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THE FILLING SCHEME IN
ARCHIMEDEAN RIESZ SPACES

RADU ZAHAROPOL

ABSTRACT. In the paper we extend the filling scheme as
formulated by Akcoglu and Chacon to a class of Archimedean
Riesz spaces; we then apply the filling scheme (in our more
general setting) in order to prove two ratio ergodic theorems.

The Archimedean Riesz spaces under consideration are not
necessarily spaces of classes of equivalence of measurable func-
tions; therefore, in our approach we have to avoid measure
theoretical considerations; we do so by using notions and ar-
guments which we introduced in previous papers.

1. Introduction. Our goal here is to extend the filling scheme
as defined by Akcoglu and Chacon in their paper [1] to a class of
Archimedean Riesz spaces, and to use the scheme in order to prove
two ratio ergodic theorems similar to an extension of the Ornstein
ratio ergodic theorem [6, Theorem 1.1] which we obtained in [9] (the
Ornstein ratio ergodic theorem is an extension of the famous Chacon-
Ornstein theorem [3]; for a description of the evolution of the topic, as
well as for additional references see Krengel’s book [4] and our paper
9]).

The terminology used in this paper can be found in the books of
Aliprantis and Burkinshaw [2], Luxemburg and Zaanen [5], Schaefer
[7], and in our papers [8, 9].

Besides the Introduction, the paper has three more sections. Section
2 (the next section) has a preliminary character; the section contains
several results of a rather general nature which will be used later on. In
Section 3 we extend the filling scheme to a class of Archimedean Riesz
spaces. Finally, in the last section (Section 4) we apply the results
obtained in the previous sections in order to prove two ratio ergodic
theorems.

We will now describe the mathematical setting and the results of the
paper.
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Let E be a Riesz space, let T : E — E be a positive linear operator
(unless the contrary is explicitly stated, all the operators considered in
this paper are assumed to be linear), and let H be a Riesz subspace
of E. Let u € E, u > 0, and let w € E. We say that w is an H-
modification of u if w > 0 and if w = u — v + Twv for some v € H,
v > 0.

Assume now that E is an Archimedean Riesz space, and let E be the
Dedekind completion of E. Thus, we may think of £ as being a Riesz
subspace of E (we will be doing that throughout the paper without
stating it explicitly every time).

Let E' be the order dual of E, and assume that LZ?' separates the
points of E. Let E;, be the order continuous dual of E (that is, Ej, is
the projection band in E’ of all order continuous linear functionals on

Let g € £, g > 0, and let B be the (projection) band in E generated
by the set {T"g [n € NU{0}}. Set I'(B) = {z € E,, | the carrier of z
(in E) is included in B}. We will prove in the next section (Section 2)
that I'(B) is a projection band in E'.

Given u € E, we will denote by H, the ideal in E generated by the
set {T"u | n € NU{0}}.

_Let f € E, f > 0. For every z € I'(B), 2 > 0, set a, = s_up{(f, z) |
fis an Hy s-modification of f}, and b, = sup{(f,z) | fis an Hy-
modification of f}.

Let A be a projection band in £/, A C I'(B), and set Qu(f,T,A) =
{reAlay=0o0r oo for every y € A, 0 <y < |z|}; oo (f, T,A) =
{reA|b,=0o0r +ooforeveryy € A, 0 <y < |z|}. It will be shown
in Section 2 that Q. (f,T,A) and X (f, T, A) are projection bands in
E'.

Now let u,v € E, u > 0, v > 0, and let n € N U {0}. We will use
the notation u — v as defined in [1]. Thus, u 2 v if and only if u = v;
u - v whenever there exist r,s € E,r>0,s>0such that u =r+s,
and v = 7+ Ts; if n > 2, then u — v whenever there exists w € E,
w > 0 such that u ">" w and w 5 v.

Let u € E,u >0, and let z € E', z > 0. Set ¢"u = sup_ n (v,z) for
every n € N U {0}. The sequence (¢u),cNufo} is monotonic nonde-
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creasing; therefore, lim,,_, {~ Y7 u exists. Set Y,u = limy,_ 4 o0 Yy u.

For every w € E, let B(w) be the (principal projection) band in E
generated by the singleton {w}.

Let w,v € E, w > 0, o > 0, be such that there is no v € E, v #0,
and no sequence (wg)gen of Hy4p-modifications of o such that (wg)ren
diverges individually to co on B(v). Let pe R, 0 < p < 1,let u € E,
u > 0, and set

u, zlimnsup <<(1 —p)<§Tia> - (iz:;T"@>>+ /\u).

Since we assume that E’ separates the points of E, it follows that we
may think of the elements of E as order continuous linear functionals
on E’ ; hence, it makes sense to consider the carrier of u, in E'. The
main result of Section 3 is the following extension of Theorem 0.4 of
the paper of Akcoglu and Chacon [1]: if z is an element of the carrier
of u, in E',z € E, x>0, then ¢,a > 1,7.

Now let again f,g € E be such that f > 0, ¢ > 0, and set
Uy =Y o TP f, v =31, T'g for every n € N U {0}.

Let B and I'(B) be the projection bands we defined earlier, and let
w € B. Then we may think of w as an element of E” (E” being the
second order dual of E). As an element of E”, w is an order continuous

linear functional on E'. We will denote by I'(w, g, T) the intersection
of the carrier (in E’) of w with T'(B).

Recall that in our paper [8] we proved that if the sequence ((uy,
Un))nenNuqo} does not converge individually on B, then there exists a
nonzero (projection) band By in E, By C B such that By has the
following two properties:

(a) For any nonzero (projection) band C in E, C C By, it follows
that ((un,vn))nenu{o} does not ratio converge individually on C'.

(b) By is the largest band in E contained in B which has property
(a).

If the sequence ((n,vn))nenugo} does ratio converge individually on
B, then set (as in [8]) B4 = 0.

We say that g has property S if for every u € B, u # 0, there exists
z € T'(B) such that (u,z) # 0.
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In Section 4 we will use the results obtained in the previous two
sections in order to prove the following two ratio ergodic theorems (in
both theorems we assume that g has property S and that the sequence
((tn,vn))nenuqo} does not ratio converge individually on B):

Theorem 1. Let u € By, u # 0. Then at least one of the following
three assertions is true:

(1) There exists v € B(u), v > 0, v # 0 such that Lo (f,T,T'(v, g,
T)) =T(v,g,T).
(2) There exist v € B(u), v >0, v # 0 and a sequence (wp)nen Of

Hy . g-modifications of g such that (w,)nen diverges individually to co
on B(v).

(3) There exist v € B(u), v > 0, v # 0 and a sequence (pp)neN Of
Hyy g-modifications of f such that (pn)nen diverges individually to co
on B(v).

Theorem 2. Let u € By, u # 0. Then at least one of the following
two assertions is true:

(i) There exists v € B(u), v > 0, v # 0, such that Qu(f,T,T (v, g,
1)) =I(v,9,T).

(ii) There exist v € B(u), v > 0, v # 0 and a sequence (Wp)neN Of
Hyy4-modifications of g such that (wy,)nen diverges individually to co
on B(v).

