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REPRESENTATIONS OF ARCHIMEDEAN
RIESZ SPACES—A SURVEY

WOLFGANG FILTER

0. Introduction. Representation theorems play an important role
in many mathematical disciplines. They provide us with more concrete
descriptions of abstract mathematical objects like functionals, opera-
tors, spaces equipped with algebraical, topological or order structure.
From the philosophical point of view, these descriptions help us to bet-
ter understand the objects they deal with, and from the methodological
point of view, they are a useful tool for getting new and reproving old
results. The goal of this paper is to give a survey of representation the-
orems in the theory of Archimedean Riesz spaces (or vector lattices).
For representations of non-Archimedean partially ordered vector spaces
and Riesz spaces, see e.g., [217, 6, Chapter 2; 88, 174, 141, 178,
126, 66]. Earlier surveys, only partially covering the material pre-
sented here, were given by Goullet de Rugy [73], Hackenbroch [77] and
Wickstead [211].

The material is organized as follows: In Section 1 we collect important
properties of Stonian spaces, since those spaces play an outstanding
role in representation problems. Sections 2 and 3 are concerned with
representations of “abstract” Riesz spaces, i.e., Riesz spaces which are
not necessarily equipped with a compatible topology. In Section 4 we
deal with Banach lattices, and finally, in Section 5, with Orlicz lattices.

In most cases, we will give only the main ideas of the proofs. Hence
the word “proof” in this paper has to be read “sketch of proof.”

We assume the knowledge of the fundamentals of Riesz space theory,
including its terminology, as presented in Sections 1-3 of [5].

Throughout the paper, L denotes an Archimedean Riesz space.

For later reference, we want to fix some notation.

For u € L, we denote by L,, the ideal of L generated by wu.
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L is called laterally complete if for each disjoint system from LT the
supremum exists in L.

L is called universally complete if it is Dedekind complete and
laterally complete. A universally complete Riesz space M is called
a universal completion of L if L can be embedded order densely into
M, i.e. there exists an injective Riesz homomorphism from L onto an
order dense Riesz subspace of M. (Recall that order dense embeddings
are useful because they preserve arbitrary suprema and infima.)

Following [127], we denote by I'(L) the extended order continuous
dual of L; thus if we put

® := {I : I order dense ideal of L},

then

rir) =,

Ic®

where £ € I and n € J; are identified if they coincide on their
common domain I NJ € &, and where algebraic and order structure
are defined using representatives. According to [127; 1.5], I'(L) is a
universally complete Riesz space, which contains L) as an order dense
ideal provided L, separates L [127; 1.3]. This result was already
obtained by Ermolin [49].

. =X
For functions f,g € R~ we set

{f <gt={zcX:f(x) <g(a)}

and use other abbreviations of the same type.

The characteristic function of a set A is denoted by 14, or by 1% if
it is necessary to specify the underlying space X.

For a Hausdorff space X, we write

C(X):={f € R* : f is continuous},

Cy(X) :={f € C(X) : f is bounded},

Ce(X):={f € C(X) : supp f is compact},
C(X,R):={f¢ R f is continuous},

Coo(X) :={f € C(X,R) : {|f| # oo} is dense}.
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C(X), Cp(X) and C,(X) are Riesz spaces under their natural (i.e.
pointwise) ordering.

We write £(X) for the family of compact subsets of X and (X))
for the family of open subsets of X, and we denote by B(X) the o-
algebra of Borel subsets of X, i.e. the o-algebra generated by U(X);
further B.(X) stands for the d-ring generated by K(X), i.e. the family
of relatively compact Borel subsets of X.

For a ring R of subsets of a set X, we denote by M () the Dedekind
complete Riesz space of real-valued measures on R, i.e. the set of
countably additive maps from PR to R with locally finite variation (cf.
[129; 25.3]).

Given u € M(R)™, there exist a o-algebra 2 of subsets of X (namely
the set 2 of locally PRg-measurable subsets of X, i.e. A € 2 if and only
if ANB € R for all B € M) and a unique Rs-regular measure
' 2 2A — [0, 00] extending p (here Rs denotes the §-ring generated by
R); see [112; Theorem 4] or [34; 5.4.15, 5.4.6, 5.4.17]. Therefore we
can assume, when needed, that the measure p is defined on the whole
of 2.

We want to stress that our notion of integral is the one using the
concept of “locally negligible sets” (see [34]), as it is used in Bourbaki’s
construction of the “essential integral” on locally compact Hausdorff
spaces [22], or in [84].

We write L°(p) for the Riesz space of equivalence classes modulo p-
null sets of the real-valued p-measurable functions (with p extended
as above). The measure yu is called localizable if L°(u) is Dedekind
complete [84; Chapter I, Section 8]; in this case, L°(u) is automatically
universally complete [5; 23.24].

A positive regular measure on a Hausdorff space X is a measure pu
defined on a ring of sets 78 D K(X) such that

u(A) =sup{p(K): K € K(X),K C A}

for all A € R. In this situation, p’ is K(X)-regular [34; Exercise
5.2.16(6)]. Each positive regular measure on a locally compact Haus-
dorff space is localizable (even strictly localizable); see [84; Chapter I,
Sections 8,9].

1. Stonian spaces. Let X be a Hausdorff space. Denoting by U(X)
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the neighborhood filter of z € X, we set, for f € EX:

foup(z) :=limsup f(y) := inf sup f(y)

y— Vel(z) yev
fot() = liminf f(y) = sup inf f(y)
y—ez VeD(z) yeV

fsup is upper semicontinuous, fins is lower semicontinuous.

Proposition 1.1. Let X be completely reqular such that Cy(X) is
Dedekind complete. If f : X — R is lower semicontinuous, then feup
is continuous, and {fsup # f} is meager.

Proof. Applying the arctan-function we may assume f to be bounded.
Observe that f is the pointwise supremum of G := {g € Cy(X) : g < f}.
Denoting by f’ the supremum of G in C(X) and setting A, := {f'—f >
1/n}, we find f' = f on X\ UA,, and f' = fsyp. o

A completely regular Hausdorff space X is called Stonian (or ex-
tremally disconnected) if U is open for all U € {(X), or equivalently,

if F'is closed for all closed subsets F' of X.

Stonian spaces were first considered by M.H. Stone [166, 167] and
H. Nakano [145]. One should not confuse Stonian spaces with Stonian
representation spaces of Boolean algebras; such representation space is
Stonian if and only if the Boolean algebra is Dedekind complete [129;
47.5].

The Riesz space description of Stonian spaces is as follows:

Theorem 1.2. The following are equivalent whenever X 1is a
completely regular Hausdorff space.

(a) X is Stonian;
(b) C(X) is Dedekind complete;
(¢) Cu(X) is Dedekind complete.

Proof. (a) = (b). Let f, 1< g in C(X). Setting f(z) := sup f,(z) for
all z € X, foup is continuous (since {foup > a} = U{f > a+1/n} is
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open for all & € R), and thus f, 1 feup in C(X).
(¢) = (a). Proposition 1.1 for f = 1y. o
We conclude that the Stone—Cech compactification of a Stonian space

is Stonian.

An important extension property is contained in

Theorem 1.3. If U is a dense open subset of the Stonian space X
and if f € Co(U), then there is a unique g € Coo (X)) with glu = f.

Proof. Apply Proposition 1.1 to fi, where
f(z) ifeeU

—00 otherwise. |

fi(z) 12{

In arbitrary Hausdorff spaces, it is in general impossible to define an
addition in Cs(X), although scalar multiplication and order structure
are naturally given:

(af)(z) = a f(z)
[<g:<= f(z) <g(xr) forallze X.

But

Theorem 1.4. Let X be Stonian. Then Coo(X) is a universally
complete Riesz space, where the addition is defined as follows: For
f,9 € Cxo(X) there is exactly one h € Coo(X) such that f(z) + g(x) =
h(z) for all z € {|f] < 0o} N {|g] < x0}; we put f+ g :=h.

Proof. All assertions follow easily from Theorem 1.3, except for the
Dedekind completeness; for this, let 0 < f, 1< f in Co(X), and set
U = {f < oo}. Since Cp(U) and Cy(X) are Riesz isomorphic by
Theorem 1.3, U is Stonian, and therefore there exists g := sup f,|y in
C(U). Now apply Theorem 1.3 again. o

Algebraic and order properties of the set Coo(X), for X a compact
Hausdorff space, were studied by Veksler, Zaharov and Koldunov
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[190]. For Stonian X, the spaces C (X )—which are highly important
in representation theory—were studied, e.g., by Dikanova, Koldunov,
Lozanovskil, Pinsker, Veksler, Vulikh, and the author (see, e.g., [38,
39, 40, 99, 102, 184, 52, 53] and others). For instance, a result of
Pinsker states that under the assumption of (CH), if C'»,(X) has the
diagonal property [129; p. 83] (where X is a compact Stonian space),
then X is a Souslin space [94]. Vladimirov proved that this assertion
cannot be derived in ZFC [192]; see also [19].

We now turn to measure theory in Stonian spaces. This theory was
developed by Dixmier [41].

The measures playing the decisive role in Stonian spaces are the so—
called normal measures. Let 4 € M(R) be a regular measure on a ring
of sets R D R(X), where X is a Hausdorff space. The measure 4 is
called normal if the map

Co(X) =R,  fr=>[fdlp|

is order continuous.

Proposition 1.5. For a positive regular measure p on a locally
compact Hausdorff space X, the following are equivalent:

(a) p is normal,
(b) u(K) =0 for all K € R(X) with K = &;
(c) p(A)=sup{u(U):U C A, U open} for all A € R.

Consequently, each meager set is a p-null set provided p is normal.

Proof. (a) = (b). Let F :={f € Co(X) : f > 1g}. Then F | 0 in
C.(X). Hence [ fdu | 0, where f runs through F, and thus u(K) = 0.

(b) = (a). Let f, } 0in C.(X), and set f(z) := inf f,(z) for all
z€X. Fora>0,K:={f >a} € A&(X), and K = @. Hence f =0
p-a.e. and thus, using Dini’s Theorem, [ f, du — 0. O

For the rest of this section, let X be a locally compact Stonian space.
Then
R(X) := {KAN : K open—compact, N meager}
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is a §-ring containing K(X) (since K = IO(A(K\I%)) and thus containing
also the é-ring generated by £(X), namely B.(X) (cf. [93, Chapter X,
Section 2]).

In view of Proposition 1.5, (X)) is a suitable domain for the normal
measures. We set

M(X) := {p: p is a normal regular measure on R(X)}.

Proposition 1.6. Let p € M(X), let f € R be u-measurable, and
let A C X be u-measurable. Then

(a) f = fsup = finf = (fsup)inf = (finf)sup H-a.€. (observe that
(foup)int and (finf)sup are continuous);

o ° o

b) A=A=A=A=A p-ae

Proof. (a) Let K € R(X). By normality and Lusin’s Theorem, there
exist open-compact mutually disjoint sets K, such that K\ U K, is
p-null and fluk, is continuous. Thus f = feup = finf = (fsup)int =
(finf)sup on UK, hence p-a.e. on K. Since K was arbitrary, all is
proved. a

Corollary 1.7. If u € M(X) and suppp = X, then L°(u) and
Cwo(X) are canonically Riesz isomorphic. O

Corollary 1.8. For u,v € M(X)™", the following hold:

(a) p(A) =sup{u(K) : K open-compact, K C A} for all p-integrable
(b) supp p is open—closed,

(c) suppinf(y,v) = supp pu N supp v;

(d) pu < v <= supppu C suppv.

Proof. (b) X\ supp p is an open p-null set.

(c) For p L v and supp p, supp v compact, the claim follows from
the Hahn decomposition theorem; then the general case can be derived
from this. ]
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X is called hyperstonian if U,¢c aq(x) supp p is dense in X, or equiv-
alently, if (C.(X));’ separates C.(X). Not every Stonian space is hy-

n
perstonian (see the example following Proposition 2.7).

The following will be useful for uniqueness considerations.

Theorem 1.9. Let Y be another locally compact Stonian space. In
each of the following cases, the Stone-Cech compactifications X and
BY are homeomorphic:

(a) There exist an order dense Riesz subspace L of Coo(X) and an
order dense Riesz subspace M of Coo(Y') which are Riesz isomorphic.

(b) There exist p € M(X) and v € M(Y) with suppp = X,
suppv = Y and order dense Riesz subspaces L of L°(u) and M of
L°(v) which are Riesz isomorphic.

(¢) X andY are hyperstonian, and M(X) is Riesz isomorphic to
M(Y).

Proof. (a) The isomorphism extends to an isomorphism of the
generated ideals L; and M;. Then observe that each f € Coo(X)T
can be written as the supremum of a disjoint family of elements of
LT [5; 23.15] to obtain that Coo(X) and Cwo(Y) are Riesz isomorphic.
Hence Coo(8X) and Cso(BY) are Riesz isomorphic by Theorem 1.3,
and since multiplication by an invertible element of Ci,(8X)T is an
isomorphism, one can assume lgx — lgy. Since the Boolean algebra
of all bands of C (8X) [129; 22.7] and the Boolean algebra of all open-
compact subsets of BX are isomorphic, it follows that X and 8Y are
homeomorphic.

(b) follows from Corollary 1.7 and (a).
(c) In order to apply (a), it is enough to show that (M(X)); is

n

isomorphic to Coo(X) N (Nuem(x)L (1)), where the isomorphism is
given by the formula f — &, with

€)= fdu for all p € M(X)

(see [33; 1.6.1]; his proof is reproduced below).

Let £ € (M(X))y, £ > 0, and fix a maximal disjoint system (p,) of
M(X)T. For each ¢, there exists, by the Riesz-Kakutani representation
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theorem, v, € M(X)* such that supp v, C supp p, and
E(h-p,)=[hdy, forallhe C.(X).

By the Radon-Nikodym theorem and Corollaries 1.8(d), 1.7, there is
f. € Coo(X) N LY (p,) with supp f, C supp ., and

Eh-w,)=[hf du, forall heC.(X).

Let 0 < g < p1,. Then p = g- pu,, with g € Co(X), and since C.(X) is
order dense in C, (X), we get

E(p) = [gf dp, = [ f.dp.

Now let f be the unique element of Coo(X) with f = f, on suppp,
for all v (Theorem 1.3). Then f € Nyepq(x) L (1) and

&(p)=[fdp for all p e M(X). O

It is well known that two compact Hausdorff spaces X,Y are home-
omorphic provided that C(X) and C(Y') are Riesz isomorphic [162;
Chapter II, Corollary 2, p. 104]. Also (c) is known to hold for compact
hyperstonian spaces X,Y [162; Chapter II, 9.2].

For detailed information on normal measures, see e.g., [62, 182, 64,
114, 115]. Confer also [188, 121, 33 and 61].

2. Representations of Archimedean Riesz spaces as spaces
of continuous functions. Since the spaces C, (X) are Archimedean,
only Archimedean Riesz spaces can be embedded Riesz isomorphically
into such spaces.

We start with the fundamental Maeda-Ogasawara-Vulikh representa-
tion theorem which we shall refer to in the sequel as “MOV.” Its exis-
tence part is due to Maeda and Ogasawara [133] and, independently,
to Vulikh ([195]; see also [198, 199]). The uniqueness assertion is
contained in [94].

The proof presented here is taken from [129] and follows the original
proof given in [133]. Other proofs can be found in [163; Section 26.2]



780 W. FILTER

or in [66]; Semadeni’s proof is based on the Kakutani-Kreins Theorem
4.5, while Fleischer’s proof uses Carathéodory’s “place functions” (cf.
also Remark 3 following Proposition 2.7).

Theorem 2.1 “MOV.” Given an Archimedean Riesz space L,
there exist a compact Stonitan space X and a Riesz tsomorphism T :
L — Cu(X) onto an order dense Riesz subspace of Coo(X); if S :
L — Cw(X') is another isomorphism of this kind, then there ezxist a
homeomorphism 7 : X — X' and f € Coo(X)T with supp f = X such
that (Su) o = f - (Tu) for allu € L.

