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ALGEBRAIC DYNAMICS OF POLYNOMIAL MAPS
ON THE ALGEBRAIC CLOSURE OF A FINITE FIELD, II

ANJULA BATRA AND PATRICK MORTON

ABSTRACT. We study the dynamics of polynomial maps
on the algebraic closure of the finite field Fy by associated
to a polynomial o(z) in Fg[z] a graph G, on the irreducible
polynomials over Fy which reflects the algebraic properties of
the mapping o — o(a). For additive polynomials o we show
that many of the connected components of G, are isomorphic
to the connected component of z, and we determine the
structure of all of the connected components of G, over Fy
explicitly when o(z) = P £« and p is prime. We also describe
the connection between the graph G, for o(x) = @ — & and
Artin-Schreier theory.

1. Introduction. In Part I of this paper we have defined a graph
G, on the monic, irreducible polynomials over a finite field F, which
reflects the dynamics of the mapping a — o(a) on the algebraic closure
of F,, where o(z) is a nonconstant polynomial with coefficients in F,
(the same definitions work for an arbitrary field). In that paper we also
proved a number of theorems about the cycles in the graph G, and gave

special consideration to the polynomials of the form o(z) = 29 + axz.

In this part of the paper we will first investigate the structure of the
connected components of this graph for general additive (separable)
polynomials and then give more detailed results for two special families
of polynomials, the maps o(z) = 2P +«, considered over the prime field
F,. When we want to emphasize the ground field x, we use the notation
Gy (k). The connected component of a polynomial f in G, will be
denoted by C,(f) or by Cy(f; &) if the field x needs to be emphasized.

We recall that for two irreducible polynomials f and g over F,, the
edge g — f is in the graph G, if and only if the map o(z) takes a
root of g to a root of f. In part 1 we show that ¢ — f for a unique
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irreducible f, so there is an induced map & on irreducible polynomials
defined by: 6(g) = f, if @ has minimal polynomial g and o(a) = 3 has
minimal polynomial f. We showed further that the polynomials f in
cycles of G, which are just the periodic points of &, are exactly the
irreducible factors of the polynomials ®,, ,(z) defined by the formula

Q. 0(2) = H(ad(m) — x)“(m/d).

dlm

Our main results show that many of the connected components of G,
are isomorphic to the connected component of x, when ¢ is an additive,
separable polynomial over F, i.e., a polynomial in ¢(z) = 2? in which
the coefficient of x is nonzero. Let p be the characteristic of F,.

Theorem 1 (see Theorems 3.1, 3.2). Let o(x) be an additive,
separable, polynomial over F,, and let k be the splitting field of o(x)
over Fy. If f(x) is a fized point of & for which (deg f, [k : Fqlp) =1,
then the connected component Cy(f) of f in G, is isomorphic to the
connected component Cy ().

In Theorems 3.3 and 3.4 we extend this result to any periodic point
f of & for which (deg f, [ : F4]) = 1. Define, for a polynomial f in
a cycle, C*(f) to be the subgraph of C,(f) consisting of the vertices
whose distance to f in the graph is less than the distance to any other
vertex in the cycle. These are the vertices from which any path to the
cycle hits f first in the cycle, and can be visualized by imagining the
cycle as the center of a wheel and C(f) as one of the spokes. (See
the third diagram in Section 3 of Part I.) Then for deg f = p"m, where
(m,plk : Fg]) = 1, we have the isomorphism C}(f) = C¥(z;Fy), with
q" = ¢*". In particular, all of the “spokes” of C,(f) are isomorphic
graphs, so that this connected component has a nontrivial cyclic group
of automorphisms whenever f has period > 2 with respect to 6.

These results show that over the splitting field k of o, each of the
connected components of G, (k) is determined by the cycle it contains
and by the structure of C, (z; Fy/). In Sections 4 and 5 we determine the
structure of C, () completely for each of the polynomials o(x) = «?+x
over F,. For the map o(r) = 2P — z, the vertices in C,(z) are all the
irreducible polynomials over F, whose degrees are powers of p: each
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of these polynomials has roots which are pre-periodic with respect to
o. In contrast, for the map o(z) = 2P 4+ x (with p odd) the irreducible
polynomials of degree p” lie in cycles of G, and therefore have roots
which are periodic. This indicates that these two maps have very
different dynamics. In particular, the determination of C,(z) is much
more difficult for o(x) = 2P + x than for 2P — z (see Section 5). In
computing C,, () we make use of some of the main results of Part I [3].

One nice application of the graph G, is that it gives an interesting
way of visualizing the algebraic closure ﬁ‘p of F,. For example, the
connected component C,(z) for the map o(z) = aP — = gives a
“layering” of elements of degree p” over F,. (See the second diagram
in Section 3 of Part I, which gives the initial part of this layering for
p = 2.) The following theorem, which describes this “layering” more
precisely, uses the notation “level” of a vertex, which is defined to be
the length of the shortest path from that vertex to a cycle, in this case
the length of the shortest path to . (The symbol ¢(n) denotes the
Euler ¢-function.)

Theorem 2. (See Theorems 4.3, 4.4). a) If k > 1, the irreducible
polynomials of degree p* over F,, occur in o(p*) levels of Cypr—,(x),
starting with (p — l)ppkfl_k’ polynomials at level p*~1 + 1, branching to
p times the previous number in each successive level, for p(p*) levels.
Each polynomial in the last row of irreducibles of degree p* (at level p*)
is connected to a single irreducible of degree p*+1 at level p* + 1.

b) Forn > 0, the set of roots V,, of polynomials at levels n or less in
Cyr—yz(x) is a vector space of dimension n over F,, and coincides with
the set of solutions o in ¥, of 0™ () = 0, where o(z) = = — . The
spaces V,, give a layering (filtration; composition series)

WowcWhc---CV,C---CVys

of the subfield V., of ﬁ‘p consisting of the elements which have degree
p", r > 0, over Fp. In particular, the roots of polynomials at level n
comprise p — 1 cosets ka+ V1 of V1, k=1,2,... ;p—1, and are

therefore invariant under translation by elements of V,,_1.

The map o(z) = 2P —z is also interesting because of its connection to
Artin-Schreier theory. In Section 4 we use the graph G, to locate poly-
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nomials whose roots generate p-power extensions of a given groundfield
F,.