Both Theorem 1 and Theorem 2 can also be proved by suitably
modifying the proof of Theorem 3 of [9]. However, the proofs presented
here (which are applications of the filling scheme as discussed in Section
3) are much simpler (note that the proof of Theorem 3 of [9] is rather
complicated and involves all the results of both papers [8] and [9]).

2. Preliminaries. In this section we gather several facts which
belong to the general theory of Riesz spaces and which are needed in
order to prove Theorem 1 and Theorem 2.

Lemma 3. Let G be an order complete Riesz space, let G' be the
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order dual of G, and let G}, be the order continuous dual of G. Let D
be a (projection) band in G, and setT'(D) = {z € G}, | the carrier of z
(in G) is included in D}. Then I'(D) is a (projection) band in G'.

Proof. We first prove that I'(D) is a vector subspace of G'.
Let z,y € T'(D). Clearly, z +y € GJ, since z € G, and y € G/,.

Note that the carrier of x + y is included in D. Indeed, if we assume
that the carrier of z 4+ y is not included in D, then it follows that
there exists u € G, u > 0, u # 0 such that w is in the carrier of
r + y while the projection of w on the projection band D is zero.
Since u is in the carrier of x + y, u > 0, u # 0, it follows that
0 < (u,|lz+yl) < (u,l|z|+|yl) = (u,|z]) + (u,|y|). We obtain that
(u, |z|) > 0 or (u,|y|) > 0. Assume that (u, |z|) > 0 (similar arguments
hold in the case in which (u,|y|) > 0). Taking into consideration that
G is the order direct sum of the carrier and the null ideal of |z| (since
|z| € Gl,), we obtain that the projection of u on the carrier of |z| is a
nonzero component v € G of u. Clearly, the projection of v on D is
zero (since 0 < v < w). Thus, v ¢ D; therefore, we have obtained a
contradiction since the carrier of |z is included in D.

It follows that = +y € I'(D).

Obviously, ax € I'(D) whenever o € R and z € I'(D). Thus, I'(D)
is a vector subspace of G'.

Taking into consideration that I'(D) is clearly a solid set, it follows
that I'(D) is an ideal in G'.

In order to complete the proof of the lemma we have to show that
the ideal I'(D) is actually a band in G'.

To this end, let A C I'(D), A # & be such that sup A exists in G'.
We have to prove that sup A € I'(D).

Clearly, supA € G, since A C G, and since G), is a band in G'.
Thus we only have to prove that the carrier of sup A is included in D.

Assume that the carrier of sup A is not included in D. Then there
exists © € G, u > 0, u # 0 such that v is in the carrier of sup A and
such that the projection of u on D is zero.

It follows that
0 < (u,|sup A|) = (u, (sup A)") + (u, (sup A) 7).
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We have to study two cases:
(i) (u,(supA)*) > 0;
(i1) (u,(supA)~) > 0.
(i) Let F ={y € G' |y = sup,cpa™ for some finite set F, F C A}.

Clearly, F is an upward directed set in G'. Taking into considera-
tion that (sup A)* = sup,.4 ", we obtain that supF = (sup A)™.
Accordingly, (using [7, Proposition 4.2, p. 72]) it follows that 0 <
(u, (sup A)") = (u,sup F) = sup,c#(u,y). Hence, there exists y € F,
y = sup,cp " for some finite set F, F C A such that (u,y) # 0.

Taking into consideration that 0 < (u,y) < Yycp(u,xzT), we obtain
that there exists z € F C A such that (u,z") # 0.

Let v be the projection of u on the carrier of 1. Clearly, v # 0. It is
also obvious (since ¥ < |z|) that v is in the carrier of . Taking into
consideration that 0 < v < u, v # 0 and that the projection of u on D
is zero, we obtain that v ¢ D. We have obtained a contradiction since
v is in the carrier of x and the carrier of z is included in D.

(ii) Assume now that (u, (sup A)~) > 0 and let = € A.

Taking into consideration that (sup A)~ = (—sup A)V0=(inf (—A4))V
0 = inf,c 427, we obtain that 2= > inf,c 42~ = (sup A)~; therefore
(u,z7) £ 0.

Let v be the projection of u on the carrier of x~. Then v is a nonzero
component of w. It follows that v is in the carrier of z (since v is in the
carrier of = and since 2~ < |z|). Taking into consideration that the
projection of v on D is zero (since 0 < v < u and since the projection of
won D is zero), it follows that v ¢ D; we have obtained a contradiction
since the carrier of x is included in D.

We have therefore proved that in both cases (i) and (ii) we obtain
a contradiction. It follows that the carrier of sup A is included in D.
O

We will now discuss a general procedure for constructing projection
bands in the order dual of a Riesz space, and its use in the study of the
sets Qoo (f, T, A) and Yoo (f, T, A) defined in Introduction.

Let G be a Riesz space, and let G’ be the order dual of G. Let G4 be
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the positive cone of G, that is, G = {zr € G|z >0}, and let A C G..
Set

A(A) ={z € G’ | sup{u,y) =0 or +oco for every y € G',0 < y < |z|}
u€A

and

x =0 or z # 0 and for every
y€G,0<y<|z|,y #0 there exists
z € G',0 < z < y such that

0 < sup,ca(u,z) < 400

Ap(A)={ z e G’

Proposition 4. A, (A) and Ap(A) are projection bands in G' and
G’ is the order direct sum of Ao (A) and Ap(A).

Proof. We first prove that Ao (A) is an ideal in G.
Clearly, A (A) is a solid set in G’.

Let 21,22 € Ao (A). Let y € G’ be such that 0 < y < |z1 +x3|. Using
the decomposition property [7, Proposition 1.6, p. 53], we obtain that
there exist y1, y2 € G’ such that 0 < y; < |21, 0 < y2 < |z2|, and
y = Y1 + y2. Assume that sup,c 4(u,y) > 0. Then (v/,y) > 0 for some
u' € A. Since (u',y) = (u,y1) + (v, y2), it follows that (u',y1) > 0
or (u',ya) > 0. Assume that (u',y;) > 0 (similar arguments hold if
(u',y2) > 0). Then sup,c,(u,y1) = 400 since Ay (A) is a solid set,
z1 € Ao(A), and 0 < y; < |z1]|. It follows that sup,c4(u,y) = +oo.
Accordingly, z1 + 22 € Ao (A).

Now let @« € R and & € Ax(A4). If |a| < 1, then, clearly,
ar € Ay (A) since Axo(A) is a solid set. Assume that |a| > 1, and
let y € G', 0 < y < |auxl; it follows that sup, ¢ 4 (u,y) = 0 or 400 since
0 < y/la] < |z| and since € Aoo(A). Thus, ax € Ax(A) whenever
a€Rand z € A (4).

We now prove that Ap(A) is an ideal in G'.
Let z1,22 € Ap(A) be such that zy + 22 # 0, and let y € G’ be
such that 0 < y < |z + 22|, y # 0. By the decomposition property it

follows that there exist y1, y2 € G', 0 < y; < |z1], 0 < y2 < |z such
that y = y; + y2. Since we assume that y # 0, it follows that y; # 0
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or yo # 0. Assume that y; # 0 (the case yo # 0 is similar). Taking
into consideration that x; € Ap(A) we obtain that there exists z € G/,
0 <z<uy <uy,z# 0 such that 0 < sup,¢c4(u,2) + co. We have
therefore proved that z; + 23 € Ap(A) whenever z1,z5 € Ap(A).