Each pair (X,T) with the above properties will be called an MOV-
representation of L. Furthermore:

(a) The element u of L is a discrete element (or atom) of L if and
only if supp Tu is a singleton;

(b) L is Dedekind complete if and only if TL is an ideal of Coo(X);
(¢) L is universally complete if and only if TL = Co(X);

(d) if w is a weak unit of L, one can arrange that Tw = 1x; if w is
a strong unit and Tw = 1x, then TL C C(X).

Proof. Let B be the Boolean algebra of all bands of L (with
operations: inf(I,J) = I NJ, sup(I,J) = (I UJ)4) [129; 22.7], and
let X be the Stone representation space of B. Since B is Dedekind
complete, X is Stonian [129; 47.5].

Now let (u,) be a maximal disjoint system of Lt (its existence is
assured by the Kuratowski-Zorn lemma), and put

X, :={zrecX:{u}¢uz}.
The open sets X, are mutually disjoint, and UX, is dense in X.
For v € L and x € X, set
,(z) ;== sup{a € R : {(au, —v)T}% cz} € R.

Then ¢, € Cx(X,). Finally, let Tv be the extension of > 9, to X
(Theorem 1.3).

Let X’ be another compact Stonian space such that L is embedded
order densely into Co (X'). It follows from Theorem 1.9 that X and
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X' are homeomorphic via a map 7. Now if (u,) is as above, set
f. == (Sw,)o1/(Tu,) on supp(T'w,), and extend the so-defined function
> f. to an element f € Co(X).

Since multiplication with a g € Co(X)" whose support equals X
is an isomorphism from Cy(X) onto Coo(X), one can arrange that a
weak unit w € L is mapped onto 1x. a

Remarks 1. Buskes and van Rooij show [26; 4.2] that MOV for spaces
with a weak unit can be proved avoiding the axiom of choice, but using
instead of it the Boolean prime ideal theorem, which asserts that every
Boolean algebra contains a proper prime ideal.

2. In some representation problems it is convenient to use locally
compact spaces instead of compact ones; observe that Coo(X) is Riesz
isomorphic to Co(U) provided U is a dense open subset of X, by
Theorem 1.3. For instance, L is discrete [5; p. 17] if and only if L can
be embedded order densely into some RY: If (u,) is a maximal disjoint
system of discrete elements of L, then via MOV each u, corresponds
to an f, with support {z,}, and U, the collection of all these isolated
points z,, is dense in X = BU.

3. In general, TL does not separate the points of X, even if L is
Dedekind complete and has a strong unit. Indeed, take for L the ideal
of Co(BIN) generated by the function f, where f(n) := 1/n. But if L
has the projection property and possesses a weak unit which is mapped
onto 1x, then T'L does separate the points of X; this follows easily from
Theorem 2.2 (a) < (d).

Identifying the points of X which cannot be separated by elements
of TL, one gets a “minimal” representation space that was considered
e.g. by Vulikh [199].

4. It follows from MOV that any Archimedean Riesz space L
possesses a unique universal completion, and if M is an order dense

Riesz subspace of L, then their universal completions coincide (cf. [5;
23.20]).

5. Another consequence of MOV is that each Archimedean Riesz
space L is Riesz isomorphic to a quotient space M /I, where M is a
Riesz space of real-valued functions on some set X and I is a o-ideal
of M [24; Theorem 3]. Namely represent L as an order dense Riesz
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subspace of Coo (X), let M be the set of real-valued functions f on X
for which there exists f € L such that {f # f} is meager (hence f is
unique), and let I be the set of all f € M for which {f # 0} is meager.

According to Fleischer [66], any Archimedean Riesz space can be
represented also as a quotient of a space of measurable functions. The
connections of this kind of representation to MOV were investigated by
Traynor [169].

Even a more general result is true: Every Riesz space L (not nec-
essarily Archimedean) can be embedded Riesz isomorphically into a
quotient space M /I, where M is a Riesz space of real-valued functions
on some set X and I is an ideal of M (see [6, Section 10] or [81; Section
6]).

6. Bernau [15] gave generalizations of MOV to Archimedean lattice
groups and Archimedean lattice rings; he also proved a criterion that all
representing functions be finite-valued on some common dense subset
of the compact Stonian space X [15; Theorem 7]. Vulikh, too, obtained
representations of lattice rings. See also [17].

Let us now describe the MOV-representations of Riesz spaces with
the projection property.

For F C C(X), call f € Coo(X) F-local if for each € X there
are an open U, C X and f, € F such that « € U, and f, = f on
U,. Call F local if F contains all F-local functions. An Archimedean
Riesz space L is called local if for some MOV-representation (X, T) of
L (and therefore for all MOV-representations of L) the set T'L is local.

Let (X, T) be an MOV-representation of the Archimedean Riesz space
L, let ugp € L, and take distinct x1,xs € supp Tug. Call [z1,z2,uo]
an absolute bundle of L with respect to (X,T), if (Tu/Tug)(z1) =
(Tu/Tug)(x2) for every u € L. Given another MOV-representation
(X',8) of L, note that [x1,z2,up] is an absolute bundle of L with
respect to (X,T) if and only if [rz1, 722, ug] is an absolute bundle of L
with respect to (X’,.5); here 7 denotes the homeomorphism described
in Theorem 2.1.

The following result is due to Veksler ([171; Theorem 1] and [177;
Theorem 1]):

Theorem 2.2. For an Archimedean Riesz space L, the following are
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equivalent:
(a) L possesses the projection property;

(b) for every MOV-representation (X, T) of L, for every f € TL and
for every open-compact U C X, we have fly € TL;

(c) L is local;

(d) there does not exist an absolute bundle of L.

Proof. (a) = (b) is obvious.

(b) = (c). Let (X,T) be an MOV-representation of L, and let
f € Co(X)T be TL-local. Then there exist z1,...,2, € X, open-
compact neighborhoods U; of z; and functions g; € TLT such that
X = UM, U; and f = g; on U;. By (b), fly, € TL for every i, and
hence f =sup fly, € T'L.

(¢) = (d). Let [z1,z2,up] be an absolute bundle of L, for some
MOV-representation (X,T) of L. We may suppose that Tug = 1y for
some open-compact U C X. Decompose U into two open-compact sets
Ui, Us with z; € U;. Then f:=1y, ¢ TL, but f is T'L-local.

(d) = (a). Let J be a band of L, let up € L, up > 0, and set
Jo := {uo}?¢. To show that the component of uy on J exists, we can
assume J C Jy (otherwise consider first JN.Jy instead of J) and J # Jy.

Let (X,T) be an MOV-representation of L with Tug = 1y, for some
open-compact U C X. In the sequel we identify L with T L. Set
V :=U,e suppv; then V is a proper subset of U.

Let « € V. Using (d), we find, for each ¢ € U\V, an element
vy € Lt with v(t) = 1 and vi(z) # 1. From this, the existence of
z € Ji with z(¢t) = 0 and 2/(z) = 1 is derived. Choose a > 0,
and set w; = ((1 + @)zt — aug)™ and U; := int{w; = 0}. Then
X\U C U, t € U, wi(z) = 1. There exist ty,...,t, € U\V with
U\V Cc U~ U;,. Set f, := 2infw;,. Then f, = 0 on X\V, whence
fo € J,and f(z) = 2. Set V, :={fz > uo}-

There exist zi1,...,2, € V such that V C UjL;V;,. Then u :=
sup fz, € J, and inf(u,up) is the component of uy on J. O

From (a) < (b), it can be derived that a uniformly complete Riesz
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space [129; 42.1] with the projection property is Dedekind complete,
a result which is due to Veksler [175], as well as the corresponding
statement that a uniformly complete Riesz space with the principal
projection property is o-Dedekind complete; this latter result was
reproved in [7], using representations on quasi-Stonian spaces.

Veksler obtained also characterizations of the Riesz spaces with the
principal projection property and of the o-Dedekind complete Riesz

spaces, which we present without proof. (Note that (a) < (b) in
Theorem 2.3 is evident.)

Theorem 2.3 [171; Theorem 2]. For an Archimedean Riesz space
L, the following are equivalent:

(a) L possesses the principal projection property;

(b) for every MOV-representation (X,T) of L and for every f,g €
TL, we have flsppg € T'L;

(c) given an MOV-representation (X, T) of L and an absolute bundle
[x1, 22, ug] of L with respect to (X,T), if u € L satisfies Tu =0 in a
netghborhood of x1, then Tu = 0 in a neighborhood of x».

If U;,U, are disjoint open-compact subsets of X, then B;(U,Us)
denotes the set of all points of U; which form an absolute bundle with
some point of U; (j # ). A closed subset F' of X is called P-set if
int (NS>, V,,) D F for each sequence (V,,) of open-compact supersets of
F.

Theorem 2.4 [181; Theorem 8]. An order dense Riesz subspace L
of Co(X), with X compact and Stonian, is o-Dedekind complete if and
only if it satisfies the following conditions:

(1) condition (c) of Theorem 2.3 (for T = id);

(2) each f € Coo(X)™T, majorized by some element of L and satisfying
(f/wo)(z1) = (f/uo)(z2) for all absolute bundles [x1,x2,uo] of L,
belongs to L;

(3) for each pair (Uy,Us) of disjoint open-compact subsets of X, the
sets B;(Uy,Us) are P-sets.
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The proof of part (a) in the following result is based on the fact
that each laterally complete Archimedean Riesz space possesses the
projection property [5; 23.4(ii)] and on Theorem 2.2 (a) < (b); the
essential ingredients in the proof of (b) are [129, 24.9(iv); 5, 23.4(ii)],
Theorem 2.2 (a) < (b) and Theorem 2.3 (a) < (b). Note that the
countable analogon of the condition given in (a) does not characterize
o-lateral completeness. For details, see [60].

Theorem 2.5. For every Archimedean Riesz space L and every
MOV-representation (X,T) of L, we have:

(a) L is laterally complete if and only if TL contains all functions
f € Coo(X) for which there are a disjoint family (U,) of open-compact
subsets of X and a family (f,) in TL such that UU, is dense in X and
fly, = f.1ly, for every ¢.

(b) L is o-laterally complete and possesses the projection property if
and only if TL contains all functions f € Coo(X) for which there are
a countable disjoint family (U,) of open-compact subsets of X and a
family (f,) in TL such that UU, is dense in X and fly, = f, 1y, for
every ..

The boundedly lateral completion of an Archimedean Riesz space was
described in terms of its MOV-representation by Veksler and Geiler
[187; Theorem 11].

Another related result is due to Veksler [180] and Koldunov [101].
Take an MOV-representation (X, T') of L°()\), where A denotes Lebesgue
measure. Obviously 7(L°(\)) = Coo(X). Then, assuming (CH), there
is a dense subset Y of X such that for every f € Coo(X) and for every
y € Y there exist a function g € T(L'(\)) and a neighborhood U of y
such that f =g on U.

The problem of characterizing those Archimedean Riesz spaces L
which possess an MOV-representation (X,T) with TL C C(X) was
solved, for a very special class of Riesz spaces, by Maeda and Ogasawara
[133, 152]; strengthening a result of Papert [153; Theorem 7], Bernau
proved that there exists a dense open subset Y of X (where X is as
above) such that L can be embedded order densely into C(Y') if and
only if for each u € L, u > 0 there is, for each v € L, a number n(v) € N
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such that

1
sup ——
ieq1,....pp T(vi)

v Fu

for any finite subset {v1,...,v,} of L [15; Theorem 7]. Here is the
general solution of the problem:

Theorem 2.6 [2]. There exists an MOV-representation (X,T) of L
with TL C C(X) if and only if there exists a family (u,»).erren, N
L* such that

(1) L={ux:ctel, XeA,}

(2) for each i, the net (u,x)ren, increases and is order bounded in
L;

(3) for all t1,00 €1, 11 # 12, and for all \y € A, Ay € A,, we have

il’lf(U/Lh)\l, uL2,)\2) = 07

(4) for eachv € L there existsn € N satisfying supyc,. inf(z, nu,»)
=z foreach0<ze€ {ux: A€ Ab}dd,z <w, and for each v € I.

Proof. Denote by L? the Dedekind completion of L.

To prove the sufficiency of the condition, set u, := supyc,, u.x in LI,
and find an MOV-representation (X, T?) of L such that T°u, = 1x, for
suitable open-compact subsets X, of X. Then (X, T?|.) is as required.

Conversely, let L be an order dense Riesz subspace of C(X), with
X compact and Stonian. Then the same holds for L° [129; 50.8(iii)].
By the Kuratowski-Zorn Lemma, one can find a disjoint family (X,)
of open-compact subsets of X such that 1y, € L% for each . and
UX, is dense in X. For each ¢, there is a net (u,\)aea, in LT with
0 < wu,x Ta 1x,. Then (u,x).er,ren, satisfies (1)—(4). O

The proof of the following assertion [53; Theorem 3] is based on the
fact that I'(L) separates L if and only if there is an order dense ideal I
of L which is separated by I, [127; 2.5]:

Proposition 2.7. If X is a locally compact Stonian space such that
L is embedded order densely into Co(X), then X is hyperstonian if
and only if T'(L) separates L.
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If L = C([0,1]), and if (X,T) is an MOV-representation of L with
Tljp,1) = lx, then M(X) = {0}: For 4 € M(X)*, the map L — R,
u — [(Tu)dp is an order continuous linear form; but since Ly = {0}
(this follows, e.g., from the Riesz-Kakutani representation theorem and
Proposition 1.5), we get p = 0.

There exist several variants of MOV which we will shortly mention;
for a detailed account, see chapter 7 of [129].

1. The Nakano representation theorem ([147] for L o-Dedekind
complete) is very similar to MOV. L is now assumed to have the
principal projection property. The Boolean algebra of all bands of
L is replaced by the Boolean ring B, of all principal bands of L, and
X is the Stone representation space of 8,,. The space X is Hausdorff,
totally disconnected and locally compact, and T'L separates the points
of X.

2. In the Yosida representation theorem [217], the space X consists
of the union of the sets 3,, where 3, denotes the set of all prime ideals
of L maximal with respect to the property of not containing u,, and (u,)
is a maximal disjoint system of LT. Then X, equipped with the hull-
kernel topology, is Hausdorff and locally compact, and T'L separates
the points of X. If L has a weak unit, then X is compact; moreover,
X is unique in a natural sense (see [78; 2.11]). If L has a strong unit,
then TL C C(X).

The Johnson-Kist representation theorem [89; 6.7] generalizes the
Yosida theorem insofar as sets of proper prime ideals with certain
properties are used.

3. Sometimes it is convenient to consider quasi-Stonian spaces, i.e.,
completely regular Hausdorff spaces in which the closure of each open
F,-set is open (see, e.g., [203; Chapter V] or [129; Section 43]). For
instance, by a result of Ogasawara, the Stone representation space of
a Boolean algebra R is quasi-Stonian if and only if R is o-Dedekind
complete [203; Theorem I1.9.2]. By results of Nakano and Gillman-
Jerison, a normal Hausdorff space X is quasi-Stonian if and only if
Cy(X) is o-Dedekind complete, and for X completely regular and
Hausdorff, Cy(X) is o-Dedekind complete if and only if {f # 0} is
open for every f € Cy(X) (see, e.g., [129; 43.8, 43.9]). Analogously
to Theorem 1.4, one can show that Coo(X) is a o-universally complete
Riesz space provided X is quasi-Stonian.
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Nakano proved that every o-Dedekind complete Riesz space L can
be embedded as an ideal into Co(X), for some locally compact quasi-
Stonian space X ([149; Theorem 8.10, 150; Theorem 16.7].

