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SOLVING (I — S)g = f
WHEN S IS A GENERALIZED SHIFT OPERATOR

A. DELIU AND M.C. SPRUILL

ABSTRACT. Solutions to the equation (I—S)g = f include
Weierstrass functions and fractal interpolation functions of
Barnsley. Closure of the range of I — S in C and L" is
characterized when ||S|| = 1 and solutions g are represented
as weak Abel-like limits.

1. Introduction. Solutions to the equation
(1.1) (I-S)g=f

are studied, where S is a generalized shift operator defined in Section
2. The closures of the ranges of the operators I — S in the spaces C
and LP depend upon parameters in S. They are characterized simply,
and it is shown that solutions g can be obtained as Abel limits.

In the case of the ordinary shift operator S = ¥ defined by X f(t) =
f(2t) Fortet [3] stated that if f is a Lip («), a > 1/2, periodic function

with period 1 and with fol f(t)dt = 0, then the equation (1.1) has a
solution g in L? if and only if

) ;
E/o ;f@t)

as n — oo. Kac [5] proved the theorem and Cieselski [2] proved it for
all @ > 0. Rochberg [6] studied a more general equation in the context
of shift operators on a Hilbert space and showed that Kac’s result is
an immediate consequence of his results.

When ||S|| < 1 there is for each right hand side f of (1.1) a unique
solution given by the Neumann series

(1.2) g= Zsjf_

j=20

2
dt — 0
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When ||S|| = 1 solutions may not exist for certain right hand sides
since I — S need not be invertible and, when they exist, are not
generally obtainable as in (1.2) since the series may no longer converge.
It is the latter case, ||S|| = 1, investigated in this note. The FKC
theorem addresses the problem when f is Hilder continuous, solutions
are sought in L?, and S = X. We prove that the norm closure of
the set of functions f for which a solution g exists is the set of f’s
for which fol f(z)dz = 0. Although it is not generally true that the
range of the operator I — X is closed, this entails (see Lemma 3.4) the
existence of many more solutions to the equation than those covered by
the FKC theorem. It is shown in the general case that when ||S|| =1,
0 < a, <1, and f is in the range of I — S the functions

(1.3) gn=> alSif

720

are approximate solutions in the sense that ||f — (I — S)g,|| — 0 and
the g,, converge weakly to a solution of (1.1) as a,, T 1.

The fractal interpolation functions studied by Barnsley [1] can be
expressed as solutions of an equation (1.1) on the space C[0,1] for
[|S]| < 1. Here we extend the notion to what one could call L" fractal
interpolation functions and extend the notion in both L” and C to the
case of ||S]| = 1.

The functional equation

(1.4) lI:Z_:f<m+i> = Af(z)

p e p

has been studied by Artin (see [4]) for A = p~! and more generally
by Hata [4] for A # 1. A generalization of this equation (see (3.2)
and Lemma 3.3 below) arises in consideration of the adjoint of the
generalized shift operator S when A = 1.

2. The generalized shift operator. Let F' be a collection of
real valued functions on (—o0, ), periodic with period 1, and having
restrictions to [0, 1] which are elements of a normed linear space B of
functions. The norm of f € F is the B-norm of its restriction to [0, 1].
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Let p be a positive integer and do,... ,dp—1 be real numbers. Define
the generalized shift operator S on F' by its restriction to [0, 1],

Sf(t) = D) f(pt),

where
(2.1) Dt =S duti(t

and I;(t) is the indicator of the interval [i/p, (¢ +1)/p). The usual shift
operator ¥ is obtained by taking p = 2 and dy = dy = 1. It is assumed
that S maps F into itself and that S has norm no more than 1.

If B is the space L"[0,1], 1 < r < oo, then straightforward computa-

tion shows
15
sl = (53 i )il
P>
If B is C[0,1], then one must generally have f(0) = f(1) = 0 to
make S map F into F. Denoting by C the subspace of C|0,1] with
f(0) = f(1) = 0, one has in this case

[|S]| = max |d;.