Theorem 3 (see Theorem 4.5). Let o(x) = P —z. For any integer d
relatively prime to p, there exists an irreducible polynomial f in F,[x]
of degree d which lies in a cycle of G,. For such an f, let o be any
root of a polynomial at level 1 in Cy(f). Then any root of o
generates the unique extension of degree p* of Fa.

For k = 1, this is the usual result, that a root of 2”7 —z—« (for suitable
a) generates a cyclic extension of Fa of degree p (cf. [1]). It would be
interesting to generalize this result about finite fields to arbitrary fields
of characteristic p, but it doesn’t seem clear how to do this.

Finally, in another paper we will discuss an application of the graphs
G, over F, to algebraic number theory. These graphs are related to
the splitting behavior of a prime p in towers of algebraic number fields
generated by pre-periodic points of a map o(z) defined over Q. (See
also [2].)

2. Properties of additive maps. Let ¢ be an additive, separable
polynomial over a field s of characteristic p, i.e., a polynomial in the
Frobenius map ¢(z) = zP:

(1) O-(:L') = (a0¢k + a1¢k71 +- 1+ ak)(I), ag # 07
and assume that the groundfield x contains all the roots of o(z) = 0.

If g and f are monic and irreducible and g — f, then g is a divisor
of f(o(z)). It is not hard to show that

flo(@) =[] o(e +a),

where a runs over a subset of the roots of o(z) = 0. We show this
by considering the function field extension k(z)/k(o(z)). This is an
extension whose degree is deg o = p* (see [7, page 217]). The extension
is also normal and separable, since the minimal polynomial of x over
k(o(z)), namely o(y) — o(z), splits completely over k(z):

o(y)—o@)=cy—z)= [[ y—2-a).

o(a)=0
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(Compare with [4, Theorem 3].) Hence the conjugates of z over k(z)
are the linear polynomials x + a, where a is a root of o, so that if V is
the additive group of roots of o(z) in &,

1

I' = Gal (k(z)/k(co(x))) = V.
It follows that a polynomial h(x) is a polynomial in o(z) if and only if
h is invariant under all the automorphisms of I, i.e., if and only if

h(z 4+ a) = h(x), for all a for which o(a) = 0.

Now consider f(o(z)). This polynomial is invariant under I'. Let
H be the subgroup of I' which leaves the polynomial g invariant.
If 7,...,7. are a set of coset representatives for H in I', and if
7i(z) = & + a;, then the product

T

pP= Hn(g) = [[o(z+a)

i=1

is a product of distinct irreducibles and is invariant under I'. Since
f(o(z)) is invariant under ' and divisible by g(z), it must also be
divisible by P. On the other hand, writing P(z) = h(o(z)) implies that
h(z) divides f(z), which gives that h(z) = f(x) by the irreducibility of
f- This proves the following theorem.

Theorem 2.1. Assume k has characteristic p and contains all the
roots of the additive, separable polynomial o(z). If f is monic and
irreducible and g is a monic, irreducible factor of f(o(x)), then

Q f(o(@) = [ ofa +a),

where the a; are a subset of the roots of o(x) = 0, and where the
automorphisms r — x+a; are coset representatives in 1" of the subgroup
which fizes the polynomial g(z). In particular, all the irreducible factors
of f(o(z)) have the same degree, and the number of irreducible factors
s a power of p.
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The last assertion follows from the fact that [I" : H| is a power of p.
Note that this power divides dego.

In the arithmetic of algebraic function fields, f(o) = f(o(x)) corre-
sponds to a prime divisor of the ground field k(o) = k(o (z)) and the
factorization (2) gives the splitting of this prime divisor into prime di-
visors of the extension k(z). Since the field extension is normal, the
new prime divisors all have the same degree.

This theorem also gives a method for computing f, given g. Just
compute the product on the right side of equation (2) and write this as
a polynomial in o(z). It isn’t necessary to compute the group H, since
f can be determined from

II (9 = f(a(@)™.

7inT

When the lefthand side of this equation is computed and written as a
polynomial in o(z), it will be a power of f.

Corollary. Let o(x) = 2P —z. If f is an irreducible polynomial over
a field  of characteristc p, then f(o(x)) is either irreducible or factors
into a product of p irreducible factors with degree equal to deg f. In the
latter case

3) fa? —x) = [[ o(e +a)

where g is any irreducible factor of f(o(x)).

In terms of the splitting of the prime divisor f(¢) in F,(z)/F,(0),
with o(z) = 2P —z, Theorem 3.6 of Part I shows that for infinitely many
primes (i.e., irreducibles) f(o) in Fy(o), one of the prime divisors of
f(o) in Fy(z) is f(z) itself.

Theorem 2.1 has important consequences for the graph G, for a
general o of the form (1).

Theorem 2.2. Let f be an irreducible polynomial over K, a field
of characteristic p, which contains the roots of the additive polynomial



ALGEBRAIC DYNAMICS OF POLYNOMIAL MAPS 911

o(x), and consider the vertices g; in G, (k) for which g; — f. Then
the number of such vertices, r, is a power of p. Moreover, the degrees
of the g; are all equal, and they all belong to the same field extension
of K.

Proof. The assertions are all immediate from Theorem 2.1, the last
being a consequence of the fact that the roots of g;(z) = g(x + a;) can
be expressed linearly in terms of the roots of any single g = g;. O

Corollary 2.3. If o(z) € Fylz] is an additive polynomial with
splitting field k over ¥y and f is an irreducible polynomial in Fg[x]
whose degree is divisible by [k : Fy], then the conclusions of Theorem
2.2 hold for the vertex f in the graph G,(F,).

Proof. Let d = [k : Fy]. The polynomial f splits into irreducibles of
the same degree m over x, where deg f = dm. In fact

d—1
£(@) = [] #'(6(@) = Normg(a),

where g(z) is one of the irreducible factors of f over x, ¢(x) = 9 is the
Frobenius automorphism and Norm denotes the norm from x to F,.
By Theorem 2.2, the polynomial g(o(z)) splits over « into irreducibles
h; of the same degree. It follows that

d—1
flo(@) = [T 11 ¢ (hi(=) = HNOFm hj().

j i=0

Using the fact that o maps roots of h; to roots of g and that the
coefficients of g generate x over Fg, it is not hard to see that each
root of h; generates the extension of degree d(degh;) over Fy, and
hence that Norm h;(z) is irreducible over F,. It follows that f(o(x))
splits over F, into irreducibles of the same degree, where the number
of irreducibles is a power of p. This proves the corollary. a

3. The graph G, for additive o: isomorphisms between
connected components. The structure of the connected component
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of z determines a large part of the structure of G, if o is additive, as
we show in this section. Let C,(f) denote the connected component of
f in the graph G,. We start with connected components of the form
Cy(f), where f is a fixed point of the induced map 6.