Using valuations on L (see Section 4), Hackenbroch has proved [74;
Satz 2] that for a o-Dedekind complete Riesz space L there exists
a locally compact quasi-Stonian space X such that C.(X) C TL C
Coo(X). If, moreover, L has a weak unit, then T'L can be embedded into
Cx(X) as an ideal containing C'(X), for some compact quasi-Stonian
space X [203; Theorem V.4.1], and if L is o-universally complete with
a weak unit, then T'L = C, (X) for some compact quasi-Stonian space
X [203; Theorem V.5.1]; see also [42]. An example of Rotkovich shows
that in general a o-Dedekind complete Riesz space cannot be embedded
as an ideal into Co(X), for a quasi-Stonian compact space X [160).

Recently, Fleischer has shown [65] that Carathéodory’s system of
“place functions” on a Boolean o-ring R [28] is Riesz isomorphic to
Coo(X), where X is the quasi-Stonian Stone representation space of
R. In a subsequent paper [66], he has proved that an arbitrary Riesz
space L can be represented as a space of place functions on the Boolean
algebra of all orthogonal complements in L; in the Archimedean case
this result just yields MOV, in view of the isomorphism of C,(X) with
the space of place functions.

4. There exist also similar representation theorems for Archimedean
lattice groups; see, e.g., [153, 17, 9 and 11].

Generalizations in another direction were given by Veksler, Zaharov
and Koldunov [190]; they deal with so-called semivector lattices, i.e.,
objects which differ from the usual Riesz spaces in that there is given
only a partial addition, obeying the vector lattice laws if defined (a
typical example is C', (X)), with X not necessarily Stonian).

5. Huber [81; Section 3] shows that one can get some of the repre-
sentation theorems (MOV, Nakano, Hackenbroch, Bernau, Papert) by
a unified approach, starting with an arbitrary distributive lattice with
a smallest element (replacing, e.g., the Boolean algebra of all bands in
the proof of MOV).

Concerning uniqueness of representation spaces, we have the following
result [75]:
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Theorem 2.8. Let X be a locally compact Hausdorff space, and
let Co(X) be Riesz isomorphic to an order dense ideal of the Dedekind
complete Riesz space L (respectively, to a super order dense ideal of
the o-Dedekind complete Riesz space L). Then, if X' has the same
properties, X is homeomorphic to BX'.

Proof. It is enough to show that C'(3X) is Riesz isomorphic to C(8X")
(see [162; Chapter II, Corollary 2, p. 104]).

Let Zj, be the order ideal of £,(L, L) generated by the identity map
(the so-called centre of L). Z, is a Riesz space [218; 140.4]. Then
Z¢,(x) can be identified with Cp(X) via

Cy(X)> f f, where f(g):=fg forall g e C.(X).

To prove that this map is surjective, let T' € Z¢, (x), T > 0. For each
z € X, the map g — (Tg)(z) defines a positive Radon measure p, on
X with supp u, = {z}, hence there is f(z) € R with u, = f(z)d,.
Then f € Cp(X) and f: T.

Since C.(X) is an order dense (respectively, a super order dense) ideal
of L and all elements of Z;, are order continuous, the map

Zr = Zo,x), T = Tlo.x)

is a Riesz isomorphism (the surjectivity being a consequence of the
denseness assumptions). Thus

C(BX) = Cp(X) = Cp(X') =C(BX"). o

The following result [76; Lemma 1] should also be seen in connection
with the Kakutani-Kreins Theorem 4.5.

Theorem 2.9. Let L be a norm dense Riesz subspace of C(X),
where X is a compact Hausdorff space and C(X) is equipped with the
supremum norm. If1x € L and L has the principal projection property,
then X is totally disconnected.

Proof. Since the set {{f >0} : f € C(X)} is a base for {(X), the
same holds for U:={{f > 0} : fe Lt}
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Let U € 4, U = {f > 0} for some f € L*. Denoting by P
the projection of L on the band of L generated by f and setting
uyg := Psly, we have uy = 14 for some open-closed A. Then U = A is
open, and {U : U € i} is a base for {(X). O

Recall that the Stone-Weierstrafi theorem [162; Chapter II, 7.3]
asserts that if X is a compact Hausdorff space and L is a Riesz subspace
of C'(X) containing 1x and separating the points of X, then L is norm
dense in C'(X).

The next theorem is due to M. Weber.

Theorem 2.10 [206; Theorem 2]. Assume there exists an increasing
sequence 0 < w,, in L such that for each u € L there exist n € N and
¢ > 0 with |u] < cwy,, but that L possesses no strong unit. Then the
following are equivalent:

(a) L can be endowed with a Riesz norm (see Section 4);
(b) L can be embedded into a Riesz space M with a strong unit;

(c) there exist a locally compact, o-compact Stonian space X and a
Riesz isomorphism T from L onto a Riesz subspace of

Co(X):={f € C(X) : f vanishes at infinity}
such that for each x € X there is f € TL with f(x) > 0.

_ Proof. (a) = (b). Let p be a Riesz norm on L. The norm completion
L of L is a Banach lattice [218; 100.10], and L C M := L,,, with

Wy, -
U= —— € L.
7%1; 2 p(wn)

(b) = (¢). By MOV, M (hence also L) can be embedded into some
C(Y), with Y compact and Stonian. Then W, := {w, = 0} # &
since w,, is not a strong unit, hence also W := N,enW,, # @. Thus
L C Cy(X), with X :=Y\W. In particular {w,, > 1/m} is compact in
X, which shows that X = U,, men{wn > 1/m} is o-compact.

(c) = (a). Consider the restriction of the supremum norm to L. O

The original representation space in the preceding theorem was a
subspace of the space 9(L) of all proper maximal ideals of L, endowed
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with the hull-kernel topology. Note that the elements of 2i(L) are
precisely the kernels of the real-valued Riesz homomorphisms on L.
This relation can be used to define the representing functions on M(L).
In the papers of Makarow and Weber [134-137, 205-208], detailed
investigations of the spaces 9t(L) are made, and several representation
theorems are obtained for Riesz spaces which can be represented as
spaces of continuous real-valued functions on (subspaces of) M (L). We
shall mention without proof another typical result. Here the abstract
analogon of a continuous function with compact support plays an
important role: Makarow and Weber call an element ug of the Riesz
space L finite if there exists a v € L such that for every u € L there is
an o, € R* satisfying

lu] A Clug] < ayv vC > 0;

if v can be chosen to be finite itself, then ug is called totally finite.

Theorem 2.11 [137; Theorem 2]. Let L be an Archimedean Riesz
space containing an order dense ideal I which consists of totally finite
elements of L and which is contained in a Riesz space with a strong
unit.

Then L can be embedded into C(X), for an appropriate Hausdorff
space X, such that I C C.(X) and such that for every distinct z1,x2 €
X there is an f € I with f(x1) =0 and f(z2) = 1.

Moreover:
(1) I =C.(X) if and only if I is uniformly complete.
(2) I =L implies X is locally compact and homeomorphic to M(L).

We shall consider now hyper-Archimedean Riesz spaces (investigated
first by Amemiya [6]), i.e., Riesz spaces L such that for all u,v € L™
there exists n € N with

inf((n + 1)u, v) = inf(nu, v).
Several equivalent formulations of this property are known; e.g., L is

hyper-Archimedean if and only if L/I is Archimedean for each ideal I
of L (see [128, 7.1, 7.2; 129, 37.6, 61.1, 61.2; 82; Theorem 3]).
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Clearly each Riesz space consisting of real-valued step functions (i.e.,
functions with finite range) is hyper-Archimedean.

Theorem 2.12 [58; Corollary 8]. Let L be a hyper-Archimedean
Riesz space, and let (w,) be a mazimal disjoint system of L. Then
there exists a locally compact Stonian space X which is the topological
direct sum of compact spaces X, such that

(i) L is Riesz isomorphic to an order dense Riesz subspace L of
C(X), and the isomorphism maps w, onto lx,, for all ;

(ii) for each v, {f|x, : f € L} is the set of all step functions with
respect to an algebra of open-compact subsets of X, .

Proof. First assume that L has a weak unit w. Let (X,T) be an
MOV-representation of L with Tw = 1x, and set L := TL.

Let f € L*. Since L is hyper-Archimedean, there exists n € N such
that f <nlx and 1x < nf on supp f. If the range of f were infinite,
it would possess an accumulation point a € [1/n, n], and |f — alx]|
would take arbitrarily small values on supp(f — alx), contradicting
the hyper-Archimedeanness of L.

Since L has the Stone property (i.e. inf(f,1x) € L for all f € L1), L
consists of all step functions with respect to a ring (hence an algebra)
of open-compact subsets of X (see [34; 2.3.10]).

In the general case, represent L as order dense Riesz subspace of
C(Y), with Y compact and Stonian, such that w, is mapped onto
1x,, and set X := UX,. O

It is not difficult to prove [58; Proposition 7] that for f,g € L™, the
function f/g takes only finitely many values on supp g.

Luxemburg and Zaanen proved [129; 37.7] that a hyper-Archimedean
Riesz space with a weak unit can be represented as the space of all step
functions with respect to an algebra of open-compact subsets of the set
P of proper prime ideals of L, endowed with the hull-kernel topology
(observe however, that 9 is in general not Stonian). This result goes
back to Amemiya [6], but his proof was incomplete.

Theorem 2.13 [58; Theorem 10]. For a Riesz space L, the following
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are equivalent.

(a) There exists a compact Stonian space X such that L is Riesz
isomorphic to an order dense Riesz subspace L of Coo(X) consisting of
all step functions with respect to a ring of open-compact subsets of X;

(b) there exists a hyper-Archimedean Riesz space M with a weak unit
that contains L as an order dense ideal;

(¢) L is hyper-Archimedean, and there exists a mazimal disjoint
system (w,),er of L™ such that for each u € L, sup,c;(inf(u, w,))
exists in L and the set {L, o : a > 0} is finite, where

Ly o = Ner{w, — inf(w,, au)}d;

)

(d) L is Archimedean, and there exists a weak unit w of the universal
completion L* of L such that each u € L can be written as a finite linear
combination of components of w in L.

Proof. (a) < (d) is not difficult to see.

(a) = (b). If M denotes the Riesz subspace of C(X) generated by
1x and L, then

M={alx+f:acR, fel}

which implies the assertion.
(b) = (a) is an application of Theorem 2.12.

(a) = (c). The assumptions of (a) imply the existence of a maximal
disjoint family (X,) of open-compact subsets of X such that 1x, € L
for all ¢. Define w, as the element of L which corresponds to 1x, under
the isomorphism L — L.

(c) = (a). Represent L as an order dense Riesz subspace L of
Cw(UX,), with the properties described in Theorem 2.12. Then f € L+
can be written in the form f =) a)1y,, where the Uy’s are mutually
disjoint non-empty open-compact sets, each one of them contained in
some X,.

Assume f is not a step function. Then we can extract a strictly
monotone (say decreasing) sequence (o, ) from the set of all ay’s. Hence
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the sequence (L f.a-1) is increasing. For each n € N there exists u,, € L
such that

Ap — Qp41

0<u,< lpsrs

Qn
hence, u,, € Lf ol \Lf o-1, which gives a contradiction since n was
. U,

n+1
arbitrary.

sup, ¢ (inf(u,w,) € L for all w € L* implies inf(f,1x) € L for all
f e L*, and thus L consists of all step functions with respect to a ring
of sets [34; 2.3.10].

Finally set X := g(UX,). O

Bernau has shown [16] that each countable-dimensional hyper-
Archimedean Riesz space can be represented as a Riesz space of real-
valued step functions on some set X. A characterization of the Riesz
spaces which can be represented in this way was given by Chuang and
Nakano [29; Theorem 4.4].

We still mention the following result due to Luxemburg and Moore
[128; 7.5].

Theorem 2.14. For a Riesz space L, the following are equivalent.

(a) L is Riesz isomorphic to the Riesz space of all real-valued
functions f on some set X such that {f # 0} is finite;

(b) every principal ideal of L is finite-dimensional and Archimedean
(hence Riesz isomorphic to some R™ [129; 26.11]).

Proof. (a) = (b) is obvious.
(b) = (a). Take a maximal disjoint system X of atoms of L. (b)

implies that each w € L is a finite linear combination of atoms of L,
hence of elements of X. O

More equivalent conditions can be found in [128, 7.5; 129, 61.4; 83,
Theorem 2; and 25, 5.2].

Representations of hyper-Archimedean lattice groups and f-rings were
studied by Conrad [32] and Bigard-Keimel-Wolfenstein [17]. In par-
ticular, Conrad proved that a hyper-Archimedean lattice group can be



REPRESENTATIONS OF ARCHIMEDEAN RIESZ SPACES 795

represented as a lattice group G of real-valued functions on some set
X such that for f,g € G there exists n € N with f(z) < ng(z) for all
z € {g>0}[32; 1.1 or 17; 14.1.2].

The next part of this section is devoted to results of Buskes and van
Rooij on “small” Riesz spaces. The crucial point in what follows is that
neither the axiom of choice nor the countable axiom of choice are used
in the proofs.

According to [27], a function p : L — |—00, 0] is called sublinear if
for u,v € L and a € R*:

p(u+v) < p(u) +p(v),
p(au) = ap(u).

A sublinear function p : L — [0, 00] is called extended M-seminorm if

p(sup(u,v)) = sup(p(u), p(v)) for all u,v € LT,
p(|ul) = p(u) for all u € L.

An extended M-seminorm not taking the value co is called M-seminorm.

For a € L, the extended M-seminorm ||.||, on L is defined by
llul|a := inf{a € R : |u| < alal}.
For e >0 and u € L, set
Bi:(u):={veL:|v—ul,<e}
A subset U of L is called a-open if for each u € U there exists € > 0

with By .(u) C U.

For AC L, aset U C L is called A-open if it is a-open for all a € A.
The topology formed by the A-open sets is called the A-topology. Then
the meaning of expressions like “a-closed,” “A-closure”, etc., should be
clear.

L is called uniformly complete if, given a € L and a filter § of subsets
of L such that for every ¢ > 0 there is u € L with B, .(u) € §, there
exists u € L with B, ¢(u) € § for all € > 0.

A subset of L is called a Q-linear sublattice of L if it is a sublattice
and a Q-vector subspace of L. If A is a Q-linear sublattice of L,
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then the A-closure A of A in L is a Riesz subspace of L, contained
in the ideal of L generated by A. This is proved by applying several
times the following assertion: If ® : L — L and a > 0 are such that
|®(u) — ®(v)| < alu —v| for all u,v € L, and if ®(A) C A, then
®(A) C A; indeed, ® is a-continuous for all a € L.

An Archimedean Riesz space L is called slender if it contains a
countable Q-linear sublattice A such that L is the A-closure of A (e.g.,
the Riesz space c of all convergent real sequences is slender).

Proposition 2.15. Let L be a slender Riesz space.

(a) There exists a sequence (ay) in Lt such that for each u € L there
isn € N with |u| < ay.

(b) If uw € L, u> 0, then there exists an M-seminorm p on L with
p(u) > 0.

(¢) If ue L, u>0, and if p is an M-seminorm on L with p(u) > 0,
then there exists a Riesz homomorphism ¢ : L — R with ¢(u) > 0 and
Uy

Proof. (a) follows from the remark above.
(b) Take (ay) as in (a). Set by := 0 and, for n > 2,

1 +
kn, ::min{keN: <“_bn1_E(a1+"'+an)> >0}

1
b 1= bn1+ (a1 + - + an).

Since ||.[[6,, > ||-[|bn..» We can define
p(v) = nll)n;o [lvlle, forallve L.
(c) Choose a countable Q-linear sublattice A = {a; = u,as,as,...}
of L such that L is the A-closure of A in L. Define
po(v) :=p(vT) forallvel
and, by recursion,

pn(v) := lim p, 1(v+ aa,) —ap,_1(a,) forallve L.

a— 00
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For each n € N, we have:

Pr, is sublinear,

) forallv,ze€ L,
) <pn-1(v) forallvelL,

v
an)7

Pn(sup(v, z)) = sup(pn(v), pn(2)
_pnfl(_v) S _pn(_v) S pn(
_pn(_an) = pn(an) = pnfl(

hence also

—pn(—ak) = pnlar) = pp-1(ax) forn > k.
Thus ¢(v) := lim,,, o pr(v) exists for all v € L, and ¢ is sublinear and
satisfies (x); moreover ¢(u) = p(u™) > 0.