0<i<p—1

For B the space of normalized functions of bounded variation NBV][0,1]

Is) = (Zw)

For example, in the case of S = a¥ applying this to the function f(t) =
sin(2mt) yields the Weierstrass function g(t) = >, a’ sin(2717t) and
it is seen that if |a| € [0, 1) the series representing g converges uniformly
to g, a continuous function, and if |a| < 1/2, g is of bounded variation.
If |a| € [1/2,1), then the series does not converge in NBV. It is well
known that g is not of bounded variation on any subinterval in this
case, but this does not follow from these arguments.

The usual definitions and notations regarding a normed linear space
X and its dual X* are observed below including weak and weak*
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convergence. For a subset A of X the set AL is the collection of elements
z* in X* for which (z*,z) vanishes on A while if A is a subset of X*,
At is the set of x € X for which (z*,z) vanishes on A. The range of
a linear mapping T is R(T), its null space is N(T'), and A denotes the
norm closure of subset A. Introduce

1224

(2.2) d==) d.

Lemma 2.1. If f € R(I—S), ||S|| =1, |an| <1, and g, is given in
(1.3), then whenever a, 11,

f = (I = 8)gall = 0.

Proof. Let f = (I — S)g and a,, T 1. Then
lkn = £II < lan = 1] [|S]] lIgll,

where k, = (I — a,S)g, and observing that
g:ZaiSjkn
Jj=20
yields
1f = (I = S)gnll = I(I = 5)(g — gn)ll
= |lkn = f + (a0 = 1)S Y 0}, (kn — 1)
=0
<NF = kall + llan = 11D lanl’[[f = kall
Jj=20
<2f —kall. o

3. The range of I — S in L". When ||S||, <1, RI—-S) =L"
and N(I —S) = {0}, 1 <r < oo. It is assumed throughout this section
that 1 = ||S||, or equivalently when 1 < 7 < oo, that

1 p—1 1/r
(3.1) 1= [— > |d|;] .
p =0
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Here (g, f) = fol ft)g(t)dtfor fe L™, g€ L® and 1/r +1/s =1.
Theorem 3.1. If 1 < r < oo, (3.1) holds and all d; = 1, then
R(I—S):{fELT : <17f>:0}7

N(I—-S8)={cl:—00 <c<+oc0},

and if f = (I —S)g and a, 11 then g, converges weakly to g — (1,g).
If 1 <r< oo, (3.1) holds and not all d; are 1, then

RI-S)=L,
N(I - 5) = {0},

and if f = (I — S)g the functions g, of (1.3) converge weakly to g as
an T 1.

The proof is accomplished by invoking Lemmas 3.2, 3.5 and 3.7 below.

Lemma 3.2. With S given by (2.1) as a mapping on L"[0,1],
1< r < oo, and under the condition (3.1)

R(I-S)={felL":(1f)=0}

if all d; are 1; otherwise, R(I — S) = L".

Proof. Let

(32) A0 =50 = > >

and introduce the step-function approximations h, to h € L° defined
by

p"—1

(33) fn(s) = D &, D) In,i(s),
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where I, ;(s) is the indicator function which is one on (i/p”, (i+1)/p"]
and zero elsewhere and

£(n,i) = p" / h(s)Ta(s) ds.

Under Lebesgue measure the h,s form a martingale, and the martingale
convergence theorem shows that h,, converges to h a.e. and in L?.

Under (3.1), Hélder’s inequality shows that (see (2.2)) |d| < 1 with
equality if and only if all d’s are 1 (or all are —1). There are three
possibilities: (a) d; =1, (b) d; = —1, or (c) |d| < 1.

(a) Noting that for m > n,
A™h,, = (h, 1)1

and using ||A|| = 1 it follows that A™h converges a.e. and in L® to the
constant (h,1)1. The null space of the operator T*, where T' =1 — S,
is the set of functions h such that Ah = h and since N(T*)* = R(T),
f € R(T) if and only if (f, ) = 0 for all constant h. Therefore f € R(T)

if and only if [ f(z)dz = 0.