Now let & € R and z € Ar(A) be such that o # 0 and = # 0. Let
y € G' be such that 0 <y < |ax|, y # 0. It follows that 0 < y/|a| < |z|.
Taking into consideration that z € Ap(A), we obtain that there exists
z€G',0<z<y/|al, z# 0 such that 0 < sup, ¢ 4(u, 2) < 4+00. Thus,
we have shown that ax € Ap(A) whenever o € R and z € Ap(A4).

We have therefore proved that Ap(A) is an ideal in G’ since Ap(A)
is, obviously, a solid set.

Now note that, in view of [7, Proposition 2.7, p. 61] our proposition is
completely proved if we show that G’ is the order direct sum of A, (A)
and Ap(A4).

Clearly, Ao (A) NAp(A) = 0. Therefore, in order to prove that G is
the order direct sum of Ao (A) and Ap(A), it is enough to show that
G' = A(A) + Arp(A). Tt follows that we only have to prove that for
every ¢ € G', & > 0, there exist o, € Ax(A) and zp € Ar(A) such
that ¢ = 2, + xp.

To this end, let z € G’, x > 0, and let U, be the set of all components
ofz, Uy ={y € G' | y A (z —y) = 0}. Since G’ is an order complete
Riesz space, and since x is an upper bound for U, N A (A), it follows
that sup(U, NAx(A)) exists in G, Let xoo = sup(U, NAs(A)). Using
Theorem 3.15, [2, p. 37|, it follows that z, € U,.

We now prove that zo, € Ax(A). To this end, let y € &,
0 <y < z, and assume that sup,c4(u,y) > 0. Then there exists
u’ € A such that (u',y) > 0.

The set U, N Ax(A) is a directed one since t1 V ta € Uy N Ao (A)
whenever t1,ty € Uy N Ao (A). Indeed, if t1,t2 € U, N Axo(A), then
t1 Vity € U, (since U, is a Boolean algebra) and t; Vit € Ay (A) (since
0 <t; Vity <t +tg, and since Ao (A) is an ideal).

Accordingly, the set {y Az | z € U, N Ao (A)} is also directed.

Taking into consideration that y = y A Too = SUP,cy, na. (4)(Y A 2),
and using Proposition 4.2, [7, p. 72], we obtain that 0 < (uv/,y) =

(W', 8up, e, nao (a) (U A 2)) = SUP.ey nn(a)(W, Y A 2). Hence, there
exists 2’ € Uy NA(A) such that (u',yAz’) > 0. Clearly, yAz' € Ax(A)
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since Ao (A) is an ideal.

It follows that sup,c4(u,y A 2’) = +o0; therefore, sup,c4(u,y) =
+00.

We have therefore proved that z., € A (4).

Now set zp = & — o and assume that xp ¢ Ap(A). Then there
exists y € G, y # 0, 0 < y < zp such that sup,c 4(u, z) = 0 or +oo for
every z € G', 0 < z < y. Accordingly, y € A (A).

By the Freudenthal spectral theorem [5, Theorem 40.2, p. 257] there
exist « € R, @ > 0 and ¢t € U, t # 0 such that ot < y. It follows that
t € Ao(A).

Since t A oo = 0 and since t # 0, it follows that ¢ V £ # Too-

Taking into consideration that t V zo € U, N Ay (A) we obtain a
contradiction to the way we have defined z.,. Hence, zp € Ap(A).
O

We will now discuss an application of Proposition 4.

To this end, let £ be an Archimedean Riesz space, let E be the
Dedekind completion of E, and let E’ be the order dual of E. Let
f,bg € E, f >0,g >0, and let B and I'(B) be the sets defined
in Introduction (note that B is a projection band, by construction,
and that I'(B) is also a projection band, by Lemma 3). Let A be a
projection band in E’, A C I'(B), and consider the sets Q. (f, T, A)
and X (f,T,A) defined in Introduction.

Set

=0 or z # 0 and for every y € A,
0 <y <|z|,y # 0 there exists z € A,
0 < z <y, z # 0 such that

0<a, <+o0

and

x =0 or z # 0 and for every

y € A0 <y <|z|,y # 0 there exists
z€ A,0<z<y,z# 0 such that
0<b, <400

Sp(f,T,A)={ z€ A



1172 R. ZAHAROPOL

Corollary 5. a) The sets Qoo (f, T, A) and Qp(f, T, A) are projection
bands in E' and A is their order direct sum.

b) The sets Lo (f, T, A) and Sp(f,T, ) are projection bands in E'
and A is their order direct sum.

Proof. a) The proof consists in a straightforward application of
Proposition 4. To this end, set G = E, A = {f € E/f is an Hy, g
modification of f} C E and note that Qo (f,T,A) = A (A) N A and
that Qr(f,T,A) = Arp(4) NA.

b) Proceed as in a), the only difference being that in this case set
A={feFE|fisan Hfmodification of f} CE. O

3. The filling scheme in Archimedean Riesz spaces. In this
section we will extend several results of Akcoglu and Chacon’s paper
[1] to the setting defined in Introduction.

Let E be an Archimedean Riesz space, and let T : £ — E be a
positive linear operator.

As in [1] we consider the nonlinear mapping U : E — E, U(u) =
T(u") —u~ for every u € E.

The next lemma is an extension of (and has the same proof as) Lemma
0.1 of [1].

Lemma 6. Let u,v € E be such that v > 0 and v > 0. Let
n € NU{0}. Then there exists w € E, w > 0, such that u = w
and U™ (u —v) = w —v.

Now let E be the Dedekind completion of E. Let u € E, and let
B(u) be the projection band in E generated by the singleton {u}; we
will denote by P, the band projection associated with the projection
band B(u).

The next proposition is an extension of Theorem 0.1 of [1].

Proposition 7. Letu,v € E, u >0, v > 0. Set w=u —v and set
Wy, = SUPy<k<p Zf:o T'w for every n € NU{0}. Then P, +U"w >0
for every n € N U {0}.
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Proof. The proof is an extension of the proof of Theorem 0.1 of [ 1]
to our setting.

Set ¢, = Z:;;O(Ulw)"r for every k € N U {0}.

We will first prove by induction that ¢ > Zf:o Tlw for every
k € N U {0}. The statement is obviously true for & = 0 (since
do = wt > w).

Now assume that ¢ > Zf:o T'w. Taking into consideration that T'
is a positive linear operator, we obtain that

k+1

(7.1) Tor > Zle.

=1

Since Utlw = T((U'w)T) — (U'w)~ for every | € N U {0}, i
follows that T = Yor , T((U'w)T) = SF (U w + (U'w)™) =
Siio((UM T w) —(U ) =+ (U'w) ) = dra—wt +w™ —(UH )~ =
Gr+1 — w — (U 1w)~. Accordingly, (7.1) implies that ¢py1 — w —
(UF 1 w)~ > S Thy, Tt follows that ¢ri1 > ¢pyr— (UFw)™
w + Zﬁ_f T'w = fiol T'w. We have therefore proved that ¢y
Zf:o T'w for every k € N U {0}.