If |v — 2| < ¢elal, then |¢p(v) — ¢(2)] < e¢(|al); thus ¢ is a-continuous
for each a € L, and therefore the set

S:={veL:¢(v)=—¢(-v)}

is A-closed in L. Then A C S implies S = L; thus ¢ is a Riesz
homomorphism. a

Theorem 2.16 [27; 2.4]. Let L be a slender Riesz space with a
weak unit w. Let X be the set of all real Riesz homomorphisms ¢ on
L with ¢(w) = 1. Foru € L set i : X — R, ¢ — ¢(u), and set
L:={i:ue L}. Endow X with the weakest topology that makes each
U continuous. Then

(a) X 1is metrizable, and the map
T:L—L,u— 1,

is a Riesz isomorphism onto an order dense Riesz subspace of C(X);

(b) if w is a strong unit, then X is compact and Lis uniformly dense
in C(X); if, moreover, L is uniformly complete, then L = C(X).

Proof. (a) That T is an injective Riesz homomorphism, follows from
Proposition 2.15.
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Let A = {a1,as,...} be a countable Q-linear sublattice of L such
that L is the A-closure of A. Since {u € L : ¢(u) = ¢(u)} is A-closed
in L, the formula

d(¢,9) = Y inf(27", |$(an) — ¥(an)))

neN

defines a metric d on X. As A C B := {u € L : 4 is d-continuous}
and B is A-closed, we have B = L. Since the d-topology is obviously
weaker than the given topology on X, this implies that both topologies
coincide.

Now let f € Coo(X)t, ¢ € X and @ € R with 0 < a < f(¢). Since
the family of all sets

Xa:={¢€X:¢(a) >0},

where a runs through L*, is a base for the topology of X, one can find
a€ Lt withge X, C{yeX: f(y)>a} and ¢(a) = . Then for
u := inf(a, aw), we have 4 < f and 4(¢) = a.

(b) Let B C LT such that X C UpepXp, let I denote the ideal of L
generated by B, and define an M-seminorm p on L by

p(u) := inf{||u — b||, : b € I}.

If p(w) > 0, then Proposition 2.15(c) yields a ¢ € X with @|; = 0,
which implies ¢ ¢ X, for all b € B, a contradiction. Therefore
there exists b € I with ||lw — b|l, < 1/2, and thus b > w/2. Hence
there are by,...,b, € B with w < 2(by + -+ + b,), and this implies
XC Xy U--UXy,.

To show that L is uniformly dense in C'(X), apply Dini’s Theorem,
observing the final part of the proof of (a).

That L = C(X) provided L is uniformly complete, is not difficult to
see. O

Part (b) of the preceding theorem should be compared with the
Kakutani-Kreins Theorem 4.5.

We now turn to representations of Archimedean Riesz spaces in which
an additional algebraic structure, namely a (partial) multiplication, is
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given. Investigations in this direction were made, e.g., by Steen [165],
Vulikh [193, 194, 196, 197, 200, 201, 202], Kantorovich and Pinsker
[155], [95], Nakano [150], Birkhoff and Pierce [18], Domracheva [43,
44], Henriksen and Johnson [80, 87|, Kist [98], Veksler [172, 173,
176] and Rotkovich [189], Bernau [15], Lozanovskii [116], Rice [159],
Ivanova [85], Hager and Robertson [78]; see also [17].

Many interesting results are contained in Veksler’s paper [176] which
largely develops and completes Vulikh’s investigations. We will present
some of them.

A partial multiplication in a Riesz space L is a partial binary relation
on L, assigning to certain uw,v € L a product uv, with the following
properties:

(1) If wv exists, then so does vu = uv;

(2) if uv,vw and (uv)w exist, then so does u(vw) = (uv)w;
(3) if wv and ww exist, then so does u(v + w) = uv + uw;
(4) if u,v > 0 and wv exists, then uv > 0;

(5) if @ € R and uv exists, then so does (au)v = a(uv);
(6) wv exists and equals 0 if and only if v L v.

A partial multiplication is called complete if the product is defined for
all u,v € L. It is easy to see that the partial multiplication of L is
complete if and only if L is a commutative f-algebra [218; 140.8] with
no non-zero nilpotent elements.

We will also encounter the following properties that a partial multi-
plication may or may not have:

(o) If wv exists and |ug| < |ul, |v1| < |v], then ujvy exists;

(B) if uv exists, then so does |u||v| = |uv|;

(v) if uv exists, then {(uv)*}9 C {sup(inf(ut,v"), inf(u=,v7)) }9<.
It is not difficult to see that (o) implies (8) and (y). Vulikh studied
exclusively partial multiplications with («).

In the sequel, let L be endowed with a partial multiplication.

A multiplicative unit of L is an element e of L such that for all u € L
there exists ue = u. An element e of L is called partial multiplicative
unit if it is a multiplicative unit for {e}9¢. A universal element of L is



800 W. FILTER

an element w # 0 such that uw exists for all u € L. It can be verified
without difficulty that w? = (w)? + (w™)? > 0 and {w?}% = {w}dd
for a universal element w of L.

Now let (X,T) be an MOV-representation of the Archimedean Riesz
space L, and set @ := Twu for all u € L, and L:=TL. If w exists,
we say that wv is represented (represented at z € X, respectively) if
wv = 49 (wo(z) = (4d)(x), respectively); here of course the product 4o
is the canonical product of @ and ¢ in Coo(X).

By multiplication with a suitable fixed weak unit f of Coo(X) if
necessary (cf. MOV), one can always find, for given weak units u, v, w
of L, an MOV-representation of L such that 40 = w.

A point x € X will be called ordinary for the products uv,wz if
0 < |avwz|(z) < oo and |wvwz|(z) < oo.

Proposition 2.17. Let x be an ordinary point for the products uv
and vw.

(a) If () is satisfied and wv is represented at xz, then uw is
represented at x as well.

(b) If (B) is satisfied, then the assertion of (a) remains true for
u > 0.

Proof. (a) Assume the contrary. Then, with A := 1/4(z), one finds
u, v € R satisfying

po(z) +vi(z) = —1,
Asi(2)o(z) + M(@@)(z) = 1,
and this contradicts () for the elements Au and (uv + vw).

(b) It can be verified that (8) implies () for positive u, and thus
(b) follows from (a). O

The partial multiplication in L is called representable if there exists
an MOV-representation of L such that for all u,v € L:

wv exists and satisfies %o = @46  if and only if @b € L.

If the set of all products wv is complete in L (D C L is called complete
in L if D% = L), then there exists at most one MOV-representation of
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L which represents the multiplication, i.e., the weak unit f of C(X)
occurring in MOV is uniquely determined as f = 1x.

For a representable partial multiplication the properties (3) and (7)
are satisfied, and one has:

Ifo<wu,twand 0 <wv, T wvin L, if all u,v, exist and uw,v, T w in L,
then uv = w exists.

A partial multiplication on L is called maximal with respect to a
property p if it has the property p and cannot be extended with
preservation of p.

Proposition 2.18. Let q be a property which, when possessed by
some partial multiplication on L, is also possessed by all its extensions,
and such that q implies that the set of all products is complete in L.
Let each representable partial multiplication on L satisfy a property p,
and assume further that each partial multiplication on L satisfying p
and q can be extended to a representable partial multiplication. Then a
partial multiplication on L with property q is representable if and only
if it is mazximal with respect to p.

Proof. Obviously the condition is sufficient. To show that it is neces-
sary, take a representable partial multiplication on L with property gq.
By the Kuratowski-Zorn lemma, it can be extended to a partial multi-
plication on L satisfying ¢ and being maximal with respect to p. But
then, by the “sufficiency”-part, this extension is representable. On the
other hand, a representable partial multiplication for which the set of all
products is complete in L cannot be extended to another representable
partial multiplication, and thus already the partial multiplication we
were starting with, was maximal with respect to p. |

Theorem 2.19 [176; Theorem 1]. Let, for a given partial multi-
plication on the Archimedean Riesz space L, the set of all universal
elements be complete in L. Then the following are equivalent.

(a) The multiplication is representable;
(b) the multiplication is mazimal with respect to (53);

(c) the multiplication is mazimal with respect to (7).
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Proof. Let q be the property: “The partial multiplication possesses a
complete system of universal elements.”

To prove (a) < (b) ((a) < (c), respectively), we have to show, using
Proposition 2.18, that every partial multiplication on L with ¢ and ()
(and (7), respectively) can be extended to a representable one.

By an earlier remark, we can assume that there exists a complete set
D of positive universal elements for such a multiplication. For each
w € D, choose an MOV-representation (X,,,T,,) of {w}? such that
b = w?.

If we can show that each uv is represented on each X,,, then these
representations coincide on sets of the form X,,, N X,,,, and thus each
uv is represented on X := B(UyepXy), which will yield the assertion.
Observing condition (6), this has to be verified only for ordinary points
for uv and w?.

(a) < (c). Since w? is represented on X,,, the assertion follows by

applying twice Proposition 2.17(a).

(a) & (b). Suppose uv is not represented at the ordinary point z for
uv and w?. Ome can assume i(z) = 1 = 9(x), uwv(x) = 0 (otherwise
considering Au, pv+vw for appropriate A, p, v instead of u and v), and
moreover, by (8), u > 0 and v > 0. But then, applying Proposition
2.17(b) twice, uv is represented at x, a contradiction. a

From Theorem 2.19 (a) < (b), we get

Corollary 2.20 [176; Theorem 2]. A complete multiplication in an
Archimedean Riesz space L is representable.

This result was first presented in [172]. It was also proved indepen-
dently by Bernau [15; Theorem 13], who extended the result to the
case of Archimedean lattice rings with no nonzero nilpotent elements.
For Dedekind complete L, the result was already obtained by Nakano
[150]. A similar theorem, under the same axiomatic assumptions as in
Remark 1 following Theorem 2.1, was proved by Buskes and van Rooij
[26; 4.3]. Johnson [87] and Kist [98] showed that representations of
Archimedean Riesz spaces with a complete multiplication are possible
on different topological spaces. Also in [6], a variant of Corollary 2.20
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(with X locally compact and quasi-Stonian) is (implicitly) contained.

Corollary 2.21 [176; Theorem 3]. If L is Dedekind complete, then
a partial multiplication with multiplicative unit is representable if and
only if it is mazimal with respect to (a).

Proof. Observe that (o) = (8), and that a representable partial
multiplication of a Dedekind complete L satisfies (). Now apply
Theorem 2.19. u]

Vulikh even proved [196; 9.26] that every partial multiplication with
multiplicative unit and with («) is representable provided L is Dedekind
complete.

Since in a Riesz space with the principal projection property every
partial multiplicative unit is a universal element, we get

Corollary 2.22 [176; Theorem 4]. Let, for a given partial multipli-
cation on the Riesz space L with the principal projection property, the
set of partial multiplicative units be complete in L. Then the following
are equivalent:

(a) The multiplication is representable;
(b) the multiplication is mazimal with respect to (53);

(c) the multiplication is mazimal with respect to (7).

More results of the same type, in particular more equivalent condi-
tions in Theorem 2.19 and Corollary 2.22, can be found in Veksler’s
paper.

A problem, first treated by Kantorovich and directly connected with
representations, is that of functions defined on an Archimedean Riesz
space L. The main results are due to Lozanovskii [120].

Let X be a compact Stonian space. Then, according to Lozanovskii,
if F is a Baire function on a set B C R"™, the expression F(f1,..., fr)
is defined for fi,...,fn € Cx(X); this means that there is a func-
tion g € Coo(X) as well as a dense open subset U of X such that

(fi(2),..., fn(z)) € Band F(fi(z),..., fo(x)) = g(x) for every z € U.
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Now if (X,T) is an MOV-representation of the Archimedean Riesz
space L, then one can define a function F' on (a subset of) L™ with
values in the universal completion of L by putting ﬁ(ul, ey Up) =
F(Tuy,...,Tu,). Lozanovskil proved that if F is a positively homoge-
neous continuous function on R", then the definition of F does not de-
pend on the choice of the representation, and if L is uniformly complete,
then F(uy,...,u,) is an element of L. Using these results, Lozanovskii
constructed new classes of Banach lattices (see, e.g., [122, 123]).

Let us continue by mentioning some results that deal with a functional
description of the Dedekind completion and of the universal completion
of the space Cp(X). Since these results are no proper representation
theorems (it is rather described what the Dedekind completion of
Cy(X) really is), we omit proofs.

A real function f on a Baire space X (i.e., NU, is dense for each
sequence (U,) of dense open subsets of X) is said to have the Baire
property if there is a sequence (U,) of dense open subsets of X such
that f|ny, is continuous. Let Ba(X) denote the Riesz space of all
functions with the Baire property, where f and g are identified if they
coincide on NU,, for some sequence (U, ) of dense open subsets of X.
Let further Bay(X) denote the Riesz subspace of bounded elements of
Ba(X).

Theorem 2.23. If X is a Baire space, then Bay(X) is the Dedekind
completion of Cp(X), and Ba(X) is the universal completion of Cp(X).

The first part of this theorem was proved, for a compact Hausdorff
space X, by K. Nakano and Shimogaki [151; Theorem 1]; the general
assertion is due to Zaharov [219; 2.5 and 220; Theorem 3].

A real function f on a completely regular space X is called quasinor-
mal if for each n € N there is a dense open subset U,, of X such that
for each = € U, there is a neighborhood V,, of x satisfying

F@)~ Fw)] <+ forally € Vi,

Let Q(X) denote the Riesz space of all quasinormal functions on X,
where f and g are identified if there is a sequence (U,,) of dense open
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subsets of X such that
1
|f(z) —g(z)| < - for all z € U,.

Let further Q,(X) denote the Riesz subspace of bounded elements of
Q(X).

The following result is due to Zaharov [219; 3.6 and 220; Theorem
3 and Theorem 37].

Theorem 2.24. If X is completely regular, then Qu(X) is the
Dedekind completion of Cp(X), and Q(X) is the universal completion

Of Cb(X)

Refinements of these results, concerning the structure of the sets on
which the functions are defined, were given by Veksler [178, 179, 183].
For instance, if X is Stonian, then Cp(X) is its own Dedekind comple-
tion, while according to the preceding result, large classes of functions
are needed to describe the elements of the Dedekind completion; in
Veksler’s results however, the corresponding classes contain exactly
one element, namely the continuous function in Cy(X) associated to
the class.

Several descriptions of the Dedekind completion of C(X), for a
compact Hausdorff space X, are discussed in [96; Chapter 17].

Descriptions of a sequential completion, the so-called Cantor comple-
tion of Cp(X), were obtained by Koldunov [100, 102], Dashiell-Hager-
Henriksen [36] and Zaharov [221].

It is possible to represent an Archimedean Riesz space with a weak
unit as a Riesz space of continuous real-valued functions on a locale.
(Locales are discussed, e.g., in [90].) This kind of representation (even
in a more general version for Archimedean lattice groups with weak
unit) is due to Madden (cf., [130, 131, 132]); for further information,
see also [10]. Following [130], we sketch the ideas in a “locale-free
setting.”

Let L be an Archimedean Riesz space with a weak unit w. For any
u € L, denote by I, the relatively uniformly closed ideal of L generated
by u, and let J be the lattice of all relatively uniformly closed ideals of
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L contained in I,,. Let C(J) denote the set of all maps g from the set
of all open sets of R to J such that

g(@):{O}, g(R):Iwa
g(Ur NU2) = g(Ur) N g(Uz),

g< U UL> = sup g(U.,).

el el
On C(3J) one can introduce the structure of a Riesz space.

