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ON SOME INEQUALITIES INVOLVING (n!)!/™

HORST ALZER

When investigating a conjecture on an upper bound for permanents of
(0, 1)-matrices, H. Minc and L. Sathre [2] (see also [1]) obtained several
inequalities involving f(n) = (n!)'/"~the geometric mean of the first n
positive integers. One of their results is

Theorem A. Ifn > 1 is an integer, then

f(n+1) 1

1 l<—/——7<1+—-.

W Fn) n
Another one, “probably the most interesting ..., and certainly the

hardest to prove” [2, p. 41] is

Theorem B. If n > 2 is an integer, then

f(n)

fin+1)
fln—1)

(2) 1<n 7(n)

—(n-1)

The aim of this note is to establish sharpenings of inequalities (1)
and (2). We present a lower bound for the difference on the right-hand
side of (2) which is greater than 1. Furthermore, we give an answer to
the question: What is the largest real number o and the smallest real
number 3 such that

a f(n+1) B
1—i_n—i-lg f(n) <1+n+1

is valid for all integers n > 17

First we provide a monotonicity theorem.

Received by the editors on December 10, 1992.

Copyright ©1994 Rocky Mountain Mathematics Consortium

867



868 H. ALZER

Theorem 1. The sequence

nH(n—i—l)f(n—i_l)—n f(n) n=23,...,

f(n) fln—1)’

is strictly decreasing and converges to 1, if n tends to oco.

Proof. Our proof is modelled after the one given by Minc and Sathre
[2] to establish inequality (2). Let f(z) = T'(z+1)/*, 0 < x € R; first
we show that the function

IPRVICES)
P(x)=(z+1) @
is strictly concave on [21,00). We set
_fetl) an z) = zg(x

Then we have
P(z) = h(z) + g(2).
Differentiation leads to

(3) zP"(z) = (z + D" (z) — 24 (z).

Our aim is to show that P”(z) < 0 for z > 21. A simple calculation
yields
g'(z) = g(x)F(x)

and
W' (z) = g(x)[F(2) + 2F*(x) + H(z)]
with
F(z) = %bgf(w +1) — %
N 1 log(z+1)
(z+1)?  (z+1)?
and
3z +1 42 + 3z + 1
H(z) = mw(w—i— 1) - Wlogf(m +1)
Y+l 221 N m_lslog(x+1).

z+1 (x+1)2  (z+1)
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From (3) we conclude that we have to show that the function

z+1

o [F(2) + 2F(z) + H(x)]

(4) Q(z) = F(z) -

attains only positive values for z > 21. In [2] it is proved that the
inequality

2 2 —log(27) — log(z + 1) 1
(5) F(z)+zF°(z)+ H(z) < CESE + "

is valid for > 3. From (4) and (5) we obtain for z > 3:

2(2 1
2(z +1)2Q(x) > —log(x + 1) + % logT'(z + 1)
2(z+1) (z+1)3
— Tw(m +1) - s + log(27).
An application of
Yy <logly) — 5o, y>1
Y ogly 2’ Y )

and

log'(y) > (y — 1/2) log(y) — y +log(27)/2,  y>1,

(see [2]) yields for z > 3:

2:2Q(x) > log(2m(z + 1)) — 5 + 207 — 1
Hi T T\ — —_— .
8 z(z+ 1)2
Let )
2z —1
= log(2 1) -5+ — .
G(z) = log(27m(z + 1)) 5+m(m+1)2
From
2*(z+1)°G'(z) =2* + 32 + 3z +1>0
and

G(21) =0.015. ..
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we get G(z) > 0 and Q(z) > 0 for > 21. Hence, P is strictly concave
on [21,00), so that the inequality

(6) P(I;W) o P(x);rp(y)

holds for all real x and y with z,y > 21 and = # y. Setting z =n —1
and y =n+1 (22 < n € Z) we obtain from (6):

fln+1) f(n) f(n+2) fln+1)
7) (n+1 —n > (n42) 02 A
N [ I T e R TR (n)
that is, a(n) = (n + 1)f(n + 1)/f(n) — nf(n)/f(n — 1) is strictly
decreasing for n > 22. For 2 < n < 21 we get (7) by direct computation.
The approximate values of a(n), n = 2,3,...,22, are given in the
following table:

—(n+1)

n a(n) n a(n)
2 1.0262 12 1.0032
3 1.0175 13 1.0029
4 1.0128 14 1.0026
5 1.0099 15 1.0024
6 1.0080 16 1.0021
7 1.0066 17 1.0020
8 1.0055 18 1.0018
9 1.0048 19 1.0017
10 1.0041 20 1.0015
11 1.0036 21 1.0014
22 1.0013

This implies that a(n) is strictly decreasing for all n > 2.

Next we prove lim,,_, a(n) = 1. Let

b(n) = (% - 1) (n+1).

From the second inequality of (1) we get
(8) b(n) <1+1/n.
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The inequality
z — 1> log(x)

holds for z > 1. If we set z = f(n+ 1)/f(n), then we have

f(n+1) o n+1
)

Since lim,, oo (n+1)/f(n) = e, we conclude from (8) and (9) that b(n)
tends to 1, if n — oco. Thus,

9) b(n) > (n+1)log

a(n) —1=0b(n) —b(n—1) =0, if n — oo.

This completes the proof of Theorem 1. ]
An application of Theorem 1 leads to a refinement of inequality (2).

Theorem 2. Let n > 2 be an integer. Then we have

fin) _ fln+1)

1<1+ -
w0 fo-1) )
I LURE\ BN ()
F(n) fin—1)

Proof. The second inequality of (10) is an immediate consequence of
Theorem 1. Using the arithmetic mean-geometric mean inequality we
obtain

n—1 n—1
1 . 1/ (n—
— E log(i) = log H 3t/ (n=1)
i=1 i=1
glog(n_1 g > log—

From (14 1/n)™ < 4 we conclude

(11)

2
(12) logg <z 5 log(n) — glog(n +1),
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so that (11) and (12) yield

n+2

n—1
2 1
_— log(z —1 - —1 1
2 1) gj 08(0) < L1y 08 — g los(n+ 1),

which is equivalent to the first inequality of (10). o

Remark. The left-hand inequality of (10) states that f(n), n =
1,2,..., is strictly logarithmically concave.

A second application of Theorem 1 provides sharp upper and lower
bounds for the ratio f(n+1)/f(n). The following refinement of double-
inequality (1) is valid.

Theorem 3. The inequalities

o <f(n+1) i+t B

(13) 1—i_n—i-l_ f(n) n+1

hold for all integers n > 1 if and only if « < 2(v/2—1) = 0.828... and
B=>1.

Proof. At the end of the proof of Theorem 1 we have shown that

b(n) = (% - 1> (n+1)

tends to 1, if n — co. From
0<a(n)—1=b(n)—>bn-—1), n=2.3,...,
we conclude that b(n) is strictly increasing. Hence we get
2vV2-1)=b(1) <b(n) <1, n=12,...,

which is equivalent to (13) with o = 2(v/2 — 1) and 8 = 1. u]
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