We obtain that ¢p > w,j for every k € N U {0} (since ¢ > 0 and
¢r. > wy, for every k € N U{0}).

+

2
>

We will now prove that for every nonzero component s of wl (in E)
there exists a nonzero component ¢ of w; (in ), t < s, and there exists
k€{0,1,2,...,n} such that (U*w)~ At =0.

To this end, let s be a nonzero component of w; in E.

Let P, be the band projection associated with the projection band
B(s). Taking into consideration that ¢, > w;, and using the fact that
s is a component of w;, we obtain that Ps¢, > Psw} = s. It follows
that (Ps¢p) As=s#0.

Using a well-known consequence of the decomposition property in
Riesz spaces (see, for example, [7, Corollary, p. 53)), we obtain that
(Petn) As = (Lo P((U'w))) As < 30 ((Po((U'w)F)) A s).
Accordingly, there exists k € {0,1,2,...,n} such that (Ps((U*w)*)) A
s # 0.
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By the Freudenthal spectral theorem (see, for example, [5, Theorem
40.2, p. 257]), there exists a nonzero component, ¢, of s in E (therefore ¢
is also a nonzero component of w;" in E), and thereexistsa € R, o > 0
such that at < (P,((UFw)")) A s < Py((UFw)T) < (UFw)™T. Tt follows
that (at) A (U*w)™ = 0 (since (at) A (UFw)~ < (U*w) T A (UFw)~ = 0).

We obtain that ¢t A (UFw)~ = 0 (since if 0 < a < 1, then 0 =
(at) A (UFw)~ > (at) A (a(UFw) ™) = a(t A (U*w)™) and if a > 1, then
0= (at) A (UFw)™ >t A (UFw)™).

Set U = {q € E| q is a component of w; in E and (U"w)~ Aq = 0}.
Clearly, U is an order bounded set in the order complete Riesz space
F; hence, supl exists in E. Taking into consideration that w; is an
upper bound for U, we obtain that supi < w;'.

Our goal now is to prove that supd = w,'. To this end, assume
that supU # w;". By Theorem 3.15 [2, p. 37] supY is a component of
w;t; therefore, w;™ — suplf is a nonzero component of w;". Using our
previous remarks we obtain that there exists a nonzero component ¢
of wj in E, t < w} — supl, and there exists k € {0,1,2,... ,n} such
that (UFw)~ At = 0.

We now note that (U"w)~ < (UFw) . Indeed, let | € N U
{0}; using the definition of the mapping U we obtain that U'*lw =
T((U'w)*) — (Ulw)~. Since T is a positive (linear) operator, it follows
that T((U'w)™) > 0. We obtain that (U't1w)~ < (Ulw)~ for every
I € N U{0}; hence, (U"w)~ < (U"’w)_.

It follows that (U"w)~ At = 0; hence, ¢t € U. We obtain a
contradiction since 0 < ¢ < (w;} — supU) A (supU) = 0 while ¢ # 0.
Accordingly, supUd = w;'.

We obtain that (U"w)~ Aw,} =(U"w)~ A(supU) = sup ey (U"w) ™A
q) = 0; therefore, w+(( "w)”) = 0. It follows that P, +(U"w) =
Py (Umw)") = Pr (Umw) ™) = P (U"w)*) 2 0. o

Let E' and E” be the first and second order dual of E, respectively.
We will assume from now on throughout the paper that E' separates
the points of E. Then the canonical embedding i : E — E” is one-to-
one. Thus, we may think of E as a vector sublattice of E”, and from
now on we will do so without stating it explicitly every time. Moreover,
we may and do think of the elements of E as being order continuous
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linear functionals on E’.

The next proposition is an extension of Theorem 0.2 of [1].

Proposition 8. Let u,v € E, u>0, v >0, and set w =u —v. Set
Wn = SUPp< k<, Zfzo T'w for everyn € NU{0}. Let I, be the carrier
of 113;: in E' for every n € NU {0}, and let T' be the (projection) band
in E' generated by U2 (T',,. Then

(a) Y2u > (v,z) for every n € NU{0} and for every x € Ty, > 0.

(b) Yzu > (v,z) for every x €T, z > 0.

Proof. (a) Let n € N U {0}.

By Lemma 6 there exists u, € E, u, > 0, such that v = u, and
U™(u—v) =u, —v.

Let B(w;) be the projection band in E generated by the singleton
{w}}, and let P+ be the band projection associated with the pro-
jection band B(w;). Taking into consideration that P, +u,, is a com-
ponent of u,, we obtain that u, — P +u, and P +u, (thought of as

elements of £") are disjoint order continuous linear functionals on E’.

Let z € T, x > 0. Taking into consideration that (u, — P+ Up) A
w;” = 0, and since z is in the carrier of w,", we obtain, using Nakano’s
theorem (see [2, Theorem 5.2, pp. 56-57]) that (u, — P, +u,,z) = 0.
Accordingly, "’

(81) <un,x> = <Pw:un,$> + <un — Pw;-un,$> = <Pw:un,x>

Similarly, v — P +v and w; are disjoint order continuous linear
B

functionals on E’, therefore, using again Nakano’s theorem we obtain
that (v — P +v,z) = 0. Hence,

(8.2) (v,z) = (P,+v,x) + (v — P,+v,2) = (P,+v,T).

Taking into consideration the way in which u, was chosen and
using Proposition 7 we obtain that P, +(u, —v) = P +U"w > 0.
Accordingly, P, +u, > P, +v. In view of (8.1) and (8.2), it follows that

wn

(Un, ) > (v, ).
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Since u % w, and using the definition of 17u, we obtain that
Yru > (v, z).
(b) Let z €T, z > 0.

Let P, be the band projection associated with the projection band
I, for every n € N U {0}, and set z,, = P,z for every n € N U {0}.

Clearly, (zn)nenu{o} is a sequence of components of x. Taking

into consideration that E’ is an order complete Riesz space and using
Theorem 3.15 [2, pp. 37-38], we obtain that sup,cnu(o} Zn €xists in

E' and that SUP,eNU{0} Zn IS @ component of z.

We will now note that sup,cnugo} Zn = z. Indeed, assume that
SUPpeNu{o} Tn # @. Then = — sup,cnugoy Tn iS @ nonzero component
of z. Taking into consideration that z — sup,cnugoy #n € T' and that
I is the projection band generated by Upenu{o}['n, we obtain (using
[7, Proposition 2.11, p. 63 and Corollary, p. 53]) that there exists
Y € Unenufoyl'n, ¥ > 0, y # 0, such that y < = — sup,enuqo} Tn-
Clearly, y € T, for some m € N U {0}. Taking into consideration
that 0 < y < z, and using Theorem 24.5, [5, pp. 133-134], we obtain
that 0 < y < x,,,; hence, 0 < y < SUP,eNU{0} Zn- We have obtained
a contradiction since, on one hand, 0 < y A (z — SUP, eNU{0} z,) <
(suP,enufoy Tn) A (T — SUP,eNufoy Tn) = 0, while, on the other,
YN (z— SUPpeNu{0} Tn) # 0.