(b) The proof is similar to that in (a) except one examines the two
subsequences m = 2j and m = 2j + 1 to conclude that if A is in L®
then A% h converges to (h,1)1 while A% *1h converges to —(h, 1)1; so
if h is in the null space of I — A, A™h — 0 and R(T) = L".

(c) The proof is similar to (b)’s. In this case observe that if m is
a sufficiently large integer then A™ h, is a constant, say c,. Then
A™*1h, = dcp,. Since ||A|| =1 and |d| < 1, one has A™h converging
to 0 and R(T) = L". o

Equation (3.2) shows that Hata’s equation (1.4) with A = 1 is a
special case of the equation (I — S*)f = 0 and we have the following.

Lemma 3.3. If ||S*|| =1 and 1 < s < o0, then the set of solutions
fin L® to (I — S*)f = 0 consists precisely of all constants if all d; are
1 and otherwise the unique solution is f = 0.

That R(I — S) is not generally closed can be seen by applying the
FKC theorem to the function f(t) = cos(2wt). For this function,
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fol f(t)dt = 0 but there is no solution in L? to Tg = f. Even so,
there are many solutions to the equation (1.1) when ||S|| = 1 which are
not covered by the FKC theorem as can be seen by the fact that the
f’s of the FKC theorem are a meager set in the closure of the range of
T. We state this as follows.

Lemma 3.4. The set of solutions E covered by the FKC theorem is
a set of first category in R(I — S).

Lemma 3.5. If1 < r < oo, then the solutions to (1.1) are unique
except in the case all d; are one and then the solutions are unique up
to an additive constant.

Proof. There are the three cases (a) d; = 1, (b) d; = —1 or (c) |d| < 1.
Let h be in N(T') C L". Then for all g € L® one has ((I — S)h,g) = 0.
Therefore, for all g,

(h,g) = (h,S*g) = (h,Ag) = (h, A%g) = ---

In case (a), by continuity of the inner product and what has been
shown above it follows that if A is in the null space of T', then

(h,A"g) — (h,1)(g,1)

so that for all g,
(h,g) = (h,1)(g,1).

Therefore, if g € V = {f € L* : (f,1) = 0} one has (g,1) = 0 and
hence (h,g) = 0. This shows that N(T) C V*. Since V* consists
of the constants and these are clearly in N(T') it follows that the null
space consists of the constants.

In case (b), taking limits twice, once for n = 2j and once for
n = 2j + 1, it follows that if h € N(T'), then for all g € L", (h,g) = 0.
So N(T) = {0}.

The argument in case (c) also shows that if A € N(T') then (h,g) =0
for all g since it has previously been shown that ||A™h|| — 0. So
N(T)={0}. @
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Lemma 3.6. Assume f = (I—S)g and 1 < r < co. If not all d; are
1, then (i) and (iil) are equivalent. If all d; are 1, then (ii) and (iii)
are equivalent.

(i) The approxzimate solutions g, of (1.3) converge weakly to the
unique solution g of equation (1.1).

(ii) Ewvery subsequence g, has a further subsequence g,» and there

18 a constant ¢ such that g, converges weakly to g + c.

(iii) ||gn|| 2s a bounded sequence.

Proof. Assume that not all d;s are 1. It is proven that if (iii) holds,
then for every q € L*, (¢,9 — gn) — 0. Let ¢ > 0 be given. Since in the
present case under consideration R(T*) = N(T)* = L?, let v € R(T*)
be such that ||[v — g|| < /M, where

(3.4) llgl| + sup |lgnl| < M
and
(35) ‘<qag - gn> - <'U,g - gn>| <e

for all n. It suffices to prove that (v,g — g,) — 0; but this follows
immediately from Lemma 2.1 and

[(v,9 = gn)| = (T w, g9 — gn)| = (w, T(g — gn))|
< Mlw|[|[f = (I — S)gnll-

Still assuming that not all d; are 1, suppose that (i) holds. Then
[lg — gn|| is a bounded sequence and ||g,|| < |lg — g=|| + |19]]-

