a regular neighborhood, IV, such that
N C f(N) with no other fixed points in N. Let U be an open disk
in M with f(N) C U. Choose a diffeomorphism © : U — R? such
that ©(z) = O, O(N) = {z € R? | |z| < 2}, and for z € ON,
O(f(z)) =2-0O(z) (R? as a vector space).

Let

A:[0,1] = [0,2] and w:[0,1] — [0,7/8]

be smooth maps with

A(0,1/2]) =1/2,  A(3/4)=3/4, A1) =2
w([0,1/4]) =0, w(3/4) =7/8,  w(l)=0.

Also, assume that X is increasing on [1/2, 1] and that w has exactly one
maximum occurring at 3/4.

For t € R let M(t) denote the 2 x 2 matrix

cos(w(t))  sin(w(t)) )
(it i)

t
—sin(w(t)) cos(w(t))

Define 7 : R?> — R? by

() — e-f-071(v) if lv| >1
) {A<|u|>-M(|u|>-u if ] < 1

and set g = ©7170.
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Since g and f agree off of N, g is isotopic to f. By construction, T only
has one fixed point on |v| < 1 and so Fix (g) = Fix(f). Finally, since
Dg, is conjugate to Dt its eigenvalues have modulus less than one.
Then g = h is the desired map. Note that the orientation preserving
hypothesis in the two-dimensional case is only used to obtain the o.p.
condition given in (c2) of the definition of isotopy-standard.

For the general case, dim (M) > 2, let’s first suppose that dim (E}) >

2. Apply Lemma 3.4 to get f isotopic to f and S, a two-dimensional
invariant subspace of E}‘ Write TM, = S & S*+. By use of the

exponential map, we can find disks N,U and (n — 2)-balls P and V
such that N C U C exp,(S) and P C V C exp,(S*). Moreover, we
arrange that f(N x P) C U x V. Use the previous construction (when
dim M = 2) to obtain g; : N — U replacing f|N. Then g = g1 x (f|P)
is isotopic to f with Fix (g) = Fix(f), and D(g|P), = D(f|P),- Also,
dim (Ey) = dim (E}) — 2. Repeat, if necessary, this construction until
we obtain h : M — M isotopic to f with dim (E}) < 1.

If dim (E}') = 0, apply Lemma 3.4 to get two distinct one-dimensional
invariant subspaces of E} on which Dh, is orientation preserving (by
abuse of notation we still call the map h). Let £ denote the direct sum
of these subspaces and using the exponential map, exp, : TM, — M,
set D = exp,({e € £ | |le|] < 2}) and B = exp,({e € TM, | |le|]] < 1).
Then B is an isotopy-standard ball with ¢ o h(B) = Q.

If dim (E) = 1, we may assume that Dh, is orientation preserving
on this subspace. Otherwise, by an isotopy of A which does not change
the fixed point set, we could arrange that Dh, is contracting on this
subspace and then appeal to the previous case. So, by Lemma 3.4,
there is a one-dimensional invariant subspace, L, of E} on which Dh,
is orientation preserving. Let { = E}' ® L and, as in the preceding case,
construct D and B. Here ¢ o h(B) = Q3. O

Lemma 3.4. Let x be a hyperbolic fized point of f : M — M,
and suppose that dim (E;) > k where k s a positive integer and t
denotes either s or u. Then f is isotopic to g with support on a
regqular neighborhood of x such that Fix (g9) = Fix (f), and E contains
k — 1 distinct one-dimensional invariant subspaces such that Dg, is
orientation preserving on each.
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Proof. Suppose that v € E% is a nonzero vector such that the sub-
space W spanned by {v, Df,(v)} has dimension 2. Use the exponen-
tial map, exp, : M, — M, to identify 7'M, with a neighborhood
of z. Let (N, Ng) be a regular neighborhood pair of = contained in
(exp,(T'M,), exp,(W)) with Fix (f) " N = {z}. Consider the smooth
disk Ny as the unit disk in R?, z as the origin. By a suitable rotation of
Ny which is tapered to the identity on 0Ny, there is a diffeomorphism
¥ : No — Ny, isotopic to the identity such that ¥|0N, = identity,
[[%(@)I| = [Ip] for all p and D, (Dfo(v)) = |Df.()]|-v. Extend v to
all of N by using the identity on the factor exp,(W'). Let g = o f.
Since Dg, = Dv, - Df,, it follows that the subspace spanned by v
is invariant under Dg, and that Dg, is orientation preserving on this
subspace.

If no such vector v exists, then one automatically obtains a one-
dimensional subspace of E} on which Df, is invariant and orientation
preserving except in the case where D f, acts in an orientation reversing
manner on the span of v for every v € E} In this case let W denote
the span of any two linearly independent vectors in E} and apply the
argument of the preceding paragraph to obtain the desired subspace.
Now, in each case, as W C E}, Fix (9) N N = {z}. This completes the
proof in the case k = 2.