Taking into consideration that z > x,, > 0 for every n € N U {0},
and using (a), we obtain that ¥,u > ¥, u > Y2 u > (v,z,) for every
n € N U {0}.

Since (w;}),enu{o} is @ monotonic nondecreasing sequence, it follows
that T, C T4 for every n € N U {0}; accordingly, the sequence
(#n)neNugo} is monotonic nondecreasing.

Taking into consideration that x = sup,cnujoy #n and using Propo-
sition 4.2 [7, p. 72], we obtain that (v, z) = sup,, (v, z,) < V¥ u. O

For the next proposition, we need the following lemma:

Lemma 9. Letu,v € E, v > 0, v > 0. Ifu = v for some
n € NU{0}, then v € H,.
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Proof. The proof is by induction over n.
For n = 0 the statement of the lemma is obviously true.

Now assume that the lemma is true for n—1, and let v € E, v > 0, be
such that u = v. Then there exists v; € E, v; > 0, such that u nst vy

and v L v. Tt follows that there exist r,s € E,r>0,s>0,such
that vi =r+sand v=7r+Ts.

Taking into consideration that 0 < r < v;, 0 < s < vy, and since T
is a positive operator, we obtain that 0 < v < r 4+ Ts < vy + Twvy; it
follows that vy +Tv; € H, (since v; € H, by our induction hypothesis
and since H,, is T-invariant (T'(H,) C H,)); therefore, v € H, (since
H, is an ideal). O

The next proposition (Proposition 10) should be compared to Lemma
0.2 of [1].

Proposition 10. Let 4,v € E be such thatw >0, v > 0. Let u € E,
u > 0. Assume that there is no v € B(u), v > 0, v # 0, and there
is no sequence (wg)keN of Haiz-modifications of T such that (wg)keN
diverges individually to co on B(v). Let n € NU{0}, and let n € E,
n >0, be such that v — 1. Set 4y, = Z?:o Tia, v = Zf:o T'v, and
Wy = ZLOT"ﬁ for every k e NU{0}. Let p e R, 0 < p < 1. Then
limsupy, (((1 — p)tig — o) A w) < limsupy, ((ar — @)™ A w).

Proof. Let Br(@) be the projection band in E generated by the set
{T*u | k € NU{0}}, and let Pr; be the band projection associated
with the projection band Br(@).

We start by noticing that we may assume that u € Br(@). Indeed,
let w € E be as in the proposition. Set v = Prgu and w =
u —v. Since @y A w = 0, it follows (using [7, Corollary, p. 53]) that
(@ —wg) T Au = (g —0k) T A (v+w) < (g —0k) T Av+ (T —8) TAw <
(g — W)t Av+ak Aw = (a, — wg)" Av for every k € N U {0}.
Accordingly, limsupy, (@i — W)™ A u) < limsupy (G — Wg)" A w).
Since, obviously, lim supy, ((@x — W)™ Aw) < limsupy, (G — @) " Au
it follows that limsupy,((ax — wg)" A w) = limsup, ((ar — W)t Au
In a similar way, we obtain that limsup,(((1 — p)ax — vk)™ A w) =
limsup, (((1 — p)tg — ve)™ Aw).

);
).
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We will now note that, in order to prove the proposition, it is enough
to prove that for every n € N U {0}, for every n € E, n > 0, such that
7 5 n, and for every p,p' € R, 0 < p’' < p < 1, it follows that

(10.1) limksup(((l—p)ﬂk—q_)k)+/\u) < limksup(((l—p')ﬂ;c — k)t Aw).

(The above remark is obvious in view of the fact that limsup,(((1 —
Pk — wg)t Au) < limsupy, (U — wg)™ Aw)).

We will prove (10.1) by induction on n. The inequality (10.1) is
clearly true for n = 0 since, in this case, n = ¥; therefore, o, = wy, for
every k € N U{0}.

Now assume that (10.1) is true for n — 1, and let n € E, n > 0, be
such that & = 7. We want to prove that the inequality (10.1) is true
for every p,p' € R, 0 < p’ < p < 1, provided that @ = E?:o T'n for
every k € N U {0}. Taking into consideration that @ 2 1, we obtain
that there exists ' € E, ' > 0, such that v not n' and 7’ 5 7. Set
W), = Zf:o Ty for every k € N U{0}.

Let p"” € R be such that p' < p"” < p.

By our induction hypothesis, limsup,(((1 — p)ix — T%)" A u) <
lim supy, (((1—p")ur —w},)" Au). Thus, in order to prove that inequality
(10.1) is true for n, p, and p/, it is enough to prove that

(10.2) limksup(((l—p")ak—w;c)Jr/\u) < limksup(((l—p')ak—wk)Jr/\u).

Taking into consideration that 7’ RN 7, we obtain that there exist
r,s €EE,r>0,s>0,suchthat ' =r+sand n=r+Ts.

We will now prove that

(10.3) limsup((T**1s — etig)™ Au) =0
k

for every e € R, € > 0.
To this end, assume that there exists ¢ € R, ¢ > 0, such that
limsup,, ((T*+'s — etig) ™ A u) # 0.

Taking into consideration that 0 < lim sup,, ((T**'s —etig) T Au) < u
and, since we assume that u € Br (i), we obtain that lim supy ((T**1s—
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etix)t A u) € Br(@). Thus, using [7, Proposition 2.11, p. 63 and
Corollary, p. 53], we obtain that there exists [ € N U {0} such that
(T'@) A (lim supk((Tk'Hs —etig)T Au)) # 0; hence, limsup,, (T%*'s —
etp)t Au A (Ta)) #

Since lim supy, ((T’““s etiy) T AuA(T'a)) <limsupy,, ((T*HH(T"s)—
(X0 T (T a))) T Au A (Tha)), it follows that

(10.4) lim sup <<T’c HH(Ts) <ZT (T'a >>+/\u/\(Tlu)> #0.

k>l

We will now apply (and use the notations of) Proposition 9 of [9].
To this end, let @ be the projection of T'% on the projection band

Bo((T*44(1's), Tl TH(T'8) ki )-
Taking into consideration that (10.4) can be rewritten in the form
(10.5)
k

0 < limsup <<T’“+1(T’s) — s<ZTi(Tla)>>+ Au A (T’ﬁ)) £0,

keENU{0} —

we obtain that w # 0.

By Proposition 9 of [9] there exists a sequence (§,,)men of Hyigyig-
modifications of T's which diverges individually to co on B(w).

In view of (10.5), it follows that u A w # 0; therefore, the sequence
(0m)men diverges individually to oo on B(u A W) as well.

By Lemma 9, ' € Hy; since 0 < s < 1’ and since Hj is an ideal, it
follows that s € Hy; taking into consideration that Hj is T-invariant
(T(H3) C Hy), we obtain that T's € Hy. Accordingly, Hypiy rig C
Hys; hence, (0,,)men is a sequence of Hy,y-modifications of T's.
Thus, given m € N, it follows that d,, = T's — A\, + T'\,, for some
Am € Hato, Am > 0.