Now suppose that all d; are 1. First, assume that (iii) holds. We
require the following fact when ||g,|| is a bounded sequence. A point
z in a normed linear space X is in the closed subspace F if and only if
(z*,z) = 0 for all points z* € F1. Let ¢ € L* be such that (g, 1) = 0.
Then ¢ is in the closure of the range of T*. Letting ¢ > 0 be arbitrary
and v = T*w be such that ||¢ — v|| < /M, where M is chosen as
in (3.4), observe that (3.5) holds and that to prove (g,g — g») — 0 it
suffices to prove that (v, g—g,) — 0. This is true by the same argument
as above. Now since ||g—gy|| is a bounded sequence, for every sequence
n' there is a weakly convergent subsequence g — g,,» and an element k
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to which it weakly converges. We conclude that (v, k) = 0 for all v in
{q € L* : {(q,1) = 0}. Therefore, k is a constant. Still assuming that all
d; are 1, suppose now that (ii) holds. Then, for every subsequence n’,
there is a subsequence ||g — g,/|| which is bounded so (iii) holds. o

Lemma 3.7. Assume f = (I — S)g and 1 < r < oo. If not all d;
are 1, then the g, in (1.3) converge weakly to the unique solution g of
(1.1). If all d; are 1, then g, converges weakly to g — (1,g).

Proof. Observing that

gnll < llgn — gl + 9]l
where

1

1—a,

lge — | Ej@sum—fWS 1 = ol

(3.6) 720
1
< ———lan ~1/1I5]! ]

n

shows the norms of the g, remain bounded. If not all d; are 1 the claim
is immediate from Lemma 3.6.

If all d; are 1 we argue as follows. If g, does not converge weakly to
g — (1, 9)1, then there is a v € L* and a subsequence n’ such that

<U,gn’> —A> <U,g - <lag>1> = <'U,g> - <1ag><1’v>

Noting that (1,g,) = 1/(1 — da,)(1,f) = 0, one also has (v —
(1,v)1,gn) — A. By Lemma 3.6 there is a subsequence g, and a
constant ¢ for which

(v = (L)1, gnn) = (v = (L,0)1, g+ ¢) = (v,9) = (L, v)(L,9).

This contradiction establishes the result. |

4. The range of I — S in C. Assume that the mapping S is
defined on periodic functions f of period 1 whose restriction to [0, 1]
is in C[0,1] and satisfies f(0) = f(1) = 0. Our interest centers on the
case ||S|| = 1.
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Barnsley [1] defines a fractal interpolation function to the initial
data (i/p,yi), ¢ = 0,...,p, as follows. Define the p mappings w; :
[0,1] x R* — [i/p,(i +1)/p] x R for i =0,... ,p— 1 by

w(3)= () () +(7):

where e; = i/p and a; = 1/p and the remaining constants, except the
d; which are free parameters, are chosen to satisfy

Yi\w )~ .yi Y\ ) T i@/i+1
()= () =)= (507)

fori=0,...,p— 1. IfW:[0,1] x R = [0,1] x R! is defined by

W) = J wi4)

and all |d;| < 1, then there is a fixed set G of the transformation W
which is shown to be the graph of a continuous fucntion g on [0, 1].
The function g is called the fractal interpolation function to the initial
data and it can be shown that for all bounded A, W"(A4) — G as
n — oo. Consider W ([0,1] x {0}). This is the graph of a piecewise
linear function f which satisfies f(i/p) = y; for i = 0,... ,p. One can
check that if o = 0 = y,, and the same d;’s are used in the operator S,
then for all n > 1,

n—1

> st =wn([0,1] x {0}).

i=0
In Barnsley’s treatment of fractal interpolation functions the condition
|d;] < 1 is made and for this case, of course, it is immediate that
the left hand side converges to a continuous function g and g satisfies
(I —S)g = f. We seek solutions g in C' to the equation (1.1) where
f € C need not be piecewise linear and g need not be of the form

9= Zizo S'f.