Theorem 3.1. Let o(x) be any additive, separable polynomial over
F, (a map of the form (1) with ¢(x) = xP). Let f(x) be an irreducible
factor of @, »(x) whose degree over F is relatively prime to the degree
of every irreducible in Cy(x), and assume f(z) is a fized point of .
Then the component Cy(f(x)) of G, is isomorphic to C,(z).

Proof. Let B be aroot of f(x), and let g(z) be an irreducible in C,(z)
with root a. Then for some minimal m, c™(a) = 0, the root of z. We
define a map

T:Cy(z) = Cy(f(2))
by

T(g) = h, where h is the minimal polynomial of o + S.

We must show that 71" is well-defined, i.e., that it doesn’t depend on the
particular roots « or 8 used to find A, and that T is an isomorphism
of directed graphs.

First note that
(4) o™ (a+B)=oc"(a) +™(B) =™ (B).

Since o permutes the roots of f, 0™ (f) is a root of f, and it follows
that the minimal polynomial h(z) of & + B is in C,(f(z)). To show
that h = T'(g) doesn’t depend on « or 3 we show that

(5)  Gal(Fy(a+B)/Fg) = Gal (Fg(a)/Fq) * Gal (Fq(B)/F,).

We claim first that Fy (o, 8) = Fq(a+ ). To see this, note from (4)
that the field F (o + 8) contains 0™ (8) and therefore 3, since o™ ()
and B are in the same orbit under . Thus F,(o + ) contains «
and 8 and must therefore coincide with Fy(c, 3). Since o and 3 have
relatively prime degrees, Fy () and F4(f) intersect in the field Fy, and
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the assertion (5) now follows from standard results in Galois theory,
using that F,(«) and Fy(8) are normal over F,.

The result in (5) shows that we get all the conjugates of a + 3 by
adding together conjugates of o and conjugates of 8 in all possible
ways. Thus h(x) depends only on g and f and not on « or 8.

In particular, we get that
(6) deg (Tg(z)) = (deg f)(degg)-

The map T is 1-1, for if Tg = Tg', then a + 3 and o' + 3 must
be conjugate over F, for some roots o and o' of g and g’. By (6)
g and ¢’ have the same degree, so that o and o' generate the same
field. If 7 is an automorphism of Fy(c, ) for which 7(a+ ) = o'+,
then by (4) 7(c™(8)) = ¢™(B) for some m, whence 7(8) = §, since
B = o™ ™(c™(B)) for appropriate n. It follows that « and 7(a) = o’
must be conjugate as well, giving g = g'.

The map T is also onto C,(f(x)), for if h is any irreducible in
Cy(f(z)), then for some root 7 of h and some integer m, ¢™(v) is
a root of f. By taking a conjugate of v in place of v we may assume
this root is 5. Let 8’ be a root of f(z) for which ¢™(8) = 3, and
consider the number a = v — 3’. This « satisfies

o™ (a) =o"(y) —o™(8) =B - B =0,

and therefore has a minimal polynomial g which is connected to z in
Go. Since v = a + 3, we have T'g = h, which proves that T is onto.

To show that T is an isomorphism of graphs, we must show finally
that ¢ — ¢’ in C,(z) implies Tg — T¢' in C,(f(z)). Let o be a
root of g. Then o(a) is a root of ¢’, and roots of T'g and T¢' are
a+ B and o(a) 4+ 8. But the above argument shows that the numbers
o(la+ B) =o(a)+ o(B) and o(a) + B are conjugates; this shows that
o takes roots of T'g to roots of T'g’. Hence Tg — T'g’, and the theorem
is proved. ]

To see which polynomials satisfy the degree hypothesis in Theorem
3.1, we prove

Theorem 3.2. Let o be an additive, separable polynomial defined
over Fy, and let k be the field generated over F, by the roots of o(x).



914 A. BATRA AND P. MORTON

Then the degrees of the vertices in C,(x) have the form dp*, where d
diwvides [k : Fg|. Thus the degrees of vertices in Cy(z) are only divisible
by finitely many distinct primes.

Proof. Let o(z) be any additive map over F, of the form (1), and
consider the graph G,(x) and its component C,(z; ) defined over x.
The vertices in C,(z; k) are factors of the vertices in C,(z), and all
vertices in Cy(x; k) are still connected to . Let o be the root of a
polynomial in C,(z), and let h be the polynomial in C,(z;x) whose
root is a. By Theorem 2.2 the vertices g in C,(x; ) which are 1-step
connected to h all have the same degree (over ). It follows that the
root B of any such vertex g satisfies deg .3 = deg .« * p"*°, where
p" = deg o and p?® is the number of vertices 1-step connected to h (note
r > s). Thus, except possibly for the factor p, deg .3 has the same
prime factors as deg,a. Applying this argument repeatedly shows
that deg .3 is a power of p, since the root 0 of the vertex x has degree
1 over k. Now the equation

deg 0+ [k : Fy| = [k(B) : Kl[r : Fg] = [£(B) : Fy(B)][Fq(B) : Fy]

implies that deg g, = [Fy () : F,] divides deg .3 [r.F,]. This proves
the theorem. O

It is possible to extend the result of Theorem 3.1 to any factor of
®,, »(x) with degree prime to the degrees of the irreducibles in C,(z).
We first recall the definition of the level of a vertex in G, for any o.
An irreducible polynomial g has level n if g is n-step connected to a
polynomial f in a cycle of G, but not k-step connected to any such
polynomial, for & < n. All the polynomials whose level is n form a level
or row of the graph G,. A polynomial f in a cycle has level 0.

Now let f(x) belong to a cycle in G,. We denote by CX(f) the
subgraph of C,(f) consisting of the vertices g for which §™(g) = f,
where m is the level of g, and call it the star connected component of
f. Since 6°(f) = f, this subgraph contains f and all the polynomials
in the “spoke” of C,(f) which connects to the cycle at f.

