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CARLESON’S INEQUALITY
AND QUASICONFORMAL MAPPINGS

CRAIG A. NOLDER

1.1. Introduction. In his work on the interpolation of analytic
functions Carleson characterized certain measures on the unit disc by
means of LP-integral inequalities for functions in HP. Duren extended
Carleson’s theorem to exponents 0 < p < g < co. We prove here
analogues of these results for quasiconformal mappings in R".

We denote the unit ball in n-dimensional Euclidean space, R™, by B",
and S™~! denotes its boundary. The open ball centered at € R"™ of
radius 7 is denoted B(z,r). We assume throughout that u is a positive
measure on B™. We call y a t-Carleson measure, 0 < ¢t < oo, if there
exists a constant N(u) such that

(1.2) w(B(s,r) N B") < N(u)rt=1

forall s € S" ! and all 0 < 7 < co. When n = 2 and ¢ = 1, this is
Carleson’s original definition [3].

The main result of this paper, Theorem 1.3, is a quasiconformal
analogue of results of Carleson [3] and Duren [4] concerning analytic
functions. To obtain this result, we use certain integral inequalities for
the nontangential maximal function given in [1] and [8].

When f: B® — R™ is measurable and 0 < p < oo, we write

1/p
7]/ 2e = limsup ( / If(TS)I”dU(S)>
r—1 Sn—1

where do is the surface area measure on S™ .

We use here the usual definition of a K-quasiconformal mapping as
defined in [7].

Theorem 1.3. Suppose that 0 < p < g < co. If t =¢q/p and if

(1.4) w is a t-Carleson measure,
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then there exists a constant C, depending only on n,p,q, K and N(u),
such that

1/q
(15) ([ 1tran) " <t

for all K-quasiconformal f : B* — R™.

Conversely, if (1.5) holds for all K -quasiconformal f : B® — R",
where K depends only on p,q, and n, then (1.4) holds with N(u)
depending only on n,p,q and C'.

When n = 2 and f is analytic, this is Carleson’s result [3] for p = gq.

Corollary 1.6. Theorem 1.3 remains valid if, in (1.5), ||f||m» is
replaced by

nin || fill zr

and we assume that f(0) = 0.

This follows from the use of Theorem 2.3. We also have the following
corollaries.

Corollary 1.7. There is a constant C, depending only on p,q,n and
K, such that

1/q
([ 1= o am ) < il
By,
or a -quasiconforma : — . Here dmy, s k-dimensiona
f Il K f lf:B"” R™. Here d k-d l

Lebesgue measure, 1 < k < mn and 0 < p < q < oo, By =
{(z1,22,...,2n) | 2 =0,k +1 < j <n} forl <k <n-—1and

Corollary 1.8. there is a constant C, depending only on p,q,n and
K, such that

o0 l/q
(Z If((1- 2—k)sk>|q2—<"—”q’°/P) < C||f\| v
k=0
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for all K-quasiconformal f : B®™ — R™. Here 0 < p < ¢ < oo and
{sk}32, is any sequence in S™ L.

Define u = > 277%§,, where v = (n — 1)q/p, z1, = (1 — 27%)s), and
0z, is the unit mass distribution at x. Then g is ¢-Carleson with
t = q/p and Corollary 1.8 follows from Theorem 1.3 using this p.

Corollary 1.9. For each p, 0 < p < o0, there is a constant C,
depending only on p,n, and K such that

|f ()] < C—[2))~ V77| f|| g
for all K -quasiconformal f : B® — R™ and all © € B".

Corollary 1.9 follows from Theorem 1.3 with u = (1 — |z|)9(»~1)/P§,.

2.1. Quasiconformal mappings and the nontangential maxi-
mal function. We define a Stolz region I'(s) at s € S™! by

I(s)={z e B" ||z —s| <3(1—|z|)}
We denote the nontangential maximal function of f : B™ — R™ by

f(s) = Sup)lf(w)l-

z€l(s

Although other expansion factors lead to similar results, we use the
factor 3 in the definition of I' in agreement with [8] and [1]. In [8]
and [1] the factor 3 simplifies estimates required in the proofs of the
theorems. Since the inequalities involving the nontangential maximal
function, f*, are used here only as intermediate results, the actual value
of this factor is immaterial.