Proceeding inductively, suppose that E; contains p distinct one-
dimensional Dj-invariant subspaces (with D orientation preserving
on each) where 0 < p < k — 1. Let V denote the span of the union of
these subspaces. Then the orthogonal complement V+ to V in E% has
dimension at least 2 and so the argument given above can be applied to
V1 to produce a new map g and a one-dimensional invariant subspace
of V1. As the construction leaves V unchanged, we now have p + 1
invariant subspaces on which Dy is orientation preserving. The result
now follows. O

4. Proof of Theorem 2.2. In order to prove our main result we
first give the following proposition which is essentially the statement of
Theorem 2.2 in the two-dimensional case.

Proposition 4.1. Let N = {z € R? | |z| < 1} and S = ON. Let
C be a simple closed curve in R2, transverse to S, bounding a disk
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M such that NN M is a disk. If h : S — C is a fired point free
homeomorphism with index (h,S) = 0, then h extends to a fixed point
free homeomorphism h : N — M.

Remarks. (1) index (h, S) = index (h, N) where h is any extension of
hto N. (2) If h is orientation preserving, then NV is an isotopy-standard
ball for h in R2.

Proof of Proposition 4.1. The proof proceeds as follows. First, two
constructions are given which allow us to reduce h : S — C to a stan-
dard form, independent of index (h,S). Then it is shown that a fixed
point free extension exists when index (h, S) = 0. Fix an orientation on
R?2, and let each of N, M, S, and C have the induced orientation. The
proof will depend on whether h is orientation preserving or reversing.

First, we can assume that SNC # &. For, if not, then either N C M
or M C N, in which case index (h,S) # 0, or NN M = & and the
fixed point free extension is trivial. Let Z denote the finite set SN C
and, without loss of generality, we assume that h(Z) N Z = @. Let
[S] denote the set of components of S\Z and [C] the components of
C\Z. Since NN M is a disk, there is a natural pairing between [S]
and [C] as follows: for @ € [S], let & € [C] be such that the closure
of a U@ is a simple closed curve and the disk D(a) bounded by this
curve is not contained in N N M. The latter condition is only needed
when Z consists of two points. Note that if dD(«) is oriented so that
its orientation agrees with the orientation induced by S, then it has the
opposite orientation as that induced by C.

For the first construction we assume that for some a € [S], h(a)Na =
. In the case a N M = @, choose a regular neighborhood P of D(«)
in N which satisfies: (1) (PNC) = cl(a@), (2) (P\D(a)) C (NNM)
and (3) (P NS) is an arc whose image under h is disjoint from P.
The existence of such a neighborhood follows because C' meets S
transversally and h(«) is disjoint from &. Note that P is a disk which
meets CNS in exactly two points. Now, let @ be a disk in M\ P chosen
so that Q N C' = h(P N S) and cl (0Q\C) meets S transversally in the
same number of points as does @ N C.

Extend h by mapping P to @ and observe that with N’ = cl (N\P),
M’ =cl(M\Q), S"=0N', and C' = OM' then N' N M’ is a disk and
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[S'] has two fewer elements than [S]. In the case o C M, apply the
same construction to h~! : C — S and the arc a&. Here, aNN = @&
and h= (@) Na = @.

For the second construction we assume that, for some a € [5],
h(a) N@ # @ and @\h(«) has exactly one component. Let y denote
the endpoint of a which is contained in h(a), and z the other endpoint.
As M NN is a disk, if h is orientation preserving it must be that h(z)
lies on @ while h(y) is on C\cl(a@). The opposite happens when h
is orientation reversing. Choose a point Z on (S\«a) near z and let P,
denote the arc from Z to y which contains «. Let P be a disk embedded
in N so that PNS = FPy. Also, with P identified with Py x I we assume
that PNC = {z,y} x I. Let Qo = h(Pp) and choose @ in M (identified
with Qo X I) so that either

(i) if anN M = @, then PN Q is the arc {y} x I C P. In this case
let § = {y} x {1} C Q.

(ii) if @« C M, then there is a point 3’ on a and an arc 8 C «, joining
y' to y, so that PNQ = fx I C P. In this case, let § = {y'} x {1} C P.

In either case § is contained in Qg x {1}. Let & = {z} x {1}, and let ¢
be an arc in Qp x {1} which has h(y) x {1} as an endpoint and which
does not contain j.

Now, define h : P — @ extending h : Py — @y by sending
(i) xIto (h(Z)xI)Ucl((Qo x{1})\9)

(ii) yx I to h(y) x I

(ili) Py x {1} tod

(iv) int P to int Q.

Note that if P and @ are chosen in small neighborhoods of P, and
Qo, respectively, then P N @ is in a neighborhood of y and h(P N Q)

is in a neighborhood of h(y). Thus, no fixed points occur. Setting
N'=cl(N\P), M' = cl(M\Q), S’ = ON' and C' = OM’, then

§'NC = ((SNO)\{z,y}) U{z, 7}

Finally, with o/ € [S'] being the arc joining & to g, then h(a')Na’' = @
when h is orientation preserving, and h(a’) C o’ when h is orientation
reversing.
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By a repeated application of the above two constructions, we reduce
to the case where h : S — C satisfies h(a) C @ or & C h(«) for each
a € [S]. Observe that if o and 8 are adjacent and h(a) C @&, then
B C h(B). To finish the proof, we consider each of the two cases.

