ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 24, Number 4, Fall 1994

ON THE EXISTENCE OF TANGENT HYPERPLANES
TO FULL SUBLATTICES OF EUCLIDEAN SPACE

GERHARD GIERZ AND ALBERT R. STRALKA

ABSTRACT. Let L be a full sublattice of Euclidean n-
space. We study those points in the boundary of L where
L admits a tangent hyperplane. The main result states
that this collection of points is dense in the boundary of L.
This theorem is a generalization of the well-known fact that
monotone increasing real-valued functions are differentiable
almost everywhere.

1. Introduction. A standard result in analysis states that mono-
tone increasing real-valued functions are differentiable almost every-
where. In other words, if f : [0,1] — R is a monotone (upper semi-
continuous) function, and if L = {(z,y) € [0,1]*> : y < f(z)} is the
subgraph of f, then the set of points where we can assure the existence
of a tangent line to L is dense in the boundary of L. In this note we will
extend this result to full sublattices: A sublattice L C R™ is called full,
provided that the interior L° of L is connected and dense in L. Full
sublattices of R™ were first introduced and studied in greater detail
in [2] and [3]. If L is such a full sublattice, then the points p in the
boundary of L where L admits a tangent hyperplane is dense in the
boundary OL of L. Such a point p € L will be called a Ci-point. The
property of being a C;-point is not an intrinsic property of the point
p € OL; it rather depends on the particular imbedding of L into R™.
On the other hand, there are certain points p € 0L that do not admit
a tangent plane under any imbedding of L into R™.

Another related result is S. Mazur’s theorem [5] which states that a
closed convex set with dense interior in a separable Banach space has
a dense set of points of Ci-points in the boundary. From a point of
view of order theory, convex sets typically stand at the opposite side
of distributivity. So one might hope that there is a generalization of
Mazur’s result to abstract convex structures along the lines studied by
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1380 G. GIERZ AND A.R. STRALKA

M. van de Vel [6] or R.E. Jamison-Waldner [4] that also would cover
our result.

Here is a short guide to our notation:
1. R stands for the set of all real numbers.
2. The symbols q,r, s,t,&,§ denote real numbers.

3. As usual, R" is the Euclidean n-space, and n is reserved to denote
the dimension of R"™.

4. Vectors in R™ are denoted by z, y, z and lower indices denote the

coordinates of those vectors, i.e., z = (z1,... ,z,).
5. A subset L C R™ is called a sublattice provided that for each
pair z,y € L the elements z Vy = (max{z1,y1},... ,max{z,,y,}) and

z Ay = (min{z1,y1},... ,min{x,,y,}) belong to L.

6. The numbers m,, j, k, and [ are integer indices for coordinates,
ie,m,i,j,k,le{l,... ,n}

7. As indices for sequences we use the symbols A, i, and v. They are
sometimes also written as upper indices.

8. The symbols p and 7 are reserved for (set theoretical) projection
maps of various sorts, and the symbols o and 3 are exclusively used to
denotes “seams.”

2. Preliminaries. In this section we will summarize some of the
results of [7] and [3].

1. C4,...,C, is a fixed family of complete chains. The smallest
element of C; is denoted by L and the greatest element is denoted by
T. Let L be a complete sublattice of C; X - -+ x C,,.

2. For every index i € {1,... ,n} let m; : Cy X --- x C, — C; denote
the i*? projection. The restriction of 7; to L will also be denoted by
;. We will assume in the sequel that 7; : L — C; is surjective. This is
no severe restriction, since we may replace C; by m;(L) C C;.

3. Since L is a complete sublattice of C; X --- x (), the map m;
preserves arbitrary infima and arbitrary suprema. Hence m; : L — C;
has an upper adjoint ¢; : C; — L and a lower adjoint ¢; : C; — L.
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Explicitly, €; and §; are given by the equations

gj(r)y=sup{z € L:m;(x) <r}
0j(r) =inf{z € L: mj(z) > r}.

Then €; preserves infima and §; preserves suprema.

4. For every pair of indices 1 <1, j < n, we let

L _ .
ai7j = T; O&j,
L _ __. .
i,j —77106‘7.