Given v € L and o, 8 € R,a < (3, put

Tou(]a,ﬂ[) = Lint((u—aw)t, (Bw—u)+) N Luw-

~

The map Tpu from the set of all open intervals of R to J extends
uniquely to a map Tu € C(J), and one obtains

Theorem 2.25 [130]. The map
T: L—C(9), u— Tu

is an injective Riesz homomorphism.

3. Representations of Archimedean Riesz spaces as spaces
of measures or as spaces of measurable functions. Since spaces
of measures have strong separation properties (M (9R) is separated by
its order continuous dual), Riesz spaces embeddable order densely into
these spaces must have similar properties. We call such Riesz spaces
L (i.e., spaces L which are separated by L)’) ocs-spaces (where “ocs”
stands for “order continuously separated”). We remark that L is an ocs-
space if and only if L admits a Hausdorff locally convex-solid Lebesgue
topology (i.e., a Hausdorff topology 7 having a 0-neighborhood base of
convex and solid sets, and satisfying the condition: u, | 0 = u, = 0);
this follows by [5; 9.1] and by considering the topology |o|(L,Ly),
defined by the seminorms p¢(u) := |£|(|u|), where £ runs through L.

For the corresponding uniqueness assertions in the following, confer
Theorem 1.9.

Theorem 3.1. The Riesz space L is an ocs-space if and only if it
can be embedded order densely into a band M of M(R) for some ring
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of sets R. Moreover, L can be embedded as an ideal if and only if it
is Dedekind complete, and L = M if and only if L has the following
property: There exist a weak unit w of T'(L) and a set R C L) of
components of w such that supu, exists in L for each upward-directed
family (w,) from L satisfying sup £(u,) < oo for all £ € R.

Riesz spaces with the last-mentioned property are studied in [56,
59] and [1]. Another characterization of these spaces which we call
hypercomplete, will be given in Theorem 3.9 below; the pair (w, R)
described above is called an hc-pair of L. Note that the “only if’-
part in the last equivalence of Theorem 3.1 follows by considering
w : > [1ldp, and the collection R of all maps u — pu(A), where
Acr

Theorem 3.1 is a corollary of the more concrete

Theorem 3.2 [55; Theorem A]. Let L be an ocs-space, and fix a weak
unit w of T'(L) and a set R C L] of components of w with w = sup R.

Then there exist a unique locally compact hyperstonian space X, a
Riesz isomorphism T from I'(L) onto Coo(X) and a Riesz isomorphism
7 from L onto an order dense Riesz subspace of M(X) such that

(i) Tw = 1x and T¢ is the characteristic function of an open-
compact subset of X for all £ € R;

(ii) X = Ugersupp(T€);

(iii) n(u) = [(Tm)d(mu) for all n € T(L) and all w € L for which
n(u) is defined.

Proof. First observe that the existence of R and w is guaranteed by
the Kuratowski-Zorn lemma and the lateral completeness of I'(L).

MOV applied to I'(L) yields a couple (X', T") with T’w = 1x/. Then
set

X := | supp(17¢)
£ER

and

Tn:=T'n|x forallne(L).



808 W. FILTER

Applying, for u € L, the Riesz-Kakutani representation theorem to the
order continuous linear form

Ce(X) = R, [ (T *f)(u)

(observe that -1 f € L;), we find a normal regular measure 7u on X
with
J fd(ru) = (T f)(u) for all f € C.(X).

The proof of the uniqueness is omitted. O

Constantinescu proved this theorem in the special case L = M(R)
[33; 2.3.6, 2.3.8] using Kakutani’s representation theorem 4.1. For
detailed information and related results, see also [54, 57].

Theorem 3.2 is related (although more flexible, due to the possibility
of choosing w and R) to a representation theorem involving measurable
functions which goes back to Luxemburg and Zaanen (see the introduc-
tion of [67]) and was presented by Fremlin [67; Theorem 6]:

Theorem 3.3. For each ocs-space L there exist a hyperstonian space
X which is the topological direct sum of a family of compact spaces, and
a measure 1 € M(X) with supp p = X such that L is Riesz isomorphic
to an order dense Riesz subspace of

Lige(n) = {f € L°(n) : flx € L'(u) for all K € K(X)}.

Moreover, there is an embedding T : LY — Co(X) such that &(u) =
J(T€)fudp for every u € L and every & € Ly, where f, denotes the

n?’
element of Ll (n) corresponding to u.

If Ly possesses a weak unit, then L can be embedded into L*(u).

Proof. Fix a weak unit w of I'(L) and find a triple (X',T",7')
according to Theorem 3.2. Let (u,),cs be a maximal disjoint system of
L such that all sets supp(7'u,) are compact. For w and

R:={(T") " (Loupp(rru,) : t €1}

find (again by Theorem 3.2) a triple (X,T,7). Then p := > 7, €
M(X), and by Corollary 1.8(d), M(X) = {u}? = LL (u).

loc
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If w € L}, then each mu is bounded; hence L is embeddable into
L ().

The second part of Theorem 3.3 was proved in Vietsch’s Ph.D. Thesis
[191; Chapter 5]. A special case of the theorem was considered in [209;
Section 2] and [210; Section 2].

Here is another related result:

Theorem 3.4. For an Archimedean Riesz space L, the following are
equivalent:

(a) L can be embedded order densely into a space L°(u) (where p can
be chosen as in Theorem 3.3);

(b) L contains an order dense ideal M which admits a Hausdorff
locally convex-solid Lebesque topology;

(¢) L contains an order dense Riesz subspace M which admits a
Hausdorff locally convex-solid Lebesgue topology;

(d) L contains an order dense ocs-Riesz subspace M;
(e) L contains an order dense ocs-ideal M;
(f) T'(L) separates L.

Proof. (a) = (b). M := L*(u) N L, with the usual L'-topology.
(b) = (c) is obvious.

(¢) = (d). M} separates M, by [5; 9.1].

(d) = (e). Take the ideal of L generated by M (cf. [68; 17 Gb]).
(e) = (f) follows from [127; 2.5].

(f) = (a). By MOV and Proposition 2.7, L C Cx(X'), with X’
hyperstonian. Construct X as in the proof of Theorem 3.3, and apply
Corollary 1.7. ]

The equivalence (a) < (e) is due to the Soviet school (for L Dedekind
complete), while (a) < (c) is a special case of Theorem 3.7. First results
concerning representations of Riesz spaces as spaces of measurable
functions go back to Pinsker [154, 156, 157].
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Corollary 3.5 [139; Corollary 3]. Let L be an Archimedean Riesz
space. Then L =2 L°(u) (with p as in Theorem 3.3) if and only if L is
universally complete and separated by T'(L).

If L is an order dense Riesz subspace of the Archimedean Riesz space
M, then the set of discrete elements of L is exactly the set of discrete
elements of M. Hence, if L is embedded order densely into some
LO(p), then the discrete elements of L correspond to the (characteristic
functions of the) p-atoms.

We shall give in Theorem 3.6 a condition which implies the equivalent
conditions in Theorem 3.4.

A topology on L is called locally concave if it has a 0-neighborhood
base consisting of solid sets B for which L1\ B is convex (as is the case
e.g. in the spaces LP(u), p < 1). Such topologies were investigated
by Matzka in his doctoral thesis [140]. He proved [140; 3.21] that in
Riesz spaces which have the projection property and possess a strong
unit, the existence of a locally concave Lebesgue topology implies the
existence of a locally convex—solid Lebesgue topology (the proof of this
assertion is rather long, so we omit it). Using this result and working
with a maximal disjoint system of LT, it is easy to show

Theorem 3.6. If L has the projection property and L admits a
Hausdorff locally concave Lebesgue topology, then L possesses an order
dense ideal admitting a Hausdorff locally convex-solid Lebesgue topology
(and therefore can be represented as in Theorem 3.4).

To formulate an extension of Theorems 3.3 and 3.4, which is due to
Labuda, we need the following terminology:

A mapping p from a §-ring of sets R into [0, co[ is called a submeasure
if u(2) = 0 and p is monotone and (finitely) subadditive. A submeasure
w is called o-order continuous if for every decreasing sequence (A,,) from
R with pu(NA,) = 0 we have u(A,) | 0. The notions “u-a.e.” and “u-
measurable” are defined as for measures, i.e., a set B is a p-null set if
for each A € R there exists C € R, u(C) =0, with AN B C C, and
an extended real-valued function f is py-measurable if f = g p-a.e. for
some PR-measurable g (recall that g is i-measurable if {g < a}NA € R
for all @ € R and all A € R).
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Theorem 3.7 [108; 2.7]. For an Archimedean Riesz space L, the
following are equivalent:

(a) L can be embedded order densely into a space L°(u), where p is
a o-order continuous submeasure;

(b) L admits a Hausdorff locally solid Lebesgue topology;

(¢) L contains an order dense Riesz subspace M which admits a
Hausdorff locally solid Lebesgue topology.

Again p (in (a)) can be chosen to be a normal reqular submeasure on
R(X), where X is the topological direct sum of a family (X,) of compact
Stonian spaces (hence also Stonian), and such that u(A) = > p(ANX,)
for each A € R(X).

Moreover, M (in (c)) can be embedded continuously into L°(u), where
LO(u) is equipped with the topology of convergence in p, given by the
0-netghborhoods

Uae:={f € L°(n) : p({|f| = e} N 4) <e}.

Proof. As easily seen, (a) implies (b). Moreover, (c) obviously follows
from (b).

To prove that (c) implies (a), it is enough to show (a) for Dedekind
complete L. Then, by [5; 11.10], M can be assumed Dedekind complete,
too. It is not difficult to see, by considering a maximal disjoint system
(ux) of M and the restrictions of the given topology on M to the bands
M, of M generated by u), that we can confine ourselves to the case
where M has a weak unit.

Next observe that it is sufficient to show that M can be embedded
order densely into L°(u), since then L°(u) = Cu(X) (the proof of
Corollary 1.7 also works for submeasures) and thus L°(u) is also the
universal completion of L.

Now let M C C(X'), according to MOV. Let (p,) be a maximal
family of continuous (hence order continuous) Riesz pseudonorms on
M with disjoint open-compact “carriers”

X, =x\ |J {r#0}
feMm
p.(|f])=0
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[68; 22C]. For A C X,, A open-compact, and N meager in X,, observe
that, by the assumptions, 14 € M, and set

w,(AAN) :=p,(14),

and let p:=> p, on X := UX,.

The topology generated by p, is finer than the topology of convergence
in p, [45; 3.6], which implies the final assertion of the theorem. o

A similar result for Boolean algebras was proved by Flachsmeyer. He
showed [63; Theorem 3] that a Dedekind complete Boolean algebra
with a compatible order continuous locally solid Hausdorff topology
can be represented as a product of hyperstonian submeasure algebras.

If the ocs-space L is represented according to MOV, then we can give
a simple description of L}, which is due to Lozanovskii [204; Theorem
2.2]:

Theorem 3.8. Let the ocs-space L be embedded order densely into
Coo(X), where X is a locally compact Stonian space. Then there exist
a dense open subset Y of X, which is the topological direct sum of a
family of compact spaces, and a measure p € M(Y)" with supppu =Y
such that L}’ can be identified with

®:={pcCu(X): foly € LY () for every f € L}

via the map L), — @, & — ¢¢, with £(f) = [(fde)|vdp.

Proof. Since L is an order dense Riesz subspace of I'(L;,) [218; 109.3],
we have I'(L;Y) = C(X). Moreover, X is hyperstonian by Proposition
2.7. By the Kuratowski-Zorn lemma, and since (L;’), is an order
dense ideal of I'(L}), there exists a maximal disjoint system R = (1g,)
consisting of characteristic functions of open-compact subsets of X such
that for each ¢, K, = supp p, for some p, € M(X)" and 1y, € (L)
Find a space Y and maps T : I'(LY) — Cx(Y), m : L, — M(Y)
with properties (i)—(iii) of Theorem 3.2. Inspecting the proof of this
theorem, we see that Y can be chosen as a dense open subset of X
such that T¢ = @|y for all ¢ € T'(Ly). Then p = Y pu, € M(Y),
and by Corollary 1.9(d), M(Y) = {u}?. By the Radon-Nikodym
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theorem, each 7¢{ can be written in the form 7§ = ¢, - p with
¢¢ € L _(u), which implies the desired result since for all f € L we

have &(f) = J, (Tf)d(x€) by (ii). o

Using Proposition 2.7 and the fact that I'(L) separates L if and only
if L contains an order dense ocs-ideal, we get the following

Corollary 3.9. For a locally compact hyperstonian space X, the
spaces Coo(X) and T'(Coo (X)) are Riesz isomorphic.

Some more information on the representation of functionals on spaces
of continuous functions is contained, e.g., in [204, 119, 124, 185, 186
and 52]. We mention without proof the following result of Lozanovskii
[119, 124, 204].

Theorem 3.10. Suppose that X is a compact Stonian space and that
L is an ideal of Coo (X). Let M denote the space of all Radon measures
on X. Then L™ can be embedded into the universal completion M™ of
M.

If I is a band of L™, then the image of I under this embedding is
contained in M if and only if there is a strictly positive linear functional
on I.

Let L be an order dense ideal of C, (X), where X is a locally compact
Stonian space, and let N be a nowhere dense closed subset of X. Set

D(N):={U C X : U open-compact, U NN = &},
Ly ={f€Cx(X): fly € LforallU € D(N)}.

Then Ly is an order dense ideal of Cs(X) containing L as an order
dense ideal.

Now we can give Abramovich’s characterization of hypercomplete
spaces [1; 4.2].

Theorem 3.11. A Dedekind complete Riesz space L is hypercomplete
if and only if there exist a locally compact Stonian space Y, a measure
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p € M(Y)T withsuppp =Y, and a nowhere dense closed subset N of
Y such that L can be identified with L*(u)x.

Proof. To check that M := L'(p)y is hypercomplete, set w := 1y and
R:={ly: U € D(N)}. Let 0 < f, 1 in M such that sup 1y (f,) < oo
for all U € ©(N). By the Beppo-Levi Theorem, (f,1y) increases to
some fy € L'(u), for each U € D(N). Then f := sup fy is the
supremum of (f,) in M. UED(N)

Suppose conversely that L is hypercomplete, and let (w, R) be an hc-
pair of L. It is easy to see that L is an ocs-space [56; 2.3]. Embed L
into Co (X) according to MOV, and find Y and p € M(Y)" according
to Theorem 3.8. Then L is an order dense ideal of Coo(Y), and
Ly ={¢peCx(Y):|[ fopdu| < for all f € L}. By multiplying the
elements of L7 with an appropriate g € Co(Y)" (and the elements of
L with 1/g), we can assume that w = 1y and R = {14 : A € R} for
some family R of open-closed subsets of Y. Set N := Y\UacnA. We
claim L = L' (u) .

If f € LT, then f14 € L'(u) for all A € R which implies f1y € L(u)
for each U € D(N); hence f € L' (u) -

Now let 0 < f € L'(p)y. If U € D(N), then each 0 < ¢ € Ly
is bounded on U (use hypercompleteness for this assertion), and thus
fly € (Ly)y. Since L is perfect [218; 110.1], we conclude fly € L.
We have fly Ty f and sup [1aflydp < oo for each A € R, which
implies f € L. o UedW)

It is possible to introduce the concept of a so-called w-hyper-
completion of an ocs-space L, where w is a fixed weak unit of I'(L)
[69]. The w-hypercompletion of L, unique up to a Riesz isomorphism,
is, by definition, a Riesz space M containing L as order dense Riesz
subspace such that the set R, of all components of w in L’ already
belongs to M, and such that (w, R,,) is an hc-pair of M. Then, if L
is embedded into C(Y'), where Y is again as in Theorem 3.8, and if
w = ly, M turns out to be the space L (u)xn, with N := Y\ Uy, er, U
[1; 4.5]. Alternatively, if L is embedded into M(X) according to The-
orem 3.2 (with R = R,,), then M = M(X). Moreover, M can be
described without using any representation; namely, M = G, where
G denotes the ideal of L generated by R,, [59; Theorem 3].

n’
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We conclude this section with a theorem of Hackenbroch which
shows that also Riesz spaces without order separation property can
be represented as spaces L!(u); but in this case p is a vector measure.
The necessary definitions follow.