Theorem 3.3. Let f(z) = fi(z) be an irreducible factor of ®, ,(z)
whose degree is prime to p and to [k : F,], where k is as in Theorem
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3.2. Suppose also that f belongs to a cycle of length r in G, .
fi=fo—-—=fr = f1, fiF fifor1<i#5<r

a) Define the map T; : Cy(x) — Cy(f) by the requirement that
h = T;(g) is the minimal polynomial of o + f3;, where a is a root of
g and B; is a root of f;. Then T; is a 1-1 map on vertices, and each
polynomial h in C,(f) is given by h = T;(g) for a unique i, 1 <i<r,
and g in Cy(z).

b) For any fized i with 1 < i < r, define the map T; : C,(z) = Cy(f)

by
T:(9) = Ti—m(g) (subscripts read modulo r),

where m = m(g) is the level of g in C,(z). Then T; is an isomorphism
of C%(x) with Cx(f;). The disjoint subgraphs T;(C(x)), for 1 <i<r,
give a partition of the set of vertices of Cy(f).

Proof. The map T; is the same as the map 7" in Theorem 1.3 for the
polynomial f;. By the same arguments—in particular, using (5) with
B8 = Bi—T; is a well-defined map on C,(z). If g is in C,(z) and « is
a root of g, then by (4) and the fact that (for some m) ¢™(8;) is the
root of a polynomial in the cycle of f;, it follows that T; takes g to a
polynomial in C,(f). By the same argument as before, 7T} is also 1-1.

A slight modification of the previous argument will also show that
each h in C,(f) is equal to T;(g) for some i and g. Just take o™ () = §;
to be a root of f;, where «y is a root of h, let 3; satisfy o™ (8;) = Bi,
and put a = v — ;. The same reasoning as before shows T};(g) = h,
where g is the minimal polynomial of a. Now assume

h=Ti(g) =Ti(g')

With the obvious notation it follows that a+/; and o/ +/3; are conjugate
over F,. If m is the larger of the levels of g and ¢’, we see as in (4) that
0™ (B;) and o™ (;) are conjugate, whence f3; and 3; are also conjugate.
This shows that ¢ = 7, so g = ¢’ by the injectivity of T;. This proves
part a).

Now suppose g is at level m > 1 in C,(z) and ¢ — ¢'. Let a and o’
be roots of g and ¢’ with o’ = (). Since the polynomial ¢’ is at level
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m—1,and o(a+ Bi—m) = &' + Bi—m+1 is a root of Ti(g’), we conclude
that 7;(g) — Ti(g'). Note that the subgraph T;(C*(x)) consists of a

set of vertices which are all connected to f;, since Tz(ac) = f;. Part
a) implies easily that T; is also 1-1, so T; is indeed an isomorphism of
C#(z) with a subgraph of C%(f;). Further, if Ti(g) = T;(g'), then part
a) implies i — m(g) = j — m(g’) (mod r) and g = ¢’, hence i = j. The
assertions of part b) now follow from the fact that every h in Cy(f)
can be expressed as

h = CTz(g) = CTi—Q—m(g)—m(g) (g) = E—Q—m(g) (g) o

Corollary. If lev (h) denotes the level of a polynomial h in G, then
for any g in Cy(z), lev (g) =lev (Ti(g)).

Proof. This is immediate from the fact that T} is an isomorphism and
that T;(x) = f;. O

We finish this section by showing that the connected components
Co(; F or) determine the structure of G, completely over the splitting
field & of o(x).

Theorem 3.4. Let o be an additive, separable polynomial over
F, with splitting field x, and let f be a polynomial in a cycle of
G, (F,), where deg f = p"m and (m, [k :Fy|p) = 1. Then Ci(f;F,) is
isomorphic to C}(x; F ).

Proof. Let h be an irreducible factor of f over the field F . Then
degh = m is prime to p and prime to [k':Fr], where & = &F r
is the splitting field of o over F ,~. Furthermore, h lies in a cycle of
the graph G, (F ,,~). Theorem 3.3 implies therefore that Cj; (h; F ) =
C(z; Fpr). On the other hand, we claim that

Co(h; For) = C5(f5 Fy).

To prove this, note first that if g is any irreducible in C(h; F ;- ), then
g divides a unique irreducible polynomial ¢’ in F,[z]|. Furthermore, if
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a is a root of g, and o" () is a root of h, for suitable n, then o™ ()
is also a root of f, which shows that ¢’ is a vertex in C%(f;F,). An
easy argument gives that g — g, implies g; — g5. Next, let g” be
any vertex in C%(f; F,). For some root o of ¢’ and some n, " () is a
root of f, and 0¥ () is pre-periodic for k < n. By taking a conjugate
of o over F; we may assume that ¢"(a) is a root of h. Hence the
minimal polynomial g of a over F - lies in C}(h;Fgr) and divides
g". Tt follows that ¢’ = ¢", so the map which takes g to ¢’ is onto
Cx(f;F,). Finally, to show this map is an isomorphism, let g; and g,
be two polynomials in C}(h; Fr) for which gi = g5. If o; is a root of
gi (i =1,2), then there is an automorphism 7 of F, fixing F, for which
7(c1) = az. Applying 7 to the graph Cy(h;F r) and using the fact
that ay is the root of a unique vertex in G, (F ) shows that 7(h) = h,
and therefore that 7 fixes quw (a field generated by the coefficients of
h) elementwise. Hence a; and s are conjugate over Fr and g1 = ga.
This proves the theorem. u]

Corollary. If all the roots of o(x) lie in the field F,, then all the star
components of G,(Fy) are isomorphic to C}(x;Fgr) for some r > 0.

This corollary shows that to understand the structure of levels > 1
in G,(F,), where F, contains the roots of o(z), it is only necessary
to know the connected component of z over p-extensions of F,. In
the next two sections we shall compute these components for the two
particular maps o(z) = 2 + z.

4. The graph G, for s(z) = 2 — z: the connected component
of z. In this section we consider the special additive map o(z) = 2P —
over Fp,. In preparation for considering the graph G,r_, we look at
the special case p = 2, o(z) = 2% + z.

Theorem 4.1. The vertices in the connected component Cy2 ()
of x in the graph G2, over Fy are exactly the irreducible polynomials
over Fy of degree 2F, k > 0.

Proof. First we show that only polynomials of degree 2¢ can occur
in the connected component of z. If f is a vertex in G, 2,,, then
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f(o(z)) = f(x? + =) is either irreducible with degree 2 * deg f or it
has two irreducible factors whose degrees are equal to deg f, by the
corollary to Theorem 2.1. Thus, if ¢ — f, degg = 2%deg f, where
a =0 or 1. Since degx = 1 and z — x, this shows that all vertices f
in Cp2, () have degree equal to 2* for some k.