The following result appears in [8] and [1].

Theorem 2.2. Let0 < p < co. There exists a constant C, depending
only on n,p and K, such that

Ilarfe < ([ £ da(s))w
< Ol
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for all K -quasiconformal f : B™ — R™.
Also, the following analogue of the result in [2] is in [1].

Theorem 2.3. Let 0 < p < co. There exists a constant C, depending
only on n,p and K, such that

1/p

< mi *(s)P

Ille/C < in ([ gr(o aots)
< Ollflm

for all K -quasiconformal f = (f1, fa,... , fn): B™ = R™ with f(0) = 0.

3.1. Proof that (1.5) implies (1.4). To verify (1.2) we may

assume that 0 < r < 1/2 and that s = (0,0,...,0,1). Set a =
(0,0,...,0,1 —r) and define a quasiconformal mapping as follows:

f(z) = (z—a*)|z— a*|f(ﬂ/p+1)

where a* = a/[a|* and 0 < 3 < co.
Notice that if z € B(s,r) N B", then

L=l —a" "7 f(2)
< (3r)7/7|f ().

Using (1.5) we obtain

u(Bs, B < [ (@) dp

< CorPi/?|| f||%,.

(3.2)

On the other hand,

1/p
Wl = ([ s o)

( )/'n Sinn72 © d 1/P
= (c(n
o (1+ R%?—2Rcos p)P/2 14
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where R = |a*|.

We use the inequality
sin?p <14+ R? —2Rcosp

for all 0 < ¢ < 2.

If the dimension n is even, then set 5 = n. We get

™ ds& 1/p
» <O
£l < 1</0 1+R2—2Rcos<p>

< Cy(R—1)7YP < Cyr /P,

Then (1.2) follows with (3.2).
If n is odd, then set 8 = n + 1 to obtain

m : 1/p
sin p dp
p <
[1£1l _C3</0 (1+R2—2Rcosgo)2>

S Cg(R — 1)—2/p S 037‘_2/p.

Again (1.2) follows with (3.2).

4.1. Proof that (1.4) implies (1.5). We use the notation in [1].
We write
S(z) = S"' N B(z,3(1 - |z|))

for the cap associated with x € B™. We also define a tent over a set
UcSm1as
T(U)={xe€B"|S(x) CU}

Lemma 4.2. Let E C B" be a set which does not contain an infinite
sequence {x;} whose caps S(x;) are disjoint. There exist finitely many
points {z;} C E and a constant n > 1, depending only on n, such that
the caps S(z;) are disjoint and

EcUﬂw@m.

J
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Here nS(z;) is the cap with the same center as S(x;) expanded by the
factor n.

To establish (1.5), by Theorem 2.2 it is enough to show that

w ([sma) sa( [ rerae)”

Define g(z) = |f(x)[?/2. Notice that g(z) < g*(s) for all s € S(z).

o o0 < (7 [ Lo io(s)).

Define )
3(0) = (5 [ ) (5

where the supremum is over all S(y) such that S(z) C S(y). Evidently,
g(z) < g(z) for z € B™. Because of this (1.5) will follow from (4.3)
when we show that

an ([ dﬂ)mq <af [ g*<s>2da<s>)1/2-

In other words we need to show that the operator T' : ¢* — g, from
L?(S"~ ' do) to L?4/P(B™,du) is of strong-type (2,2¢/p). Clearly T is
of strong-type (00, 00). Hence (4.4) will follow from the Marcinkiewicz
interpolation theorem (see [9]) if we show that T is of weak-type

(1,4/p)-
Following [5] and [4] we define the following sets for € > 0:

5 = {w eB | [ g7 (s)do(s) > Ae + |S<w>|>},

S(z)
BS = {g; € B" | S(z) C S(y) for some y € Ai},
Fy,={z € B" | g(z) > \}.