Let L be an Archimedean Riesz space, let R be a ring of subsets of
aset X, and let 4 : R — LT be a measure; i.e. p is finitely additive,
and A, | @ implies p(4,) 0.

For fR-step functions, the integral is defined in the usual way.

f € (RT)X is called p-integrable on A € R if there exist step func-
tions f,, such that 0 < f,14 1 f14 and there exists sup [ foladu =:
[ fladp in L (this definition does not depend on the choice of the
sequence (f,)).

f € (RT)X is called p-integrable if f is u-integrable on each A € R
and there exists sup [ fladp =: [ fdp in L. We set

LYp):={f —g: f,g € (R)X, f, g p-integrable},
I(f=9)dp:=[fdp — [gdp for f —ge L(n),
where this last definition is again independent of the representation.
Furthermore

N(n):={f € L) : [|fldp = 0},
LY (u) = LY () /N (1) -
L'(u) is a Riesz space provided £'(u) is a Riesz space.

Theorem 3.12 [76; Satz 1]. Let L possess the principal projection
property. Then there exist a locally compact Stonian space X, which
is the topological direct sum of a family of compact spaces, a Riesz
isomorphism T from L onto an order dense Riesz subspace of Coo(X)
and a measure p : R — TLT, where R is a ring of sets contained in
R(X), such that L*(u) = TL. We have u(A) = 0 if and only if A is
meager; moreover an open-compact A C X is contained in R if and
only if 14 € TL, and in this case u(A) = 14.

Proof. Assume first that w is a weak unit of L, and let (X,T) be an
MOV-representation of L with Tw = 1x. Set

R:={AAN :14 € TL, N meager},
u(AAN) :=14.
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Then £!(p) is a Riesz space, and L!(u) is a Riesz subspace of T'L.

To verify that L'(u) = TL, consider first v with 0 < v < w.
Let 0 < a < 1. Since (aw — v)™ is a projection element, we have
{T(aw —v)* > 0} € R; hence also {Tv < a} = {T(aw —v)T >0} €
R. Thus

2"+1 E—1

fn = Z om Li(k-1)/2n<Tv<k/27}
k=1

is an M-step function. From f,, T T one concludes Tv € £!(x) and
[ Tvdp =v.
Finally, the Beppo-Levi theorem yields the desired equality.

To obtain the general result, consider a maximal disjoint system (w,)
of L, and apply the first case. O

4. Representations of Banach lattices. A normed Riesz space
is, by definition, a Riesz space endowed with a Riesz norm, i.e., a norm
II.]| satisfying

|ul < fo] = [Jull < lv].

A normed Riesz space is called Banach lattice if it is norm complete.
A Riesz norm is called M-norm if inf(u,v) = 0 implies || sup(u, v)|| =
sup(J|ull, ||v|]); p-additive (for 1 < p < oo) if inf(u,v) = 0 implies
lu + v||” = ||u||P + ||v]|P ; L-norm if it is p-additive for p = 1.
An abstract M-space (AM-space) is a Banach lattice with an M-norm.
An abstract LP-space is a Banach lattice with a p-additive norm.

An abstract L-space (AL-space) is a Banach lattice with an L-norm.

We begin with representation theorems for the special Banach lattices
just mentioned.

Theorem 4.1. Let L be an abstract LP-space. Then there exist a
locally compact hyperstonian space X, which is the topological direct
sum of compact spaces, and a p € M(X) with suppp = X such that
L is Riesz isomorphic and isometric to LP(u). If L possesses a weak
unit, X can be chosen compact.

X is unique in the sense of Theorem 1.9.
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Proof. Assume first that w is a weak unit of L. Since L is Dedekind
complete [5; 10.10], the set B of components of w is a Dedekind
complete Boolean algebra. Thus its Stone representation space X is
Stonian [129; 47.5].

Each u € B corresponds to a unique open-compact A, C X. Then
set, for A,AN € R(X),

AN = [lull”.

By the order continuity of the norm, this defines a normal regular
measure on X.

The required norm-preserving Riesz isomorphism 7' is now con-
structed by setting Tu := 14, for v € B and by observing that the
Riesz subspace of L formed by all finite sums ) a,u,, where u, € B are
disjoint and «, € R, is order dense (and hence norm dense) in L.

In the general case, consider again a maximal disjoint system of L.
O

Theorem 4.1 (for p = 1) goes back to Kakutani [91; Theorem 7],
who proved the result under additional assumptions; see also Cunning-
ham [35; 9.10] and Bernau [15; Theorem 9]. Another proof, based on
MOV, was suggested by Lozanovskii in 1966 (see [163; Section 26.3]).
For p > 1, the result was obtained, also under additional hypothe-
ses, by Bohnenblust [20; 6.5], Nakano [146], Gordon [70], Bretagnolle,
Dacunha-Castelle and Krivine [23; Theorem 3], and Marti [138; The-
orem 11]; the first proof of the general case can be found in a survey
by Lacey and Bernau [109; 3.1] and is due to Ando.

For n = 0,1,2,... denote by ¢F the space R", equipped with the
p-norm, and let A be Lebesgue measure on [0, 1]. Suppose now that the
abstract LP-space L is separable, and let L, denote the band generated
by the atoms of L. Then L, is isometrically Riesz isomorphic to 2
(if dim L, = n) or to ¢7 (if dim L, = oo). If L,* # {0}, then L,% is
isometrically Riesz isomorphic to L”(\). Hence L is isometrically Riesz
isomorphic to one of the spaces

e, P, LP(A), & @, LP(N), P @, LP(N).

(The symbol @, indicates that the norm of the direct sum is again the
corresponding p-norm.) Also this result is due to Bohnenblust [20; 7.1].
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It follows from Theorem 4.1 that each normed Riesz space with p-
additive norm can be embedded norm densely into a space LP(u) (since
the norm completion has again p-additive norm).

Kakutani’s theorem on AL-spaces can also be formulated in the
following form [35; 9.6].

Theorem 4.2. If L is an AL-space, then there erists a unique
compact hyperstonian space X such that L is Riesz isomorphic and
isometric to M(X).

Proof. Apply Theorem 3.2 to w : L — R,u — |[ut|| — |ju" || and to
R := {w}, and observe that the last condition given in Theorem 3.1 is
satisfied since each norm bounded 0 < u, T is Cauchy. a

Next we present the Banach lattice version of Theorem 3.3.

Theorem 4.3. Let L be a Dedekind complete Banach lattice. Then
L can be embedded as an order dense ideal into a space L°(u), with p
localizable, if and only if L) separates L (in fact, p can be chosen as
in Theorem 3.3).

Proof. The “if’-part follows from Theorem 3.3. For the “only if’-
part, note that L7’ can be identified with the set G of all g € L°(u) for
which fg € £!(u) whenever f € L, and that the isomorphism is the
map

L;\; — g; 6 — g¢,
where

€)= [oefn  VreL
(cf. [93; Chapter VI, Section 1, Theorem 1]). o

In this connection, the following result of Lozanovskii [118], which
we present without proof, is of interest.

Theorem 4.4. Let the Dedekind complete Banach lattice L be
embedded order densely in a space L°(p), with p localizable. Then the
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following hold.
(a) If p is bounded, then there is a g € L°(u) such that

L®() C {fg: fel} C L'(n).

(b) For every h € L*(u),

[l = wt{le, 151+ 1 € Log € L0, f9 = b},

where &, is the element of L' assigning to each f € L the value [ fgdpu.

In this equation, the infimum is a minimum if the following conditions
hold in L:

0<wu,T and sup|ul<oco = Isupu,
O<wu, tu = [wl = ull

A more special situation is considered in Theorem 4.16 below.

An element e € L7 is called norm unit if it is the greatest element of
the closed unit ball of L.

The following result is due to Kakutani (and Bohnenblust) ([92;
Theorem 2 and 21]) and independently to M. and S. Krein [105, 106].

Theorem 4.5. If (and only if) L is an AM-space with norm unit e,
then there exists a unique compact Hausdorff space X such that L is
Riesz isomorphic and isometric to C(X). X can be chosen to be the
set of all real Riesz homomorphisms ¢ on L with ¢(e) = 1, endowed
with (the restriction of) o(L', L).

Proof. The uniqueness follows from Theorem 2.8.

Let Y :={¢ € (L") : £(e) = ||¢]| = 1}. Y is convex and o(L/, L)-
compact. Let X be the set of all real Riesz homomorphisms in Y.
By [5; 3.13], and since L’ is an AL-space [5; 10.15], X coincides with
the set of all extreme points of Y. Then X is o(L’, L)-compact and
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Hausdorff, and the map T': L — C(X), defined by (T'u)(¢) = ¢(u) for
u € L and ¢ € X, is a Riesz isomorphism which preserves the norm by
the Krein-Milman theorem and which is onto by the Stone-Weierstrafl
theorem. ]

Remarks 1. Buskes and van Rooij have shown [26; 4.1] that the
Kakutani-Kreins theorem can be proved avoiding the axiom of choice,
but using the countable axiom of choice and the Boolean prime ideal
theorem instead.

2. It follows from Theorem 4.5 that a normed Riesz space L with an
M-norm can be embedded into a space C(X), since L" is an AM-space
with norm unit e, given by e(¢) := ||£1|| — || || for all £ € L'.

3. Benyamini has shown that each separable AM-space is Riesz
isomorphic (but in general not isometric) to a space C'(X), with X
compact [13], and that this result cannot be extended to the non-
separable case [14].

4. If L is a Banach lattice and at the same time a Banach algebra
with unit, then L is Riesz isomorphic, algebraically isomorphic and
homeomorphic to a space C(X), with X compact; this result is due to
Lozanovskil [116].

5. Let the Riesz space L be equipped with a Hausdorff topology which
is generated by a family of M-seminorms (an M-seminorm is a seminorm
p satisfying p(Ju|) < p(|v|) provided |u| < |v|, and p(sup(u,v)) =
sup(p(u), p(v)) for all u,v € L™). Endow the set X of continuous real
Riesz homomorphisms on L with o(L’, L), and consider C'(X) with
the topology of uniform convergence on the sets U’ N X, where U
runs through the set of 0-neighborhoods in L. Then the map u — @,
defined by 4(¢) = ¢(u) for all ¢ € X, is a Riesz isomorphism and
a homeomorphism onto a Riesz subspace of C(X). This result was
proved by Jameson [86; Theorem 6].

6. In his Ph.D. Thesis, von Siebenthal considered complete Hausdorff
locally convex-solid Riesz spaces L possessing a base U of closed,
convex, solid sets such that for each V' € U the associated Riesz
seminorm py, given by py(u) := inf{a > 0 : u € oV}, is p-additive.
He showed that there exists a locally compact hyperstonian space X
such that L can be identified with an order dense ideal of Co (X) in
such a way that the topology of L is generated by a suitable set of Riesz
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seminorms of the form p,,(f) := ([ | f|Pdu) l/p, with p € M(X)* [164;
10.4]. He also obtained a similar result for M-seminorms.

We mention without proof three results on AM-spaces without norm
unit.

Theorem 4.6. Let L be an AM-space, and set
X :={¢ €L : ¢ is a Riesz homomorphism} ,

endowed with (the restriction of ) o(L', L).

ForueL, seti:X — R, ¢ — ¢(u), and let denote, finally, Cp(X)
the set of all homogeneous (i.e. f(ax) = af(z)) elements of C(X).

Then, if Ch(X) is equipped with the norm of uniform convergence on
the unit ball of X, the map

T:L—)Ch(X),’(M—)ﬂ

s an isometric Riesz isomorphism.

Theorem 4.6 is due to Goullet de Rugy [72; 1.31], as well as the
equivalence (a) < (b) in the following result [72; 2.31]; (a) < (c) in
Theorem 4.7 was proved by Effros [48; 3.10] and (a) < (d) by Nakano
[149]. More characterizations of the spaces Cy(X) of continuous
functions on X vanishing at infinity can be found in the same places.

Theorem 4.7. For an AM-space L, the following are equivalent.

(a) There exists a locally compact Hausdorff space X such that L is
isometric and Riesz isomorphic to Co(X), equipped with the supremum
norm;

(b) the restriction of the norm of L' to the set of non-zero Riesz
homomorphisms in L' is o(L', L)-continuous;

(c) the set of Riesz homomorphisms in the unit ball of L' is ao(L', L)-
closed subset of the positive unit ball of L';

(d) for every subset A of L™ which is bounded above, we have

sup{||lu|| : v € A} =inf{||v|| : v > u for all u € A}.
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A proof of the following similar result can be found in [111; 1.b.10].
We recall that the norm in a Banach lattice is said to be order
continuous if u, | 0 implies ||u,|| — 0.

Theorem 4.8. In an AM-space L, the norm is order continuous if
and only if there ts a discrete space X such that L is isometrically Riesz
isomorphic to Cy(X), equipped with the supremum norm.

We will need the following concept. If L is a normed Riesz space,
then u € L™ is called a quasi-interior point of L if L, is norm dense
in L (or equivalently, if inf(v,nu) — v in norm for each v € LT, or
equivalently, if |£|(u) > 0 for each £ € L'\{0}).

Each quasi-interior point is a weak unit, and in AL-spaces the
converse holds.

The following theorem is again due to Goullet de Rugy [72; 3.18].

Theorem 4.9. Let L be an AM-space with quasi-interior point u,
let X .= {¢ € L' : ¢ is a Riesz homomorphism}, endowed with (the
restriction of) o(L',L), and setY := {¢p € X : ¢(u) = 1}. Set further

DY):={fC(Y): foreache >0 there exists a compact K
such that |f(@)| < e||@|| for all € Y\K}

and endow D(Y') with the norm p, defined by

p(f) :==nf{a>0:[f(d)] < al|¢|| for all g € Y}.

Then Y is o-compact, for each v € L we have dly € D(Y) (where
(@) := ¢(v), for all € X), and the map

T:L—=DY), v dly

is an isometric Riesz isomorphism.

Proof. First observe that Y = UpenY N{p € L : ||¢]] < n}.

Let v € Land e > 0. Set K := {¢p € X : ||¢]| < 1/e, ¢(v) = 1}
and K := {a¢ : ¢ € K,a > 0}. Then Y N K is compact in ¥ and
[5(¢)] < €l|@|| for all ¢ € X\K which implies 4|y € D(Y).
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Now let f € D(Y). Then f, the homogeneous extension of f to
X, is continuous on X\{0}. Since for each ¢ > 0 there is a compact
K c X\{0} such that |f(¢)| < &||¢| for all ¢ € X\K (where K
is defined as above), one can show, using Theorem 4.6, that f is
continuous at 0. Now Theorem 4.6 implies the existence of v € L with
U= f, hence 6|y = f. Thus T is surjective, and that it is isometric,
follows from Theorem 4.6, too. u]

The following result, reflecting the duality of AL- and AM-spaces, is
due to Kaplan [96; 58.1].

Theorem 4.10. Let L be an AL-space, and let M be a norm closed
Riesz subspace of L' containing the norm unit e of L' and separating
the elements of L.

Then there exist a compact Hausdorff space X and a band I of C'(X)
such that

(i) L is Riesz isomorphic and isometric to I
(ii) L' is Riesz isomorphic and isometric to J := (I°)? C C"(X);
(ili) M s Riesz isomorphic and isometric to the space C(X)g

consisting of all projections fy on J of the elements f of C(X) C
C"(X).