Now we show that every irreducible polynomial over F5 of degree 2*
occurs as a vertex. We will give two proofs of this fact, both of which
require the formula

k
(7) o2 (z) = 22+ x, for k > 0.

This formula is easily proved using induction.

1) First proof. Let f be any irreducible over Fy of degree 2*. A root
a of f lies in the field F,,«, and so (7) implies that 02" (o) = 0. Hence

&2 (f) = z, showing that f is in the connected component of z.

2) Second proof. First we note from (7) that for a in Fes1

8) tr (a) = 0% (a),

since the extension F k41 / F .+ is quadratic with generating automor-
k
phism (o — a2 ).

We show by induction that every irreducible polynomial f of degree
2% occurs in the component of 2. This is clear for k = 0, since z+1 — x,
and since x and x 4 1 are the only irreducible polynomials of degree 1.

Assume every polynomial of degree < 2% occurs in Cy2_,(z), and let
g be a polynomial of degree 2511, A root a of g lies in F .41, 50 0()
lies in this field, as well, and has a minimal polynomial f;(z) of degree
< 28+l Thus ¢ — f;. Similarly, 0%() is a root of some irreducible
polynomial fo(z) and g — f; — fo.

Continuing in this way, we get ¢ — f1 — fo — -+ = for, where
02" () is a root of for(z). By (8), 02" () lies in the field F,... Thus
deg for (z) < 2*. By our induction assumption, we know that fox(z) is
connected to x, and therefore g is also connected to x. This proves the
theorem. ]
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Using the corollary to Theorem 2.1, the first proof can be generalized
to give

Theorem 4.2. The vertices in the connected component Cyo_; ()
of © in the graph Ggzr»_, over F), are exactly the irreducible polynomials
over F,, of degree p*, k> 0.

The proof uses the analogue of (7) for odd primes p:

k
(9) if o(z)=2a? -z, o?" (z) = a?" -z,

which can be proved using the equation o = ¢ — 1, where ¢(z) = 2P
is the Frobenius map. Note also that £ + a — = in G, »_, for each
a=0,1,...,p—1.

The second proof of Theorem 4.1 is interesting because it gives a
layering of the elements in fields of degree 2* over F, using the map
o(z) = 2% + . The following theorem describes this layering more
precisely. We prove the theorem for the map o(z) = 2P — = over F,,
but a similar result holds for the map

o) =(¢" "+ "+ +o+1)(2)
= 42 4ot g,

which is the trace map for Fp» /F, (cf. the second proof of Theorem
4.1).

Theorem 4.3. If k > 1, the irreducible polynomials of degree p*
over F, occur in (p*) levels of Cy» (), starting wtih (p — 1)1)171071_’c
polynomials at level p*~1 41, branching to p times the previous number
in each successive level, for ¢(p*) levels. Each polynomial in the last
row of irreducibles of degree p* (at level p*) is connected to a single
irreducible of degree p*T! at level p* + 1.

Remark. The result of the theorem also holds for k¥ = 0 if p~! is
interpreted to be 0.

Proof. Recall that the level n of an irreducible polynomial g in
Cyr_z(x) is the smallest n for which a root « of g satisfies o™ (a) = 0.
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The irreducibles of degree p* don’t occur in more than ¢(p*) levels of
Cyr_z(x): this is a consequence of (9) and the formula

1 1

opk(x) =P (Upkfpkf (z)

= {o" P @y 1

— {7 (@)},

which shows that if o has degree p* over F,,, then o ") () has degree
at most p*~!. Hence any irreducible of degree p* is at most o(p*)-step

connected to an irreducible of degree < p*~!.

If £ = 1, note that all first degree polynomials are 1-step connected
to z, so that there are p — 1 irreducibles of degree p at level 2. Now fix
k > 2 and assume inductively that the first assertion of the theorem
holds for degrees < pF~1. The induction assumption implies that in
the last row corresponding to degree pF¥~! there are

(p— DpP" “= k=D pe" =1 — (p _ 1)tk
irreducibles. Moreover, all the polynomials at any level < pk=1 (=
1+ ¢(p) + -+ + (p*~1)) have the same degree (namely, < pF—1).

The last two facts imply that there must be (p— l)pl”kf1 ~k jrreducibles
of degree p* at level p*~! + 1. From the corollary to Theorem 2.1 it
follows that the total number of polynomials of degree p* in Cpr_,(z)
is at most

e(p*)—1 (p*)
k-1 . k-1_, p¥PJ)—1
(p—1p~ F E p’=(p—1)p° k'T
" p
(10) 7=0
]. k k—1
= ﬁ(pp -p’ ).

This is the maximal number possible because in the first row corre-
. k . k .
sponding to degree p”, all polynomials have degree p”, and in each row
thereafter there are at most p polynomials connected to the polyno-
mials in the next lower row. But the number in (10) is exactly the
total number of irreducible polynomials of degree p* over F,. Since
all these polynomials must occur in Cpr_,(z) (by the previous theo-
rem), and since they must all occur in these ¢(p*) levels, in fact all the



ALGEBRAIC DYNAMICS OF POLYNOMIAL MAPS 921

connections accounted for in formula (10) must occur. This proves the
theorem. o

From this theorem it is easy to determine the structure of Cypro (23 ),
where k = F,,~. This is because a vertex in Cyr_, (over F,) of degree
p® splits into p” vertices in Cy»_,(z; k), each of degree p*~", if k > r. If
k < r, such a vertex splits completely into linear factors. If f is a vertex
in Cpr_,(z) and f’ is any irreducible factor of f over x, then the level of
f'in Cpr,(z; k) must equal the level of f in Cpr_, (). Furthermore,
f — g if and only if f/ — ¢’ for some irreducible factors f’ of f and
g’ of g over k. From these remarks it follows that the edge f — g
in Cypr_, (), with deg f = p*, contributes p* edges to Cpr_.(z; k) if
0 <k <r,and p" edges if k > r. For example, the vertices with degree
1 occur in levels 0 to p” of Cypr_(z; k), while the vertices of degree p®
occur in ¢(pa*") levels, starting at level p®t"=1 + 1, for @ > 0. The
last assertion of Theorem 4.3 (except for the mention of specific levels)
remains valid over k.

Thus Theorems 3.4 and 4.3 give a complete determination of the
structure of the star-components of G, (F,), where o(z) = 2 — z.

By the last remark before Theorem 4.3, and the fact that the map o™
is linear, the roots of the polynomials at level n or less form a vector
space over F,, the nullspace of ¢. This space is the subject of the
next theorem.