Notice that p(Fy) = lim._,o pu(B5).
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We may assume that ||g||m, < co. If {z;} C A5 with S(z;) disjoint,
then using Holder’s inequality and Theorem 2.2,

A+ 186 <3 /S g*(s) dor(s)

(z5)
<[ @
<con( [ swri)”

< Cillgllm>.

Thus any such set {z;} is finite. Hence applying Lemma 4.2 with
E = A5 and assuming F) # @, we obtain a finite set of points
{z;} C A5 such that

A5 < JTS ()

J

and the S(x;) are disjoint. It follows that B5 C U;T(nS(z;)). From
(1.4) we get

p(BS) < 3 n(T (S ()

< oY st 1
<o Sise)”
<oz reats)”

< clAq/P< /S A da(s)y/p.

Thus T is of weak-type (1,¢/p) and the proof is complete. o

5.1. An example when ¢ < p. Finally we give an example to show
that Theorem 1.3 does not hold when ¢ < p.
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For v = (n — 1)q/p, define a measure u = > 27 %7§,, with z; =
0,...,0,1 —27%) k = 0,1,2,.... Then p is a t-Carleson measure
with ¢t = ¢/p. Define, for —(n —1)/p < 8 < —(n —1)/2p,

fa(z) = (z —en)lz — en|" "

where e, = (0,0,...,0,1). Each fg is K-quasiconformal in B" with
K =max((n —1)/p,2p/(n — 1))~ 1. Then

sl = [ 15 = eal dots)
Sn—1
=0 / sinP? (p/2) sin™ 2 p dyp
0

w/2
= (s / sinPP1=2) o cos™ 2 o dip.
0

If n =2, then
/2
sl < Ca [ (20/mp? dip
0
C3
CpB+1
If n # 2, then

w/2
ol < Co [ s+ pcos

1
< 02/ uPPtn=2) gy,
0

S opB+n—1

On the other hand,
JARTED S
k=0

— Z 9—k(aB+7)
k=0

(1- 2—q(ﬂ+(n—1)/1’))—1_
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Combining the above results we obtain

i, (Lo’
p——(n—1)/pt \ || f5l|%»
. Cs(pB+n —1)7
= 5ﬁ,(171£11)/p+ {1- 2—q(B+(n-1)/p) J

lim Cg(1 — 279B+(n=1)/P)ya—p —
B——(n—-1)/pt

assuming that ¢ < p.

REFERENCES

1. K. Astala, Quastharmonic analysis and BMO, Bounded mean oscillation in
complez analysis, Univ. Joensuu publications in sciences 14 (1989), 9-19.

2. D.L. Burkholder, R.F. Gundy and M.L. Silverstein, A mazimal function
characterization of the class HP, Trans. Amer. Math. Soc. 157 (1979), 137-153.

3. L. Carleson, An interpolation problem for bounded analytic functions, Amer.
J. Math. 80 (1958), 921-930.

4. P.L. Duren, Eztension of a theorem of Carleson, Bull. Amer. Math. Soc. 75
(1969), 143-146.

5. L. Hérmander, LP-estimates for (pluri-) subharmonic functions, Math. Scand.
20 (1967), 65-78.

6. A. Torchinsky, Real-variable methods in harmonic analysis, Academic Press,
Boston, 1986.

7. J. Vaisila, Lectures on n-dimensional quasiconformal mappings, Lecture Notes
in Mathematics, 229, Springer-Verlag, Berlin, Heidelberg, New York, 1971.

8. M. Zinsmeister, A distortion theorem for quasiconformal mappings, Bull. Soc.
Math. France 114 (1986), 123-133.

9. A. Zygmund, Trigonometric series, Cambridge University Press, London and
New York, 1959.

DEPARTMENT OF MATHEMATICS, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FL
32306-3027