If h is orientation preserving, set A = 1 if h(a) C & occurs when
a C M; otherwise set A = 0. Let [ be the number of components of
M\N. By a direct index calculation (see [5, p. 13] it can be shown
that, under the hypothesis above,

index (h, S) = { L=t Tf)\_ 1

1+1 ifA=0.
Thus, index (h,S) = 0 only when [ = 1 and A = 1. In other words,
the closures of M\N and N\M are disks and, with « = S N M,
h(a) C @ = C\N. One easily obtains a fixed point free extension to
N by choosing an arc w C M\N with w N C = h(a N C) and mapping
C N N homeomorphically onto w.

Now suppose that h is orientation reversing. First, observe that
after applying the two constructions, Z consists of at most two points.
For, if not, there certainly exists o € [S] such that h(a) C @. But,
in this case, for each of the components 8 € [S] adjacent to «, the
orientation reversing hypothesis ensures that h(3) N3 = @. Thus, the
first construction applies.

Suppose Z # o, and let o € [S] be the unique component such
that oo C M. There are two possibilities to consider: either h(a) C &
or vice versa. In either case index (h,S) = 0 and a fixed point free
extension can be obtained as follows. In the former, the extension
mimics that in the orientation preserving case above, while the latter
is slightly different. Here choose an arc w in M which is near h(a) and
has the same endpoints as h(«). Map N N M into the disk bounded
by w U h(a) and send N\M into the complementary disk in M. The
orientation reversing hypothesis guarantees (for a good choice of w)
that the extension is fixed point free. O

Proof of Theorem 2.2. Let D be the disk associated with B. Let
Dy =DnNB. Alsolet ¢ : (BUA(B)) = (VUQy) be as in the definition
of isotopy-standard. First, observe that by Lemma 3.2 and Proposition
4.1, h|Dy is homotopic rel @Dy to a homeomorphism A’ : Dy — h(Dy)
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such that Fix (k') = &. As homotopy implies isotopy in dimension two,
we have an isotopy (after conjugating with ¢)

H:VixI—>VixI

such that Hy = identity, H; = ¢o(h|Dg) toh/o¢™1, and H|(0V; x1) =
identity. Let H; = H|(Vh x {t}) : V1 — V1.

Given any = € V, it can be expressed uniquely in the form x = (2, )
where z € Vy and t € J*2. If t # O, let s, denote the segment in J? 2
from O to t and [, the maximal segment from O to J"~2 containing
sz Define

length (s;)
T(z) = length (1)
1 when t = O.
Let 7, : Vi x {t} — V1 = V1 x {0} denote the projection map.

when ¢t # O

Define a map p: V — Qg by
lu(x) = ¢o ho (]571 07'[')5_1 OHT(w) O7Tt(2).

This map is clearly one-to-one and onto. Also, if z € 9V, then 7(z) =0

and p(x) = ¢oho¢ '(z). So we may define a homeomorphism
h: M — M by
: h(p) ifp¢ B
h(p) = { _1 if
¢~ topod(p) ifpeB.

In the above, if 7(x) is replaced by p - 7(x) where 0 < p < 1, then we
get a natural isotopy between h and h. Furthermore, we have

(1) For p € Dy we have 7(¢(p)) = 1. Thus, since my = identity,
= oh¢~ ¢(h|Do) W ¢™! = pho™!

and so h = h/.
(2) Since u(Vi x {t}) = ¢hod=1 (V1 x {t}) it follows that

W™ (Vi x {t}) = 7" o p(Vi x {t}) = h(¢™" (Vi x {t})).

(3) By condition (c3), if ¢ # 0, then phdp~ (V1 x {t})N (V1 x {t}) = @.
Thus, (¢~ (V1 x {t})) N ¢~ (Vi x {t}) = @.
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Putting (1), (2) and (3) together, we see that Fix (h) N B = & which
establishes Theorem 2.2. O

As a final note to this paper, we give a few comments. First, we note
that the proof of Proposition 4.1 can be adapted to give an alternate
proof of Proposition 3.1. Namely, if (in 4.1) the index is nonzero, then
there is an extension of h to the disk N which has exactly one fixed
point. Use this extension in the proof of 2.2 to obtain a homeomorphism
with exactly one fixed point in the isotopy-standard ball.

The remaining comments are concerned with the use of the smooth
category in obtaining the various results. For instance, if the smooth
hypothesis in the definition of isotopy-standard is replaced by piecewise-
linear (PL), then the proofs of 3.1, 4.1, and 2.2 can each be modified so
as to obtain the same conclusion. The corresponding PL tools needed
can all be found in [11]. On the other hand, the existence result (3.3)
uses transversality and so the smooth hypothesis is needed. Also,
in the proof of 2.2, if the input data (M and h) is smooth (or PL)
then we can arrange for the output homeomorphism h to be smooth
(respectively, PL) as well. In 3.1, a coning construction is used to
obtain a homeomorphism with one fixed point and, as a result, it is not
clear whether or not this homeomorphism can be taken to be smooth.
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