Theorem 4.4. Let o(z) = 2P —x, and forn > 0 let V,, denote the set
of roots of polynomials at levels n or less in the connected component
Cor_z(z) of Go(Fp). Then V, is a vector space of dimension n over
F, and coincides with the set of solutions o in ¥, of 0" (c) = 0. The
spaces V,, give a layering (filtration; composition series)

Wwcwhc.-CcV,C---CVy

of the subfield V., of f‘p consisting of the elements which have degree
p*, k>0, over F,. The roots of polynomials at level n comprise p — 1
cosets ka+Vy_1 of Vo1, k= 1,2,... ,p—1, and are therefore invariant
under translation by elements of V,_1.

Proof. Setting o = ¢ — 1, as before, where ¢(z) = P is the Frobenius
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map, we have
o"(z) = (¢ — 1)"(2).

Using this it is easy to see that the derivative of o™ (z) is (—1)", so that
o™ (z) has no multiple roots. Hence o™ (z) has exactly p™ distinct roots,
and this proves the first assertion. The last assertion follows from the
fact that V,,_; has index p in V,. a

A similar theorem holds for any additive map with a nonvanishing z
term.

Theorem 4.3 also has the following consequence, which gives a con-
nection between Artin-Schreier theory (cf. [1]) and the graph Ggr_,
and shows how to explicitly find generators for extensions of degree p*
of finite fields of characteristic p.

Theorem 4.5. Let o(xz) = 2P — z, and let d be an integer relatively
prime to p. Then there is an irreducible polynomial f with degree d
lying in a cycle of G,. If a is the root of any polynomial at level p”
in Cy(f), the polynomial o(x) — a = P — z — « is irreducible over
F apr, and its roots generate the cyclic p-eztension depr+1 /Fpapr . For

P
the same a, the polynomial

r+k [ r k

(11) of TP (z) —a=(¢" 1) TH(z)—a

factors into irreducibles of degree p* over Fowr, so that its roots

generate the unique extension of Fpar of degree p*. The same is true
of the polynomial

(12) crpT+k71_pT+1(m) —a.

For the proof we require the following lemma.

Lemma 4.6. Let o(z) = P — x over the field F,. Let f(z) be an
irreducible factor of ®,, , of degree d prime to p. Then there are ezactly
p irreducible polynomials (all of degree d) which are 1-step connected
to f in G, one of which is a factor of ®,, and p — 1 which are not.
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The roots of the latter factors are pre-periodic, but not periodic, points
of o.

Proof. By Part I, Lemma 3.4, there is exactly one factor h(z) of ®,, ,
which divides f(o(z)), a polynomial of degree pd. Since there are p—1
linear polynomials at level 1 in Cy (), it follows from Theorem 3.3b)
that there are p — 1 irreducibles g of degree d at level 1 in C,(f) for
which g — f. (Note that k = F,, in applying Theorem 3.3.) The roots
of any such g cannot be periodic points, since otherwise g would have
to be a factor of ®, , also (o and o(«) would be roots of g and f,
respectively, and would belong to the same orbit). a

Proof of Theorem 4.5. We first demonstrate the existence of the
polynomial f. By Theorem 6.2 of Part I every irreducible polynomial
whose degree d is prime to p occurs either at level 0 (i.e., in a cycle) or
at level 1 in Gyr_,. In fact there are always irreducibles of degree d in
cycles of Gzp_,. For if g is at level 1 and has degree d, then g — f for
some f at level 0 with deg f | degg. Since deg f is prime to p, Lemma
4.6 implies that d = degg = deg f.

Now we appeal to Theorem 4.3. This shows that if « is the root of any
polynomial at level p” in Cypr . (), the polynomial o(z)—a = 2P —z—«
is irreducible over F,,-, and its roots generate the cyclic p-extension
F e /Fper. Furthermore, if o is the root of any polynomial at level
p", the roots of (11), which are roots of polynomials at level p"*+*,
must have degree p* over F .+ so that (11) must factor over F,,~ into
irreducibles of degree p*. The same is true of the polynomial (12), as
can be seen by considering roots of polynomials at levels p"+t*~1 4 1
and p” in Cyr_z ().

But by Theorem 4.3b), the component C(x) is isomorphic to C%(f),
in such a way that a vertex g in CX(z) corresponds to a vertex h in
Cx(f) for which degh = deg f *deg g = ddeg g. This isomorphism pre-
serves levels, by the corollary to Theorem 3.3. Thus the considerations
of the preceding paragraph also apply to the graph C,(f;F,) and to
the polynomials (11) and (12) over the field F -, where o is a root of
a polynomial at level p” in C,(f). This proves the theorem. O

5. The graph G, for o(z) = 2? +z: the connected component



924 A. BATRA AND P. MORTON

of . The dynamics of the map xP — = are such that all the irreducible
polynomials over F), whose degrees are powers of p lie in the connected
component of x; the roots of these polynomials are therefore pre-
periodic with respect to o. In this section we consider the map

(13) o(z) =P + x, p an odd prime.

The first result says that the irreducibles over F, of degree p¥ lie in
cycles of G, and have roots that are always periodic points of o. (For
the results of this section see also [2].)

Theorem 5.1. If a has degree p* over F,, then a is a periodic point
of o(z) = xP + = with primitive period np*, where n is the order of 2
modulo p.

Proof. We note first that

k

(14) of (o) = (¢7pk +1)(a) =a+ o =2q,

where ¢(z) = 2P is, as before, the Frobenius map. It follows that « is a
periodic point of o with primitive period d dividing np*. Furthermore,
(14) implies that « has primitive order n with respect to the map oP".
Let d = mp", with m|n and r < k. Then a is a root of ®,,,r »(z), and
therefore also a root of

@, o (2) = [ [ Pinpr,o (@)
i=0

(See [6], Lemma 3.2] and [3, equation (12)].) By Part I, Theorem 4.4,
applied to the map o?" (x) = 2%+z with ¢ = pP", the irreducible factors
of @, ,»~ () have degrees which are divisors of ¢° —1 over F,, where e is
the order of ¢ mod m. Hence the degree of o over F,, divides p"(¢°—1),
which implies that r = k by the assumption that degr,a = p*. Since

a has primitive order n with respect to the map Upk, it now follows
that m = n and the theorem is proved. ]

The next lemma is a first step toward understanding the structure of
the connected component C,,(z) in the graph G,.
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Lemma 5.2. The complete factorization of the polynomial 9 + x
over F, is

(15) itz =zx H(xzfa),

aty?

where the product is over all the nonsquares o in F.
Proof. 1t is clear that the right side of (15) divides the left side, since
\/a(qfl) —olan/2 - 4

for all o in F; which are not squares. Since both sides have the same
degree their equality follows. a

In terms of the graph G, over F, where o(z) = z” + z, Lemma 5.2
says that the polynomials at level 1 in C,, (z) are the binomial quadratic
polynomials 22 — «. A similar assertion holds for the components of
other linear polynomials:

Lemma 5.3. For a in F,, there are (p —1)/2 polynomials at level 1
in C,(z—a), all of which are quadratic. Furthermore, every irreducible
quadratic over Fp, occurs at level 1 in C,(x — a) for some a.