Since T's € Hy, it follows that T's < M }_._, T"v for some M € R,
M > 0 and r € N U {0}. Thus 5 + (M OT"_)les) =
Tts = A + T + (M(X]_g T'0) = T's) = M(37_y T'0) = Ay + T A,
for every m € N; accordlngly, (6m + (M(X_ T0) — T's))men is a
sequence of Hyy-modifications of M (}";_, T"v )
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Since T%v is an Hyy-modification of ¥ for every i = 0,1,...,r, it
follows that )
<5m + (M3 T') — T’S))
M(r+1) meN

is a sequence of Hgzz-modifications of 7. Clearly, the sequence

<5m + (M%a_ill“;ﬁ) - Tls)>m€N

diverges individually to co on B(u A @). Since we have obtained a
contradiction, it follows that (10.3) holds for every € € R, £ > 0.

We will now use the fact that (10.3) is true for every e € R, ¢ > 0 in
order to prove (10.2). To this end, note that

k k k k
(1=p)> Tu-) Tn=(1-p)> Tu-Y T(r+Ts)
=0 1=0 z:O ’L:O
=(1—=p)) Ta—-> T(r+s)
. 1=0 1=0
+ Z Ti(s — Ts)
i k k
=(1-p)Y Ta—>» T +s—Tr"s
1:0 Z:O
> (1 7/)/)21”’&7 ZTiT]I 7Tk+18
=0 =0

for every k € N U {0}.

Accordingly, we obtain that limsup,(((1 — p/)ur — @g)™ A uw) >
limsup, (((1 — p')ax, — @), — T**+1s)* Au) = limsup,(((1 — p")ax
B, (T — (5" — p)m)* ) > limsup, (1 — )i — T})* Au) -
limsup,, ((T*+1s — (p” — o))t A w).

Using (10.3) for ¢ = p” — p’ > 0, we obtain that lim sup, ((T**1s —
(p" — p')ak)T Au) =0. Accordingly, (10.2) is true. O

Lemma 11. Let u,v € E be such that v > 0 and v > O._ Set
Wp = SUPg<j<p Zf:o T'(u — v) for every n € NU {0}. Let T, be
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the intersection of E!, with the carrier of w} in E' (note that here we
think of E as being included in E") for every n € N U{0}. Let T be
the projection band (in E') generated by U ,T',. Letw € E, @ > 0,
and set v = limsup,, (w;} A ). Let T'(3) be the intersection of E! with

the carrier of v in E'. Then T'(v) CT.

Proof. We will start by proving that, for every z € [(v), x > 0,
x#0, thereexists ye I', 0 <y <z, y #0.

To this end, let z € ['(v), > 0,  # 0. Since 0 < v =
limsup,, (w} Aa) < Voo, (w Aw), it follows that  is in the carrier of
Voo (wii A ).

Taking into consideration that z is an order continuous linear func-
tional on E’, and since the sequence (w;" A ﬁ)neNu{o} is a monotonic
nondecreasing sequence of elements of £, we obtain that (\/°*(w; A
u),z) = \/o_o(wit A u,x); accordingly, 0 < (w;l, Au,z) < (wt ,x) for
some ng € N U {0}.

Since w; (thought of as an element of E") is an order continuous
linear functional on E’ (therefore E’ is the order direct sum of the
carrier and the null space of w;}, ), it follows that the projection of z on
the carrier of w;f is a nonzero component of z. Let y be this projection.
Then y € E!, (since 0 < y < z, z € E!,, and since E!, is a (projection)
band in E’). Accordingly, y € T,,, C T

Now assume that '(7) ¢ T. Then there exists z € I'(7) such that
x ¢ T'. Since both I'(v) and I' are projection bands, it follows that we
may assume that z > 0, z # 0.

Let y be the projection of z on the projection band T, and set
z = —y. Then z € I'(7) (since 0 < 2z < z, x € I'(?) and since
I'(9) is a projection band).

Taking into consideration that z # 0 (since we assume that z ¢ T')
and using what we proved previously, we obtain that there exists s € I,
s#0,0<s< 2.

Now note that y A z = 0 (since y is a component of z); therefore,
0 < yAs < yAz = 0; hence, yAs = 0. We have obtained a contradiction
since 0 < s <z, s #0, s €T, and since y = sup{t € I'/0 < ¢t < z}.
]
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The next (and last) proposition of this section is an extension of
Theorem 0.4 of [1].

Proposition 12. Let u,v € E be such that uw > 0 and v > 0.
Let w € E, u > 0. Assume that there is nov € E, v # 0 and
no sequence (wi)keN 0f Hyuiy-modifications of © such that (wk)keN
diverges individually to co on B(v). Let p € R, 0 < p < 1, and set
u, = limsup,, ((1—p) (X Tu) — (1o T'0))" Au). Let z be in the
intersection of E';L with the carrier of u, in E', and assume that z > 0.
Then Y,u > ¥,0.

Proof. Let n € NU{0}, and let 7,, € E, n,, > 0 be such that 7 = 7,,.
By Proposition 10,

wemen (59 - (£) 0

o, (57) - (5272)) )

It follows that x is in the intersection of E with the carrier of

e (2 ((£74)-(£700) )

We now apply Lemma 11 (the role played there by w,v, and @

is taken here by @, 7,, and wu, respectively). Thus, set w,(cn) =

SUPg<j<k Zi:o T (@ — n,) for every k € N U {0}; let f‘;c") be the
intersection of £/ with the carrier of (11),(9"))7L in E' for every k € NU{0},
and let T(®) be the (projection) band generated by U,?:Of‘;c") in .
Taking into consideration that z is in the intersection of E/, with the

carrier of lim supk((w,(cn))"‘ A u) and using Lemma 11, we obtain that

z e,

By Proposition 8, ¥,u > (n,,z). We have therefore proved that
Yz > (N, ) for every n € N U {0} and for every n, € E, n, > 0,
T = n,; it follows that 1,@ > 0. O
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4. Modifications, the filling scheme, and two ratio ergodic
theorems. Our goal in this section is to use the results obtained so
far in order to prove Theorem 1 and Theorem 2 of Introduction.

We start with two lemmas. The setting in which the lemmas are
stated is the one described in the previous section. Thus, we assume
given an Archimedean Riesz space E, a positive linear operator T :
E — FE; we denote by E the Dedekind completion of F/, and we denote
by E' the order dual of E.

Lemma 13. Letu € E, u > 0, and let n € NU{0}. Let v € E,
v >0, be such that u = v. Then v is an H,-modification of u.

Proof. We will prove the lemma by induction on n.
The lemma is clearly true for n = 0.

Now assume that the lemma is true for n—1, and let v € E, v > 0, be
such that v — v. Then there exists w € E, w > 0, such that v "
and w 5 . By our induction hypothesis, w is an H,-modification of u.
Thus, w = u—h+Th for some h € H,, h > 0. Since H, is T-invariant,
it follows that Th € H,; therefore, w € H,.