Lemma 4.1. The adjoint S* of the mapping S : C — C is defined
on the space BV of signed measures v of bounded variation by

S*v([0,w]) = Igdi”(@’ w; ZD
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Proof. Consider the action of the linear functional corresponding to
the signed measure v on the function Sf, where f € C,

(50 = [ Toa(®S (0 dv(t)
-/ (ii_édihi(t))f(pt) av(®)
—ao | ;(wﬂ[o,u(w)dv(%)
+i§di / f(w)f(i,iﬂ](W)dV(%)-

Therefore, by the periodicity of f and f(0) =0,

wsn = [ f(w)I(O,l](w)d(jZ;diV(w+i>> — (s f). o

p

We need to characterize the collection of signed measures v in BV
which solve the equation S*v = v. Toward that end we introduce the
notion of a real valued stationary stochastic process on Z = {1,2,...}.
The stochastic process {X(¢) : ¢t € Z} is said to be stationary if for
every k < 0o, (t1,t2,-.-,t;) € ZF, and Borel measurable subset A in
RF one has for all positive integers v

Pl(X(tr), ..., X(t) € Al = P[(X(t; +v), ... , X (tx +v)) € Al.

A stochastic process {X(t) : t € Z} taking values in {0,1,...,p —
1} defines a random variable X taking values in [0,1] by X(w) =
> ;51 X (w,i)p~" and conversely, once it is decided which representation
is to be used, terminating or nonterminating, any Borel random variable
X defines a {0,1,... ,p — 1}-valued process {X(t) : t € Z}.

Lemma 4.2. If d; > 0 for all i, then a finite nonnull Borel measure
w on [0,1] solves S*u = p if and only if
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(i) p({0}) =0 and when

w) = Z X (w,i)p~*

i>1

has the probability distribution u(A)/u([0,1]) = P[X € A] then for all
indices © such that d; < 1 one has for all j

(ii) P[X(j)=1=0 and

(i) {X(k):k € Z} is a stationary stochastic process.

Proof. First assume that p is a nonnull solution. If a finite nonnull
Borel measure p on [0, 1] solves S*u = p, then the probability measure
n(A) = p(A)/p([0,1]) also solves the equation. Therefore it can be
assumed without loss of generality that the solution p is a probability
measure P. That p({0}) = 0 follows from the representation formula
for S*. One has

seuo,1) = 5701 = (&, Hl])*Zd (G5)

icJ

where J = {k: k € {0,... ,p— 1} and d;, = 1}. By additivity of u it
follows that if J¢ is not empty then

swo (3 51) (431 o

i¢J

so that S*u((0,1]) = yu((0,1]), where |y| < 1. Iterating S*, this
implies ©((0,1]) = 0 which is impossible under our assumptions.
Therefore, if ¢ ¢ J, then u((i/p, (i +1)/p]) = 0. For i ¢ J, consider

(G5 ) =G ) =2 (G 5 )
ZelGrmr )
G

jeJ
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Since 0 = p((i/p, (i + 1)/pl) = X2;e, (/P +i/p%,3/p + (i +1)/p?]) it
follows that for all j € {0,... ,p—1} u((j/p+i/p?, j/p+(i+1)/p?]) = 0.
The argument can be repeated showing that if ¢ ¢ J, then for all j > 1
and all = S aip~, u((z +ip~,x + (i + 1)p~7]) = 0. In terms
of the probability measure this means that for all indices ¢ such that
d; < 1 one has for all j, P[X(j) =1 =0.

To see that the measure p must correspond to a stationary process,
consider

PU{X : X(i1) = k1y..., X(im) = km})
=Y PUX:X(1) =4, X(i1+1) =ki,..., X(im +1) = km})

icJ
=PH{X: X1 +1)=ky,...,X(im+1)=kn}).
The converse follows by the same arguments. O

For any S, denote the collection of probability measures which solve
S*/,L = U by Ms.

Lemma 4.3. Under the conditions of Lemma 4.2 the solutions
v € BV(0,1] to S*v = v consist of all signed measures of the form

(4.1) vV =Cit1 — Cali2,

where the p’s are in Mg and the c’s are nonnegative real numbers.