Proof. By Theorem 5.1, © — a lies in a cycle of G, whose length is n,
the order of 2 modulo p. Hence 0(2" 1a) = a implies that

o(zr) —a=o(z—2"""a)

factors the same way that o(z) factors. Thus Lemma 5.2 implies
the first claim. The second claim follows from counting the number
of quadratic polynomials we have just determined: this number is
p(p — 1)/2 = (p* — p)/2, which is the total number of irreducible
quadratics over Fy,. ]

In order to understand the structure of C,(z), it turns out that we
need to simultaneously determine the structure of all the components
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C*(f), where f is a polynomial of degree p*, k > 0. The next theorem
describes the first p* levels of C*(f), and generalizes the last lemma.

Theorem 5.4. Let f(x) be an irreducible polynomial of degree p*

over Fp,. In levels 1 to p* of CX(f) there are (p”k —1)/2 polynomials,
all of degree 2p*.

Proof. We first consider the connected component C}(x — o; Fy),
where ¢ = p?" and « is one of the p* roots of f(z) (lying in F,). The
vertices in levels 1 to p* of this component are factors of o?" (z) — a.
By (14) we have that o?" (2" la) = a (n = order of 2 mod p), and
because o?" is linear over F, we have

o (z) —a= o?" (z — 2" La).

On the other hand o®" (z — 2" 'a) factors the same way over F, as

does o*" (z) = 27 + . Lemma 5.2 shows that o (z) — « factors into
one linear polynomial (z — 2" 'a) and (¢ — 1)/2 irreducible quadratic
polynomials over F,. Hence

pk

(16) F0” (@) = [](e"" (2) — )

i=1

has p* linear and p*(q — 1)/2 quadratic factors over F,. It is clear
that the linear factors are all distinct. Since f lies in a cycle of G,
the product of the linear factors must be an irreducible polynomial
of degree p* over F,. Furthermore, the other irreducible factors of
f (0”’c (z)) must have degrees which are divisible by p*, since they are
connected to f in G,. Equation (16) and the above discussion show
that these factors must also have degrees which are divisible by 2. Since
their roots have degree 2 over F,, these factors must all have degree
equal to 2p*.

Now f lies in a cycle whose length 7 divides np* by Theorem 5.1. Let
this cycle be
f:fr_>fr—1_>"'_>fl_>fa
where subscripts are to be read modulo r (thus f = f. = fy). All of the
polynomials in this cycle have degree p*, so the foregoing discussion
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applies to all of them. Thus fi(apk (z)) factors the same way that
F(oP" (z)) does.

Clearly f(o(z)) is f1 times the product of the vertices at level 1 in
Cx(f), f(o?(x)) is fo times the product of the vertices at level 1 in
Cx(f1) times the product of the vertices at level 2 in C(f), and in
general, f(o'(z)) is f; times the product of the vertices at level i — j in
Cx(f;), as j ranges from 0 to 1.

Since for all j, f; (Upk (z)) is a product of a single irreducible of degree
p* times a number of irreducibles of degree 2p*, it follows that all of
the polynomials in C*(f;) at levels 1 to p* must have degree 2p* for
any ¢. In particular, all of the star components C%(f;) are isomorphic
to each other up to level p* (this would also follow from Theorem 3.4)
so the number of irreducible factors of f(ap’e (x)) of degree 2p* is equal
to the number of vertices in C*(f) in levels 1 to p*. The first part
of the proof shows that this number is (¢ — 1)/2, and this proves the
theorem. o

To determine the structure of C*(z), we shall inductively determine
where in G, all the polynomials of degree 2p* are located. The last
theorem accounts for (ppk —1)/2 of these polynomials in the connected
component of each irreducible of degree p*. Since the number of
irreducibles of degree p* is (p”k —p”kil)/pk, this accounts for a total of

B Do) =

k—1

k k—1
,pP +pP )

polynomials. As is well known, the total number of irreducibles of
degree 2p* is

1

1 k— k k—
N(2p’“;Fp)=§(p2” —p® —pP 4P ).

(See [5] or [3, equation (4)].) Thus there are

1 k k—1 k—1
2]7(10’7 )
polynomials still to locate. We shall show that these remaining poly-
nomials are all factors of the polynomial
(17) hi(z) = (6" —1)00*®)(2),  k>1

)
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where ¢(z) = 2P and ¢ denotes the Euler p-function.

Lemma 5.5. An element a of ﬁ‘p is a root of hi(z) if and only if
al+a €F ,x1, where g = p”k. Further, hy(z) has no multiple roots.

Proof. From (17) we have

hi(z) = (67" —1) 0 (¢*" " +1)00*@)(z)
=" Do+ )P o (p+ 1) ()
= (¢"" "~ o(p+ 1) ()
= (¢" " —1)0 (29 + ).

It follows that « is a root of hg(z) if and only if a? 4+ « is fixed by
#*" ™", which is the case exactly when a? + a € |

The fact that hy(z) has no multiple roots follows from hj(z) = —1,
which can be easily checked using the last equation. u]

We now prove

Theorem 5.6. (a) For k > 1, the irreducible factors of hi.(z) consist
of all the irreducible polynomials whose degrees divide 2p* 1 and

L (pp’“+p

2pk

k—1 k—1

- )

irreducible polynomials of degree 2p*.

(b) For k > 1, the polynomials of degree 2p* occur in levels p*~1 +1
to p* of the connected components of irreducibles whose degrees divide
p*=1, and in levels 1 to p* of the irreducibles of degree p*. Moreover,

these levels consist entirely of polynomials of degree 2pF.