Proof. By Theorem 4.5, there exist a compact Hausdorff space X
and an isometric Riesz isomorphism Tj : C'(X) — M. Set T := ¢ o Ty,
where ¢ : M — L' is the canonical injection. Since L is a band of
L" [162; Chapter II, 8.3(v)], one can show that I := T'L is a band of
C'(X); here T' denotes the adjoint of T'. Since M separates L, the map
S :=T'|r from L to I is injective. It follows that also S’ : J — L' is an
isometric Riesz isomorphism, and one has S'f; = T'f for all f € C(X),
which implies (iii). o

We proceed with Ando’s result; its proof can also be found in [111;
1.b.8].

Theorem 4.11 [8; Theorem 2]. For a Banach lattice L of dimension
> 3, the following are equivalent.
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(a) L is isometrically Riesz isomorphic to either LP(u) for some
measure p and some 1 < p < 0o, or to Co(X), for some discrete space
X.

(b) Every closed Riesz subspace of L is the range of a positive
projection of morm one on L.

A similar result was obtained by Lindenstrauss and Tzafriri [110;
Theorem 5]; see also [170; Theorem 8] and [111; 1.b.12].

Theorem 4.12. For a o-Dedekind complete Banach lattice L, the
following are equivalent.

(a) L is Riesz isomorphic to either LP(u) for some measure p and
some 1 < p < o0, or to Cy(X), for some discrete space X .

(b) Ewvery closed Riesz subspace of L is complemented.

The following terminology will prove useful.

A locally compact Hausdorff space X is called a representation space
for the Banach lattice L if the Riesz space C.(X) can be identified
with a dense ideal of L; X is called a strong representation space if it
is, moreover, the topological direct sum of a family of compact spaces.

Replacing in the proof of Theorem 2.8 the words “order dense” by
“norm dense” and “order continuous” by “norm continuous,” we get
the following uniqueness assertion on representation spaces.

Theorem 4.13 [75]. If X and X' are representation spaces for the
Banach lattice L, then 8X is homeomorphic to BX'.

A map ¢ from the Riesz space L into R is called a valuation on L
if it satisfies

¢(u+v) = d(u) + ¢(v) and  ¢(inf(u,v)) = inf(¢(u), $(v))

for all u,v € LT,

¢(au) = |a|é(Ju|]) for all a« € R,u € L.
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The set of all real valuations ¢ on L corresponds to the set of all real
Riesz homomorphisms ¢ on L via ¢ ~ ¢¥, with ¢¥(u) := ¥(|ul).
Moreover, the set of all non-zero real Riesz homomorphisms on an ideal
I of L corresponds to the set of all valuations ¢ on L which are real and
non-zero on I (since a non-zero real valuation ¢ on I can be extended
uniquely to L by setting ¢(u) := sup{¢(v) : v € I,0 < v < |ul}).

For u € L™, let X, be the set of all valuations ¢ on L with ¢(u) = 1.
I\t
X, being a closed subspace of (RL> , is compact in the topology of
pointwise convergence (in R) on L.

If L is a Banach lattice, then L, is complete under the norm |jv||, :=
inf{X : |v|] < Au}, and thus L, is Riesz isomorphic and isometric (for
Ill.) to C(X4), by Theorem 4.5 and the identification above.

The following result (generalizing the Kakutani-Kreins theorem and
the Kakutani theorem for AL-spaces with weak unit) is due to Davies
[37; Theorem 10], and independently to Lotz [113] and Goullet de
Rugy [71; 3.27]; it can also be easily derived from a theorem of Vulikh
[199; Theorem 4], as was pointed out by Abramovich and Veksler [3].

Theorem 4.14. Let L be a Banach lattice with quasi-interior point
u. Then there exists a unique compact representation space X of L,
namely X = X,, such that L can be embedded as a Riesz space into
the lattice Coo (X). X is Stonian if and only if L is Dedekind complete,
and X 1is quasi-Stonian if and only if L is o-Dedekind complete.

Proof. Realize L, as C(X,) as described above, and define the
embedding of L into Coo(Xy) by v — 0, with 9(¢) := ¢(vT) — ¢(v )
for all ¢ € X,,. The uniqueness follows from Theorem 4.13.

Now let X be Stonian, and let 0 < v, 1< v in L. v can be assumed
quasi-interior, and thus, by the previous, X = X,; hence L, = C(X).
Then L, is Dedekind complete, and thus v, T vg in L. The proof for
quasi-Stonian X is similar. a

Take L and X = X, as before. Then L’ can be identified with an
ideal of C'(X)'; hence each £ € L' corresponds to a uniquely determined
Radon measure p¢ on X with £(v) = [vdpue for every v € L, and for
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each £ € Ly, the measure y¢ is normal. The following result was proved
by Nagel [143; 4.5].

Theorem 4.15. Let L be a Banach lattice with quasi-interior point
u, and let X = X, be its compact representation space. Then the norm
of L is order continuous if and only if each nowhere dense subset of X
is a pe-null set for every & € L'; in this case X is hyperstonian.

Proof. First suppose that the norm is order continuous. Then
L' = Ly [5; 9.1] and L is Dedekind complete [5; 10.3]. Hence
C(X) is Dedekind complete and C(X); separates C'(X). Thus X
is hyperstonian, and the nowhere dense sets are p¢-null sets for every
el =L7.

To prove the converse, let v, | 0 in L C Co(X). We may suppose
that v, < u. Take n € N, and put 4, := N{v, > %} Then A, is a
pe-null set for every ¢ € L'. Therefore the downward directed family
(u—f)fer, with F:={f €L : 0< f <u, fla, =0}, converges to 0
in norm [162; Chapter II, Corollary to 5.9]. It is now easy to construct
a wy, € LT with w,|a, = 0o and ||w,|| = 1. We can find a ¢¢ such that
v, < (1/n)(wp + w), which implies that lim ||v,|| = 0. O

In [143; 4.4], Nagel obtained a similar characterization of o-order
continuous norms. For some related results, see [144].

Also the following result was proved, except for condition (iii), by
Nagel [143; 3.4,4.2]; see also Lindenstrauss and Tzafriri [111; 1.b.14].
Note that in Banach lattices with order continuous norm, quasi-interior
points and weak units are the same.

Theorem 4.16. If the Banach lattice L possesses a quasi-interior
point and has order continuous norm, then there exist a unique compact
hyperstonian space X, a pp € M(X) with suppp =X and ||p|| =1, an
ideal I of L' (i), and a Riesz norm ||.| on I such that:

(i) L is Riesz isomorphic and isometric to I,

(ii) L°°(u) C I norm densely, and I C L*(p) norm densely;
(iii) [Iflle S NfIF < 20 lloo for all f € L (p);
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(iv) I'={g € L'(p) : sup{[ fgdp: f € I, || f]| <1} < oo}
and (f,g) = [ fgdp for all (f,g) € I x I'.

Conversely, if a Banach lattice L satisfies (1)—(iv), then it possesses
a quasi-interior point and has order continuous norm.

Proof. To begin with the second assertion, let f, | 0 in I. Then, by
(iv), f. = 0 weakly, and hence f, — 0 in norm [5; 9.8].

To prove the main assertion, observe first that there exists a strictly
positive £ € L' with ||£|| = 1 [218; 103.12]. Let w be a weak unit of
L satisfying ||w|| = 2, and take n € (L')" with ||n|| = 1 and n(w) = 2.
Set

w:=(E+n)/[§+nll and w:=w/w(w).
Then |lw|| = w(u) =1, |Ju|| < 2.

Let again X = X, be the representation space of L. By the preceding
result, X is hyperstonian. Put y := p,. Then L C L'(u), and since L
is Dedekind complete [5; 10.3], L is a dense ideal of L!(x). Moreover,
C(X) = L*(u), by Corollary 1.7. For every f € C(X), we have

£l Z/Ifldu = w(lfD) <l A= 1< M lloollull < 201 flloo-

To prove (iv), take { € L’. Then p¢ < p, by Corollary 1.8(d). From
the Radon-Nikodym theorem we conclude the existence of a g € L' ()
with pe = g - u, which implies the assertion. ]

A similar result for injective Banach lattices possessing a weak unit
and admitting a strictly positive order continuous linear functional was
proved by Haydon [79; 6A].

By a result of Wolff [214; 3.4], a Banach lattice with order continuous
norm is separable if and only if it is Riesz isomorphic to a Riesz subspace
of L'()\), where X denotes Lebesgue measure on [0, 1].

It was shown by Wolff, too, that each Banach lattice can be repre-
sented as a space of (in an abstract sense) “integrable” functions; the
details follow.

. =x\*t =

Let X be a compact Hausdorff space. A mapping N : (R ) SR

is called upper norm if it satisfies the following conditions.
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~— ~—

(iv) futf = N(f
(v) N(1x) < oc.

fe R is called N-negligible if N(|f]) = 0. Set

=sup N(fn);

N:={feR*: N(f])=0}, F:={f €eR*: N(/f]) <oo}.

By usual arguments from integration theory, F is an ideal of R¥,
and f — N(|f]) is a Riesz seminorm for which F is complete. Thus
F := F/N is a Banach lattice. Let Ly be the closure of C(X) in F,
and set Ly := Ly/N. (If N(f) = [ fdp for some Radon measure y,
then Ly = L'(u)).

Theorem 4.17 [213; 2.2]. Let L be a Banach lattice possessing a
compact representation space X. Then there is an upper norm N on

— +
(RX> such that the embedding T : C(X) — L extends to an isometric

Riesz isomorphism from Ly onto L.

Proof. Let B :={f € C(X) : |Tf|| <1}, and set

N(h) ::sup{/hdu: uEBO,,uEO}.

Since N(|f|) = ||Tf]| for all f € C(X), the norm completions Ly and
L of C(X) coincide. O

In particular, if u is a quasi-interior point of L, then X, is a compact
representation space of L, and thus L can be identified with a space
Ly, which gives another version of Theorem 4.14.

Also some other special situations were investigated by Wolff [212].
We shall mention one of his results.

For a Banach lattice L, let ® be the set of all g-order closed Riesz
subspaces of L containing L, and set B(L) := Nprca M.
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L is called quasi-discrete if the set of real Riesz homomorphisms on
L separates B(L).

Theorem 4.18 [212; 1.7]. For a Banach lattice L with quasi-interior
point u, the following are equivalent.

(a) L is quasi-discrete;

(b) there exist a o-compact representation space X for L and a Riesz
isomorphism T from L onto an ideal of C(X) such that Tu = 1x (hence
T(Ly) = Cp(X))-

Proof. Realizing L as a Riesz subspace of C(X,) (cf. Theorem
4.14), one can show that L is quasi-discrete if and only if there exists
a maximal Borel set V of X, such that for each x € IV thereis f € L
with |f|(z) = co.

If L is quasi-discrete, set X := X,\N. Then N is a closed G5, and
X, is the Stone-Cech compactification of X so that all follows from
Theorem 4.14.

Conversely, assume (b). Then Y, the Stone-Cech compactification of
X, is the representation space for L postulated in Theorem 4.14. Since
T71(C.(X)) is norm dense in L, N := Y\ X is a maximal Borel set of
the kind required in the condition above. ]

In order to formulate Schaefer’s theorem, which extends Theorem
4.14, we need the following generalization of the concept of quasi-
interior point:

A disjoint system (u,) of strictly positive elements of the Banach
lattice L is called topological orthogonal system of L if the ideal
generated by the u,’s is norm dense in L. Each topological orthogonal
system is a maximal disjoint system.

The next two theorems are due to Schaefer [161; Propositions 6,7,
Theorem 2]; see also [162; Chapter III, Section 5]. We remark that
(a) = (b) in the following result can also be derived without difficulty
from [202]; see also [3].

Theorem 4.19. For a Banach lattice L, the following are equivalent.
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(a) L possesses a topological orthogonal system;
(b) there exists a strong representation space for L;
(c) there exists a paracompact representation space for L.

Moreover, the topological orthogonal systems S and the strong repre-
sentation spaces X of L are in one-to-one correspondence by assigning
to S the set Xg of all valuations ¢ on L such that ¢(u) = 1 for some
u € S, where Xg is equipped with the topology of pointwise convergence
on L.

L is Dedekind complete if and only if each strong representation space
is Stonian.

Proof. (c) = (a). The paracompact representation space X can be
written as topological direct sum of o-compact spaces X,. There exist
fin € Co(X,) with X, = U{f.n, > 0}; set u, := > upn/(n?||tml])-

The last assertion of the theorem can be proved using the correspond-

ing claim of Theorem 4.14, while (a) = (b) and the “Moreover” part
are consequences of the “concrete” Theorem 4.20. a

Theorem 4.20. Let L be a Banach lattice possessing a topological
orthogonal system.

(a) There exist a strong representation space X for L and a minimal
o(Mp(X),Ce(X))-compact set M of positive regular Borel measures
on X (here Mp(X) denotes the set of all reqular Borel measures on
X) such that:

L is embedded as a Riesz space into Coo(X), and via this embedding,
L is (isometric to) the norm completion of (C.(X),pm) under the norm

pm(f) == sup [|fldp,
peM

and hence equal to the set of all f € Coo(X) which satisfy pa(f—fn) —
0 for some paq-Cauchy sequence (fy,) from C.(X).
(b) (X, M) is unique in the following sense:

If (Y,N) satisfies (a), then there exist a homeomorphism of a dense
open subspace X¢ of X onto a dense open subspace Yy of Y and a Riesz
isomorphism C.(Xo) — C.(Yo) whose adjoint maps My := M|x, onto
M = Nly,, and (Xo, My) satisfies (a).
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Proof. (a) Let (u,) be a topological orthogonal system, and let X be
the topological direct sum of the spaces X,,.

Denoting by I the ideal of L generated by the u,’s, we have C.(X) =
®C(X,,) = ®L,, = I. Hence there exists a Riesz isomorphism
T : C.(X) — L which maps onto I, and which is continuous for the
norm topology on L and for the inductive limit-topology on C.(X) with
respect to the spaces {f € C.(X) : supp f C K}, K € R(X). I being
dense, the adjoint T” is injective, and T"(L') is o(Mp(X),C.(X))-
dense in Mp(X).

Let P be the Silov boundary of L, i.e., the minimal o(L’, L)-closed
subset of U° N (L')* (where U denotes the unit ball of L) such that
each u € L C L" attains its norm on P; the existence of P is assured
by Bauer’s theorem [12 or 162; IT 5.7]. T" being weakly continuous,
M :=T'(P) is weakly compact.

If pam is defined as indicated, then 7" becomes an isometry onto I.
Then 7' can be extended to an isometric Riesz isomorphism 7" which
maps the completion of (C.(X),pam) onto L.

By Theorem 4.14, C(X,,) C {u,} C Cx(Xy,), and since L =
®{u, }4, we have

Cu(X) C L C BCox(Xu,) = Coo(X).

(b) Let Y be the topological direct sum of the compact spaces Y.
Then (vy) is a topological orthogonal system of L, where vy corresponds
to 1ly,. Now consider the topological orthogonal system formed by all
nonzero inf(u,,vy), and observe that the corresponding representation
space Z = UZ,, is homeomorphic to open dense subsets X, of X and
Yy of Y, respectively. That Ny will be mapped onto M, follows from
the uniqueness in Bauer’s theorem. u]

Both Kakutani theorems are special cases of Theorem 4.20:

If L is an AM-space with norm unit e, then P is the set of all Dirac
measures on X,.

If L is an AL-space, then P consists of one element, and since
L' = L7, this measure belongs to M(X).

While Schaefer determined the Banach lattices with strong represen-
tation spaces, Feldman and Porter, following similar lines, solved the
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analogous problem for representation spaces.

A set of positive elements u, of the Banach lattice L is called
topological order partition of L if

(i) the ideal I generated by the u,’s is dense in L;
(ii) for each ¢ there is A such that for each p there exists @ = a(p) € R
with
inf(u,, nu,) < auy for all n € N;

(iii) denoting by H the set of all nonzero real Riesz homomorphisms
on I and endowing H with o(H, I), there exists F € C(H) such that

F(¢) > ¢(u,) for all ¢,
F(ag) = aF(¢) for all a > 0.