Taking into consideration that w 5 v, we obtain that there exist
r,s € E,r>0,s >0, such that w = r + s and v = r + T's; hence,
v=w-—s+1Ts.

Clearly, s € H, (since 0 < s < w, w € H, and since H, is an
ideal). Thus, it follows that v is an H,-modification of w. Since w is
an H,-modification of u, we obtain that v is an H,-modification of .
]

Lemma 14. Let w € E, v > 0, and let z € E', z > 0. If
sup{(@,z) | @ is an H,-modification of u} < 400, then P,u < +o0.

Proof. Set o = sup{(@, ) | @ is an H,-modification of u} and assume
that Y,u = +o0.

It follows that there exists n € N such that ¥2u > a + 1 (actually,
there exists m € N such that ¥7u > a + 1 for every n € N,
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n > m). Accordingly, there exists v € E, v > 0, such that u = v
and (v,z) > a + 1. By Lemma 13, v is an H,-modification of u;
therefore, (v,z) < . We have obtained a contradiction which stems
from the assumption that 1, u = +00; hence ¥, u < +00. o

Observation. Note that the conclusion of Lemma 14 can be strength-
ened considerably, namely, one an prove that the following inequal-
ity is true: ¥,u < sup{(@,z) | @ is an H,-modification of u}. The
above inequality can be proved by using arguments similar to the
ones used in the proof of Lemma 14 or by noticing that, in view
of Lemma 13, it follows that {v € E | v > 0,u — v for some
n € NU{0}} C {v € F | vis an H,-modification of u}. However,
for our purposes, the assertion of Lemma 14 is good enough.

From now on in the remainder of this section we will assume given the
complete setting described in Introduction in order to state Theorem
1 and Theorem 2, and we will use the notations established there.

Everything done so far enables us to prove Theorem 1.

Proof of Theorem 1. Let u € By, u # 0. Clearly, it is enough to prove
the theorem under the assumption that u > 0.

Let B., and Bys be the projection bands in E defined in [8]. Then
it ws shown in [8] that By is the projection band in E generated by
B U Bps. Accordingly, it follows (as in the proof of Theorem 3 of
[9]) that given u € By, u > 0, u # 0, there exists v’ € By U Byg,
0 <4 <wu, u # 0. Thus, it is enough to prove the theorem in the
following two cases:

(@) u € Bo;
(8) u € Bos.

(o) Our goal, in this case, is to prove that if (1) does not hold, then
(2) has to be true.

To this end, let u € By, u > 0, u # 0, and assume that (1) does not
hold, that is, assume that Xg(f,T,T'(v,g,T)) # 0 for every v € B(u),
v >0, v # 0. In particular, Xp(f,T,T'(u,g,T)) # 0.

Taking into consideration that Xp(f,T,T(u,g,T)) is a (projection)
band in E’ (by Corollary 5), we obtain that there exists z' €
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EF(fa T,F(u,g,T)), ! >0, ! 7é 0.

It follows (in view of the definition of ¥ (f,T,I'(u, g,T))) that there
exists z € B/, 0 <z <z,  # 0, such that 0 < sup{(f,z) | f is an Hy-
modification of f} < 4+o00. Using Lemma 14 we obtain that v, f < +o0.

We will now prove that ¥,g > 0. To this end, note that (since we
assume that u € Bo, C B, u > 0) it follows that u = sup A provided
that we set A = {u A (I(XF_,T9)) | | € N,k € NU{0}}. Clearly,
zeXr(f,T.T(u,g,T)) since 0 <z <z, 2’ € Zp(f,T,T(u,g,T)), and
since Xp(f,T,I'(u,g9,T)) is a band. Hence, z is an order continuous
linear functional on E. Taking into consideration that the set A is
(increasingly) directed, we obtain that 0 < (u,z) = (supA4,z) =
sup,c4 (v, z); accordingly, there exist [ € N, k € N U {0} such that
0< lZf=0<Tig,x); hence, (T7g,z) > 0 for some j € {0,1,2,...,k}.
Since g % Tig, it follows that 0 < (T7g,z) < ¥ig < ¥.g.

Let «a € R, a > 0,and let p € R, 0 < p < 1. Since u € By,
it follows that the sequence ((un,vn))nenuqo} is ratio unbounded on
the (projection) band B(u) in E (recall that u, = > p_oT*f, v, =
> h—oT*g for every n € N U{0}). Thus, using the definition of ratio
unboundedness on a band (see [8]) we obtain, in particular, that the

sequence
(CE=
Up — ——Up,
IL-p neNU{0}

is unbounded on B(u). It follows that the sequence (((1 — p)u, —
avn) 1) nenugoy is unbounded on B(u), as well (since

for every v € B(u), v > 0). Using Lemma 4 of [8] we obtain
that the sequence (((1 — p)u, — av,)")p>k is unbounded on B(u)
for every k € N U {0}; thus, sup,,~;((((1 — p)un, — av,)™) Au) = u
for every k € N U {0}; hence limsup,,((((1 — p)u, — av,)T) Au) =
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infrenugoy SuP,>£((((1 — p)un — avp)t) Au) = u. Accordingly, we
conclude that z is in the carrier of lim sup,, ((((1 — p)u, — av,) ™) Aw).

Now assume that condition (2) of our theorem is not satisfied.
Since (wg)ken is a sequence of Hjyi,-modifications of g if and only
if (awg)ken is a sequence of H -modifications of ag, and since the
sequences (wg)ren and (awg)ren diverge individually to co on the
same projection bands in E , it follows that we may apply Proposition 12
(the role played there by @ and @ is taken here by f and ag, respectively)

in order to conclude that 1, f > ¥, (ag).

Taking into consideration that g 5 h if and only if ag — ah for every
n € N U {0}, we obtain that ¢, (ag) = b, g.

We have therefore proved that, if we assume that condition (2) is not
satisfied, then it follows that ¥, f > ai,g for every o € R, a > 0.
Since ¥, f < +o00, it follows that ¥,g = 0. Thus, we have obtained a
contradiction. Accordingly, the theorem is true for every u € Byo.

(B8) Let u € Bpg, u >0, u # 0, and assume that condition (1) is not
satisfied. Our goal is to prove that (2) or (3) holds.

Since we assume that (1) is not satisfied, it follows that Xg(f,T,
I'(u,9,T)) # 0. As in case (a), it follows that there exists = €
Sp(f, 1,0, 0,T)), & > 0, # # 0, such that 0 < sup{(f,z) |
f is an Hy-modification of f} < +o0o. Using Lemma 14 (as in (a))
we obtain that ¥, f < +oo.

In case («) we proved that 1, g > 0; here we need a slightly stronger
statement which is valid in case (a), as well, namely, we will prove
that ¢,g > 0 for every y € E',0<y<uaz y+#0. Thus, let y € E',
0<y<uz y#0. Asin case (a), set A= {uA (l(EfZOTig)) |l e
N,k € N U {0}}, note that the set A is (increasingly) directed and
note that sup A = u. Taking into consideration that y is an order
continuous linear functional on E, we obtain, as in case (), that there
exists j € N U {0} such that (T7g,y) > 0. Since g & T7g, it follows
that 0 < (T7g,y) < ¢Jg < Pyg.