(c) Let f be irreducible with degf = p", 0 < r < k— 1. Then at
level p*=1 + 1 of CX(f), the first level at which polynomials of degree
2% occur, there are ezactly

i —1
(18) prep ok <pT>
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irreducibles of degree 2p*.

Proof. We first prove parts (a) and (b) together by induction. For
general k note that all the irreducible polynomials g whose degrees
divide 2pF~! are factors of hg(z). This is clear from Lemma 5.5 since
a root a of g either lies in the field Fppk:—l = F, or is quadratic over

this field, and since 4" + a(q = ppkfl) is the trace of a to F, in the
latter case.

We next check the case k = 1 of (a). We consider the roots a of hy(z)
which are not linear or quadratic. By Lemma 5.5, o?” + a = o?(a)
lies in Fj,. This shows the minimal polynomial g of « is at most p-
step connected to a linear polynomial, and therefore at most p — 1 step
connected to a quadratic polynomial by Lemma 5.3. It follows that 2
divides deg g = deg a. Furthermore, deg o divides 2p, since

o’ — o= (app + a)pp — (ozpp +a)=0
(a?” +a is an element of F, C F,»). Hence deg o = 2p. It follows that
the number of irreducible factors of hq(z) of degree 2p is

i —p? 7i p+1 _ 2
2p(deghl(ﬂ«“) p)—2p(p P°),

proving (a) for k = 1.

Now consider (b) for & = 1. The last argument shows that there
are (pP*1 — p?)/2p irreducibles of degree 2p above linear components
Cy(x—a), and these occur in levels 2 to p. Since the linear components
Cy(x — a) are all isomorphic (either by Theorem 3.4 or the argument
in Theorem 5.4), there are (pP~* — 1)/2 of these polynomials per
component. By Lemma 5.3 and Corollary 2.3 (with K = F 2 and d = 2)
there must be (p — 1)/2 polynomials of degree p at level 2 in C;(z — a),
and then each vertex at level ¢ must be connected to p vertices at level
i+ 1 (for 2 <i<p-—1), in order for the total number of polynomials
of degree 2p to be (pP~! — 1)/2; this is because

-
e

-1
(19) E=tpte 49
(This argument is similar to the argument used in Theorem 4.3.) This

shows that all of the vertices at levels 2 to p in Cy(2 — a) have degree
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2p. (Alternatively, any polynomial g in C,(z — a) at a level between 2
and p must be a factor of hi(z) by (17), since g is no more than p — 1
step connected to a quadratic polynomial at level 1. This implies that
deg g has to be 2p.) The other assertions of (b) for k = 1 follow from
the case k = 1 of Theorem 5.4.

Now assume that both (a) and (b) hold for k£ — 1 in place of k, where

k > 2. Consider (a) first. By the remarks at the beginning of the

proof, all the irreducible polynomials g whose degrees divide 2p*~! are

factors of hy(x). Let a be a root of hi(z), and assume that the degree

k—1

of a does not divide 2p¥~1. By Lemma 5.5, a? + a = o () lies in

F,, where ¢ = ppkfl. This shows the minimal polynomial g of « is at
most p*-step connected to a polynomial of degree p*~!, and therefore
at most (p¥ — p*~!)-step connected to a polynomial of degree 2p*F—1,
by part (b) (for k — 1). It follows that 2pF~! divides degg = dega.
Furthermore, deg o divides 2p*, since

p2pk pk ok ok
o —a=( +a)f —(a? +a)=0

k
(a?” + a is an element of F -1 CF ). Hence dega = 2pk. Tt
follows that the number of irreducible factors of hy(z) of degree 2p* is

1 k
)=Z;@Pﬂ

1 k-1 k-1 k-1
= 2Pj(deg hi(z) — p°P -p* ),

proving (a) for k.

Vi

Now we turn to the proof of (b) for k. The last argument shows that
there are vy, irreducibles of degree 2p* above components C, (f), where
deg f divides pF~', and these occur in levels p*~1 4 1 to p*. Note also
that any polynomial which lies in one of these levels is a factor of hy(x),
by its defining formula (17), and by the induction assumption (part b).
Thus all of the polynomials in one of the levels p*~! + 1 to p* must
have degree 2p*. The rest of part (b) follows from Theorem 5.4.

To prove part (c), let » > 1 be fixed. The first step of the induction is
k = r+ 1. By Theorem 5.4 there are (p?" — 1)/2 polynomials of degree
2p" in levels 1 to p” of C%(f). Each polynomial at a level between 1 and
p" — 1 must branch to p polynomials at the next level, by Corollary 2.3.
If s denotes the number of polynomials at level 1, then the equation

_ -l

s(l+p+-—+p7 1) 5
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implies that s = (p — 1)/2. Hence, there are

r —1 k—1 _]_
pr—-1(P _ o k(P
() = ()

polynomials at level p” + 1 = p*~! + 1. If the formula (18) holds for
k — 1, then there are

p" ,pw(p’“_l)*lpp’“_zf(kfl) (P;1> =p" .pp’“_lfk (p;l)
2 2

k—1 1

irreducibles of degree 2p at level p*~!, and therefore the same
number of polynomials of degree 2p* at level p*~! 4 1. This completes
the proof. ]

We summarize the result for C,(z) separately.

Theorem 5.7. Let o(z) = 2P + z. The structure of C,(z) can be
described as follows: there are (p — 1)/2 quadratic polynomials at level
1 in Cy(z). At level p*~1 + 4, for k > 1 and 1 < j < ¢(pY), there
are ppkil’kﬂfl((p —1)/2) polynomials of degree 2p*. Thus all of the
polynomials in Cy(z) have degree 1, 2 or 2p*, and all polynomials at a
given level have the same degree.

By Theorem 3.4, the results of Theorems 5.6 and 5.4 completely de-
termine the structure of all of the fundamental components C} (z; F pr),
since the latter two theorems describe the structure of C%(f), where
deg f = p". Thus we have determined the structure of the graph
G-(Fp2), up to knowing cycle lengths. (Note that each vertex f in
G (F,) contributes 1 or 2 vertices to G, (F2), according to whether
deg f is odd or even. See the paragraph following Theorem 4.3 and
Corollary 2.3.) The results of this section also give an independent
proof that C*(f;) is isomorphic to C%*(f2) whenever deg f; = deg fo =
p.

Note added in proof. There is a slight error in the statement of the
Reciprocity theorem (Theorem 6.3 and its corollary) in [3]. The word
“roots” should be replaced everywhere in these results by “primitive
roots”.
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