Each topological orthogonal system is a topological order partition.

Here are the results of Feldman and Porter [50; Theorem 2 and 51]:

Theorem 4.21. There exists a representation space for the Banach
lattice L if and only if L possesses a topological order partition.

Proof. For the “only if” consider L = C.(X). For each K € £(X)
there is fx € Co(X),0 < fxk < 1, and fx = 1 on K. Then the
collection of all fx is a topological order partition since each non—zero
real Riesz homomorphism ¢ on C,(X) has the form ¢ = ¢, 5, where
ba,z(f) = af(z), with z € X and a > 0, and thus F(¢a ) := ais a
possible choice for F'.

The “if” part is contained in Theorem 4.22. a

Theorem 4.22. The same assertions as in Theorem 4.20 hold,
with “topological orthogonal system” replaced by “topological order par-
tition,” and “strong representation space” replaced by “representation
space.”

Proof. Let X be the set of all ¢ € H with F(¢) = 1, endowed with
o(H,I) (we use the same notations as in the definition above). Then
X = UX,, where X, = {¢ € X : #(u,) > 0}. The X,’s being relatively
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compact, X is locally compact. X can be identified with a set V of
valuations on L (see the remarks preceding Theorem 4.14). Now set,
forue Land ¢ €V,

to obtain the embedding u +— 4 of L into Coo (X).

The further properties of (a) follow similarly to the proof of Theorem
4.20, while the proof of (b) is somewhat more complicated. o

Haydon studied representations of injective Banach lattices, i.e., of
Banach lattices L with the property that for every Banach lattice M,
for every closed Riesz subspace M; of M and for every positive linear
map 17 : M1 — L there is a positive linear extension T': M — L with
IT|| = ||T1||. He showed that such a Banach lattice is isometrically
Riesz isomorphic to a space of order continuous operators between
spaces of continuous functions [79; 5C], and to L!(u) for some vector
measure p [79; 6H]. Representations of certain special classes of Banach
lattices (including the injective Banach lattices) as sections of bundles
of AL-spaces were studied by Giertz [69; Section 8] and also by Haydon
[79; Section 7].

Let us finish this section by remarking that representations of locally
convex Riesz spaces were studied e.g. by Kuller [107], Kawai [97; 6.6],
Portenier [158; Section 3], and von Siebenthal [164]; see also Goullet
de Rugy [73; 3.2 and 3.3].

5. Representations of Orlicz lattices. = We follow essentially
Wnuk’s paper [216].

Let L be a Riesz space. A mapping p : L — [0, o] is called a modular
on L ([216]; see also [46]) if

pl
p2

(pl) p(uw) =0 if and only if u = 0;
(p2)
(p3) p(au) — 0 for « — 0;
(p4)
(p5)

|u| < |v] implies p(u) < p(v);

0 < wuy, 1w implies p(uy) 1 p(u);
u L v implies p(u + v) = p(u) + p(v).

pd
Jo5)
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A modular p is called convex if
plau+pv) < ap(u)+Bp(v) for all u,v € L and all o, >0, a+B=1.

If a modular p exists on L, then L is Archimedean and has the countable
sup property [216; 4.1]. Each modular on L can be extended uniquely
to a modular on the Dedekind completion of L [216; 4.2].

To a modular p, there is associated the F-norm
lull, = inffa > 0: p(u/a) < a}
which has the o-Fatou property
0 <un T u= [lunllp T [ullp.
An Orlicz lattice L is, by definition, a Riesz space L together with a

modular p (topological completeness is not included in the definition).

If p is finite, then ||.||, is order continuous [216; p. 27], and hence

u, du>0=p(u) | p(u).

Two Orlicz lattices LP and K" are called isomodular if there exists a
Riesz isomorphism T from L onto K such that p(u) = n(Tu) for all
u € L.

Let p be a positive measure on a ring of sets R of subsets of a set X.

A function
¥ :[0,00[ x X — [0, 00]

is called a Musielak-Orlicz function ([216]; see also [142; Section 2.3])
if

(v1) for all z: (-, x) is nondecreasing, left continuous, continuous
at 0, and 9 (t,z) = 0 if and only if ¢ = 0;

(¥2) for all ¢: 9(t,-) is u-measurable.

Since the mapping = — ¥(|f(z)|,z) is p-measurable provided f is
p-measurable (this is obvious for step functions and follows in the
general case by approximation with step functions), one can define the
associated functional My on L°(u) by

My (f) = /X (1 F(@)], 2)du.
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Then, according to Wnuk,
L¥(u) == {f € L°(u) : there is & > 0 with My (af) < oo}

is called a Musielak-Orlicz space. L¥(u) is an ideal of L°(u), and
applying [129; 23.6] and [68; 18D] it is easy to see that LY(u) is
super Dedekind complete (observe that elements of LY (1) have o-finite
support).

(LY (u))Mv is an Orlicz lattice possessing the o-Levi property, i.e.,
each increasing ||.|[as,-bounded sequence from L* has a supremum in
L [216; 1.1], and L¥(y) is ||.|| s, -complete (this follows by applying [5;
16.1 and 13.2)).

If ¥(t,z) = Y(t,y) for all z,y € X, then the mapping
¢ :[0,00] = [0,00], t — (t,x)

is called an Orlicz function, and the space L?(u) is called an Orlicz
space.

Theorem 5.1 [216; 5.1]. Let the Orlicz lattice L” be isomodular to a
super order dense Riesz subspace KMv of some Musielak-Orlicz space

LY (). Then

(a) L is Dedekind complete if and only if K is an ideal of LY (1);

(b) LP has the o-Levi property if and only if K = LY (p);

(c) i L% = {u € L* : plau) < oo foralla > 0} is ||.[,-
complete, then LY is mapped onto L;ﬁ’(p) = {g € L¥(pn) : My(ag) <
oo for all a > 0}; hence L?(u) CK.

Proof. (a) is obvious.

(b) By [216; A.13] the condition is necessary, and it is sufficient since
every Musielak-Orlicz space has the o-Levi property.

(c) Let g € L}b(p), g > 0. Identifying L with its image in LY (),
we find a sequence (u,) in L* with u, 1 g; hence, u, € L}. Then

|9 = unllar, — 0. Thus (u,) is Cauchy and converges to u € L%. By
[5; 5.6(iii)], up T v and hence g = u. O
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Theorem 5.2 [216; 5.1, 5.2]. For every Orlicz lattice L there exist
a locally compact hyperstonian space X which is the topological direct
sum of a family of compact spaces, a p € M(X) with supppu = X, a
Musielak-Orlicz function ¢ : [0,00[ x X — [0,00] and a super order
dense Riesz subspace K of LY (i) (which is also super order dense in
L°(u)) such that L? is isomodular to KM+,

Moreover:

(a) Ifw is a weak unit of L?, then one can arrange that w is mapped
onto 1x, and X is compact,

(b) if p is convex, then ¢ can be chosen convez (in the first variable);

(c) if plu+v) = p(u) + p(v) for all u,v, then ¢ can be chosen to
satisfy

Y(s+t,z) =9Y(s,z) + Y(t,x) for all s,t and all z;

(d) if p is finite, then ¢ can be chosen finite;
(e) if p satisfies the (Az)-condition

AC > 0Vu € L: p(2u) < Cp(u),
then 1 can be chosen to satisfy the condition

AC >0Vt >0Vz € X : ¢(2t,z) < CY(t,x).

Proof. Since L is super order dense in its Dedekind completion L and
p can be extended to L, it is enough to consider Dedekind complete L.

First assume that L possesses a weak unit w. By (p3), there exists
a > 0 such that p(aw) < co. Let (X,T) be an MOV-representation of
L with T(aw) = 1x (Theorem 2.1). For A C X, A open-compact, and
N meager in X set

WALN) = p(T ' 14).

p is a positive measure on R(X) by (p4) and (p5). We have u(4,) |
u(NA,) for each downward-directed family (A4,) of compact sets since
finite modulars are order continuous, and hence p is regular [34;
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Exercise 2.2.13|; then by Proposition 1.5, u € M(X). By (pl) we
have supp 4 = X. Hence L°(u) = C(X) (Corollary 1.7). Since p is
bounded, L°(11) has the countable sup property, and thus 7'L is super
order dense.

We set
M(f):=p(T*f) forall f€TL.

TL being Dedekind complete, the Drewnowski-Orlicz theorem [46;
Theorem 2.1] can be applied and yields the existence of a function
¥ :[0,00] x X — [0, 00] such that

[
(i) (t,.) is p-measurable for all ¢;
¥(0,

(i)

(iii) for all ¢ > 0: (¢, z) > 0 for a.e. x;

(iv) for allt > s> 0: ¢(t,x) > (s, x) for a.e. x;
(v) (-, ) is left continuous for a.e. x;

(vi) = [ ¥( ,x)dy for all f € TL.

Then there exists a u-null set A such that (i)—(v) hold on X\ A4, with
“for a.e. z” replaced by “for each z” (observe that after removing the
exceptional set in (v), it is sufficient to consider only rational ¢,s in
(iii) and (iv)). Hence redefining ¢ on [0, 00[ x A by setting ¥ (¢, z) ==t
yields (except for continuity at 0) that 1 is the required Musielak-Orlicz
function.

To fill this last gap, fix a sequence (¢,) with 1 > ¢, | 0. Then

[(tn, x)dp = p(tpaw) — 0. Thus ¥(t,, ) £ 0, and therefore there
exists a subsequence (t,, ) of (¢,) such that ¢ (¢,,,z) — 0 for all x not
belonging to a p-null set B. Redefining 9 on [0, 00[ x B as above, we
find (observing (iv)) that ¢ (-, ) is continuous at 0 for all x.

z) =0 for a.e. ;

_To show that one can arrange that w is mapped onto lx, set
Tu := a(Tu) for all u and ¥(t,z) := ¢(at,z) for all (t,z). Then

T 1/1 meet the requirements of (a).

In the general case, let (w,) be a complete disjoint system of L. Let
P, denote the projection from L onto L, := {w,}%, set u, := P,u for
all w € L, and set p, := p|r,. Then L = ®L, (cf. [54 and 5; 2.15]) and
p(u) = > p.(u,) for all u € L, by (p4) and (p5). Find X,,,,u, for
L? according to the first part of the proof; of course the X, may be
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assumed disjoint. Set X :=UX,, p:= > ., and (¢, z) := 9, (¢, z) for
z € X,.

(b) Referring to the construction just described, it is enough to prove
the assertion for Dedekind complete L possessing a weak unit w with
Tw = 1x. Then for all rational a € [0, 1], all rational s, ¢ € [0, 0o and
each open-compact A C X we have, by convexity of p,

/A las+ (1— a)t, z)dp < / (at(s,) + (1 — @) (t,))dp,

A
hence

Ylas+ (1 —a)t, 2) < av(s, o)+ (1 —a)(t,s)  pae.

Since 1 is left continuous in the first variable, this inequality holds for
all @ € [0,1], all s,t € [0,00[ and all z € X\ B, where B is a p-null set.
Now redefine v on [0, 00[ x B by setting ¥ (¢, z) := t.

(c), (d), and (e) are proved similarly. O

Special cases of the above theorem were proved in [215] and [104].
The first result in this direction was obtained by Nakano [149] who
proved that a Dedekind complete Riesz space with a convex modular
is isomodular to a Riesz subspace of some Musielak-Orlicz space.

If an Orlicz lattice L” does not satisfy the (Az)-condition, then there
exist, by results of Koldunov [101] and Lozanovskii [125], nontrivial
linear functionals on L” which are Riesz homomorphisms; Koldunov
described these functionals in terms of MOV.

Theorem 5.3 [216; 6.7]. If LP has the o-Levi property, and if there
exists a finite family D of discrete elements of L such that p|pa is
bounded in R, then in Theorem 5.2 L? is mapped onto LY (u) = L°(p),

with compact X, and ||.||ar, generates the topology of convergence in p
on LO(u).

Conversely, if LP is isomodular to some L¥(u) with bounded p such
that LY (u) = L°(u), and ||.||a, generates the topology of convergence
in u on L°(p), then L possesses the properties above.

Proof. To show the “if” part, observe that the assumptions imply that
L? is o-laterally complete, hence laterally complete since every disjoint



REPRESENTATIONS OF ARCHIMEDEAN RIESZ SPACES 839

system of nonzero elements from L” is countable, by the boundedness
of p|pa. Therefore L” equals its universal completion, namely L°(u).

If || fullar, — O, then f, £ 0 by [45; 3.6).

To prove that ||f,|lm, — O holds provided f, % 0, it is enough
to show (with S = X\ Uuep suppTu): fnls — 0 p-a.e. implies
My (fnls) — 0. By Egorov’s theorem [34; 5.4.24] there is a decreasing
sequence (Ag) with x(NAg) = 0 such that f,1g\ 4, — 0 uniformly in
n, for each k. Since p|pa is finite, it follows by an indirect argument
that sup,, My (fr1a,) — 0, from which the claim can be derived.

For the converse implication, observe first that L°(u) has the o-Levi
property with respect to the topology of convergence in measure. Since
||-laz,, generates this topology, there is § > 0 such that My (f) <1 for
all f € LO(p) with pu(supp f) < 6. By a result of Saks (see [47; IV.9.7]),
one finds a partition of X into finitely many atoms A; with p(A;) > 6
and finitely many sets B; with u(B;) < ¢, which implies the remaining
assertion. ]

Our final theorem is concerned with the embedding of Orlicz lattices
into Orlicz spaces. We need one more notion:

A modular p on L is called u-component invariant if p(u) < co and
plav)p(u) = p(v)p(au) for all o > 0 and for all components v of u.

Theorem 5.4 [216; 6.1, 6.5]. (a) If the Orlicz lattice LP has a
complete disjoint system (u,) with the properties

(i) p is u,-component invariant for all ¢,
(i) p(aw,)p(ur) = p(u,)p(auy) for all o > 0 and all ¢, A,

then in Theorem 5.2 (¢, x) can be replaced by an Orlicz function ¢(t)
which is given by ¢(t) = p(tu,)/p(u,) for some (hence, by (ii), all) ¢.

(b) If p is u-component invariant for all u € L, then in (a) ¢(t) = t?
for some p € ]0,00[; hence L* embeds into LP(pn). If p is moreover
convez, then p > 1. If p satisfies p(u + v) = p(u) + p(v) for all u,v,
then p = 1.

Proof. (a) We can assume L Dedekind complete and confine ourselves
to the case that L has a weak unit w such that p is w-component
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invariant.

It is enough to show (using left continuity) that ¢(¢t) = ¢ (¢, z) for all
rational ¢ > 0 and p-a.e. z. But for each open—compact A C X there is
a component u of w with p(A) = p(u), hence (by an easy calculation)
J4o(t)dp = [, ¥(t, x)dp for all ¢, which implies the assertion.

(b) Let (u,) be a complete disjoint system of L. Application of the
assumption to the components u,, uy of u, +uy shows that (u,) satisfies
(a)(ii). Using the same argument for the component uy of au, + uy,
we find that

platu,)p(uxr) = p(aw,)p(tu)

and hence
p(at) = ¢(a)d(t)

for all a,t > 0. Since ¢ is left continuous and continuous at 0, the
assertion follows from [4; Section 2.1.2, Theorem 3].

The remaining claims are consequences of Theorem 5.2 (b), (¢). O

Using the fact that elements of L?(u) have o-finite supports, it is not
difficult to see that if L” is isomodular to a super order dense Riesz
subspace of an Orlicz space L?(u) such that the image of L contains all
p-integrable functions, then L has a complete disjoint system satisfying
(i) and (ii) of (a).

Also, if L is isomodular to a Riesz subspace of some L?(u), then all
u € L are u-component invariant.

Theorem 5.4 was first proved, under additional assumptions, by Claas
[30]; see also [31].
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