Proof. Clearly all signed measures in (4.1) solve S*v = v since S* is
linear. Now let v be a solution. By the Hahn decomposition there is a
Borel set D such that v+ (A4) = v(AND) and v~ (4) = —v(AND*) for all
measurable sets A. It follows that on D, v is a measure satisfying S*v =
v and on D¢ the measure —v solves S*(—v) = —v. With the obvious
adjustments in case v(D) or v(D°) zero, let ui1(A) = v(AN D)/v(D),
p2(A) =v(AN D) /v(D°), c; =v(D), and ¢y = —v(D°). |

Theorem 4.4. Let ||S|| =1 and d; > 0 for alli. Then R(I — S) =
{feC:E[f(X)] =0 for all X € X, where

X(w) = Zx(w,i)p—i €X
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if for all indices i such that d; < 1 and for all j
(i) P[X(j)=14=0 and
(ii) {X(k):k € Z} is a stationary stochastic process.
The null space is N(T') = {0}.

Proof. The closure of the range of T is the orthogonal complement
of the null space of I — S* so f € R(T) if and only if [ fdv = 0 for
all v in BV|0, 1] solving S*v = v. Therefore, f € R(T) if and only if
[ fdu = 0 for any measure u([0,t]) = P[X < t], where X satisfies (i)
and (ii).

To prove the claim regarding N(T'), let v,z € (0,1) and f € N(T)
be arbitrary. Then upon iterating the relation

() =g = ag

for points vy, = Zle v(i)p~* it follows that

k
flok +ap*) =[] dogi) ().
i=1

Using v = Y_,o, v(i)p~%, 2p™® — 0, vy — v, and the continuity of f

shows

k k
f () = f(z) limsup [ [ dyp) < f(2) liminf [ [ dygiy = f(0).

k—oo ;04 i=1

Taking  — 0 shows f(v) = 0. O

Theorem 4.5. If ||S|| = 1 and f € R(T), then the approzimate
solutions of (1.3) converge in the weak® topology of L> to the unique
solution g of (1.1) unless all d;’s are one, in which case the g, converge

tog—(1,9).

Proof. Let b € L' be such that (b,1) = 0. Then b must be in R(T*).
This can be seen as follows. If b is not in R(T™), then there is a function
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u € L* such that (u,b) > 0 and for all v € L', (u,T*v) = 0. Hence,
for all v € L, (Tw,v) = 0 and this entails Tu = 0. Now this must
mean that u is constant a.e. as is seen by using Lusin’s theorem and a
simple adaptation of the proof in Theorem 4.4 that N(T) = {0}. But
then 0 < (u,b) = c¢(1,b) = 0, which is a contradiction; so b € R(T*).

By the boundedness of the sequence ||g, — g|| (see (3.6)) and the fact
that for b = T*w, w € L', one has

(b, 9n— )| =|T"w, gn—g)|=|(w, Tgn— f)| < |[w]|[|f = Tgnl| = 0,
it must be that for all b € L! such that (b,1) = 0 the sequence (b, g, —g)
converges to zero.

Now suppose b € L! is arbitrary. We show that (b, g, — g) — 0 when
not all d; are 1. If not all d; are 1, then for n sufficiently large

(Lg0) = (@) [ 1=+ — /1

7=>0

while [f = [(I — S)g = [g — d[g shows that (1,g,) — (1,9).
Consequently, if b € L' is arbitrary and &' = b — (1,b), then 0 = lim(¥',
gn — g) = lim(b, g — g) — 0.

Suppose b € L' is arbitrary and all d; = 1. If all d; = 1, then
[f=[(I-S8)g=[g— [g=0. Therefore, (g,-1) = 0 and for all
be L',

lim(b, g, — (g — (1,9)1)) = 0. ]

When all d;’s are 1 the assertion of Theorem 4.5 leaves open the
question of whether the approximate solutions g, may converge to a
function which is not in C. A simple example shows that they can; let
f(t) = g(t) — g(2t) with g(t) = 2t 5(t) + (2 — 2t)I(5,1)(t) so that g,
converges to g — 1/2.
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