Clearly, (u,) # 0 (since @ € £p(f,T,0(u,,T)) € L(u,g,T), @ > 0,
x # 0). Taking into consideration that z is a nonzero order continuous
linear functional on F (therefore, the carrier of  is a nonzero projection
band in E, and E is the order direct sum of the null space and the
carrier of ), we obtain that the projection of u on the carrier of z is a
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nonzero component u’ of u.

Since u € Bys, 0 < u' < u, u' # 0, it follows (in view of the definition
of the band Byg (see [8])) that there exist o, € R, 0 < 8 < a such
that (limsup,, (((un, —Bv,) ") Au')) A(limsup,, (((u, —av,)T)Au')) # 0.

Let p € R, 0 < p < 1, be small enough such that 3 < (1 — p)2a.

Set wy = limsup,, ((((1 = p)un — (1 = p)Bva) ) A ((1 = p)u)), w2 =
limsup,,((((1 — p)u, — (1 = p)av,) ) A ((1 = p)u')), and w = w1 A ws.
It follows that 0 < w < w; < v < w, ¢ = 1,2. It also follows that

w # 0since 0 # (1—p)((lim sup,, (((wn—Bvn) ") Au’)) A(lim sup,, (((wn —
av,) ) AY))) = w.

Clearly, we may think of w as an element of E and, as such, w is an
order continuous linear functional on E’. Let y be the projection of
on the carrier of w in E’. Since 0 < w < u/, w # 0, and since ' is in
the carrier (in E) of z, it follows that (w, z) # 0; therefore, y # 0. If we
think of wy and wy as elements of E’ !  and if we take into consideration
that 0 < w < w;, @ = 1,2, then it follows that y is in both the carrier
of wy and of ws.

Now assume that neither condition (2) nor condition (3) are true.

Note that w; = limsup,,((((1 — p)Bvn — (1 = p)us) ) A ((1 = p)u')).
Note also that Hgyy (1 )5 = Hy4g; therefore, (1—p)fisan Hggi(1—p) -
modification of (1 — p)f, if and only if f is an Hy-modification of f.
The above remarks allow us to conclude (since we assume that condition
(3) is not satisfied) that we may apply Proposition 12, the role played
by @, 7, u, and z there being taken here by Bg, (1 —p)f, (1 — p)u/, and
y, respectively. Accordingly, we obtain that ¥y(89) > ¥y ((1 — p)f),
that is,

(1.1) Byg = (1= p)ipy f.

Now note that Hyi(1_pjag = Hyyg; consequently, (1 — p)ag is an
Hy(1—p)ag-modification of (1 — p)ag if and only if g is an Hy,4-
modification of g. Thus, it follows (since we assume that condition (2)
is not satisfied) that we may apply Proposition 12 once again, the role
played by @, 7, u, and z there being taken here by f, (1—p)ag, (1—p)u’,
and y, respectively. Accordingly, it follows that ¢, f > ¥, ((1 — p)ayg),
that is,

(1'2) ¢yf > (l - P)Oﬂlfyg-
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Using (1.1) and (1.2) we obtain that 8,9 > (1—p), f > (1—p)?atpyg.

Since ¢,g > 0, it follows that 8 > (1 — p)2a. Thus, we have obtained
a contradiction. Accordingly, the theorem is true whenever u € Byg,
u>0,u#0. ]

Our intention now is to prove Theorem 2. For the proof we need the
following proposition:

Proposition 15. Let v € B, v # 0. If there exists a sequence
(Pn)nen of Hyyg-modifications of f such that (pn)nen diverges indi-
vidually to oo on B(v),then

Qo (f, T,T(v,9,T)) =T(v,g,T).

Proof. Clearly, we may assume that v > 0.

Obviously, the proof of the proposition is completed if we prove that
a; = +oo for every x € I'(v,g9,T), > 0, z # 0.

To this end, let z € I'(v,¢,T), z > 0, 2 # 0. Let « € R, a > 0, and
set

Vo ={we E | wis a component of v and there exists m € N

such that aw < p,, for every n € N,n > m}.

Note that V, (endowed with the order induced by the order of E)
is a directed set. Indeed, let wy,ws € V,. It follows that there
exist my,my € N such that aw; < p, for every n € N, n > m;,
i = 1,2. Therefore, a(wy Vws) = (awi) V (awz) < p, for every n € N,
n > max{mj, ma}. Thus, wy V ws € V,.

Clearly, sup V, exists and is a component of v in E (since E is order
complete).

We will now prove that v = supV,. To this end, assume that
v # sup V,. Then v — supV, is a nonzero component of v. Since
(pn)nen diverges individually to co on B(v), it follows that there
exist a nonzero component w of v — supV, and m € N such that
aw < p, for every n > m. Thus, w € V,. We have obtained a
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contradiction since, on one hand, w # 0, while, on the other hand,
0<w=wAsupV, < (v—supV,) AsupV, = 0.

Taking into consideration that z is an order continuous linear func-
tional on E, we obtain that sup{(f,z) | f is an Hy,,-modification of
[} > sup,en{(pn, ) > sup,ey, (Qw, ) = asup,cy, (w,z) = alv, ).

We have therefore proved that a, > a(v,z) for every a € R, a > 0.
Since (v, z) > 0, it follows that a, = +o0. u]

In view of Proposition 15 we may now proceed to the proof of
Theorem 2.

Proof of Theorem 2. As in the proof of Theorem 1, it follows that we
may assume that u € By, u > 0, u # 0, and that it is enough to prove
the theorem in the following two cases:

(a) u € By

(b) u € Bys.

(a) Let u € Bo, u > 0, u # 0, and assume that (i) is not
true. It follows that Qp(f,T,I'(u,g,T)) # 0; hence, there exists
z € Qp(f,T,T(u,9,T)), x > 0, z # 0 such that 0 < sup{(f,z) |
[ is an Hy s-modification of f} < +o0.

We obtain that sup{(f,z) | f is an H-modification of f} < +oo.
Accordingly, using Lemma 14 it follows that ¢, f < +oo.

As in the proof of Theorem 1, it also follows that i,g > 0.

Now, if we assume that assertion (ii) is not true, it follows, as in case
() of Theorem 1, that we obtain a contradiction (note that assertions
(ii) of Theorem 2 and (2) of Theorem 1 coincide).

(b) Let u € Bys, u > 0, u # 0, and assume that assertion
(i) is not true. Then, as in case (a) it follows that there exists
r € Qp(f,T,T(u,g,T)), £ > 0, = # 0, such that 0 < sup{(f,z) |
f is an H; ,-modification of f} < +oc.

We obtain as in case (a) using Lemma 14 that ¢, f < 4o0.

Now assume that both assertions (i) and (ii) are not true. It follows
that (2) and (3) of Theorem 1 are not true, either (indeed, assertions
(ii) of Theorem 2 and (2) of Theorem 1 coincide; by Proposition 15,
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the fact that (i) of Theorem 2 is not true implies that (3) of Theorem
1 is not true, either). Using arguments completely similar to the ones
offered in the proof of case (3) of Theorem 1 we obtain a contradiction.
O
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