Then aiLJ- is the upper adjoint of /BJLZ

Definition 2.1. Let C1,... ,C), be a finite family of complete chains.
A family of maps «; ; : C; — C; satisfying

1. a;;: C; — C; preserves arbitrary infima (i.e., is order preserving
and upper semicontinuous);

2. Q5 = idci;
3. ai,j(T) = T;
4. Q.5 Ok > Q5 k

is called an n-dimensional N-seam. The dual notion of V-seams is
defined accordingly.

Proposition 2.2. Leti,j,k € {1,...,n}. Then (Oéﬁjhgi,jgn is an
N-seam, whereas (ﬁil,'j)léidén 18 a V-seam.

The lattice L can be recovered from the maps a{jj and ﬂfj as follows:

Proposition 2.3.
L={(c1,...,cn) €CL X xCyp: (Yi,5) aﬁj(cj) > ¢}
and

L= {(Cla"' acn) € Cl X X Cn : (VZ,]) ﬁil:j(cj) S Ci}'
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Let us introduce some additional notation: If f : [0,1] — [0, 1] is any
function, we let

~

f(r) =sup{g(r): g:[0,1] — [0, 1] is continuous and g < f}
= sup inf|, << f(5)
and
?(r) = inf{g(r) : g : [0,1] — [0,1] is continuous and f < g}
=infeo sup f(s).

|r—s|<e

Then f is the largest lower semicontinuous function below f, and f is
the smallest upper semicontinuous function above f. Moreover, if f is
monotone increasing, then

—

f(r) =sup{f(s): s <rors=0};

f(r)=inf{f(s): s >rors=1}.
It follows that for monotone f, the functions f and f are also mono-

tone. Moreover, f preserves arbitrary suprema and f preserves arbi-
trary infima.

Proposition 2.4. Let L C [0,1]™ be a sublattice of R™ with N-seams
(a5,5)i,; and V-seams (Bj,i)ji- Then for 0 <r <1 and0 < s <1 we
have .

\C-k/iVj(T') <s&r< iji(s)

s < \a/i,j(r) < Bj,i(s) <r.

Let us consider a sublattice L C [0,1]* C R™. The interior L° can
be described in terms of the seams of L as follows.

Proposition 2.5. Let L C [0,1]", and assume that the a; ; are the
seams of L. Then

= () e
1<i<j<n
={ze[0,1]": a; j(z) > x; for all i,5}.
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Theorem 2.6. Let L C R™ be a closed subdirect product of [0, 1],
and let the N-seams of L be given by the o ;’s. Then the following
conditions are equivalent:

1. L is a full sublattice of R™;

2. For all triples i,j5,k € {1,...,n}, Lijr = m k(L) is a full
sublattice of R3;

3. For all triples i,7,k € {1,... ,n} we have
(a) a;r(r) < aijo aji(r) whenever 0 <r <1;

(b) r< 5,-7]- o Ej’i(r) forall0<r<landr< Ei,j o Em(r) for all
0<r<l1.

Corollary 2.7. Let L C R™ be a full sublattice that is a subdirect
product of [0,1]". If the o ;’s are the N-seams of L, then each o ; is
continuous at 1.

3. Tangent lines to full sublattices of Euclidean 2-space.
Theorem 2.6 suggests that we should first study full sublattices of R2,
and we will do this in this section. However, some of the propositions
of this section will be stated and proved in a more general context.
Throughout this section let L C [0,1]™ be a full sublattice of R™ such
that (0,...,0),(1,...,1) € L. Let ()i jeq1,.. n} be the A-seams of
L,and let (Bij); jeq1,... ny be the V-seams of L.

Lemma 3.1. If x € OL belongs to the boundary of L, then there are
indices i, € {1,... ,n} such that o; j(z;) < z; < o j(z;).

Proof. This follows immediately from Propositions 2.3 and 2.5. o
We make the following definition:

Definition 3.2. Let L be a full sublattice of R™. We say that a
point & € OL is a Cyi-point, provided that there is a neighborhood U of



1384 G. GIERZ AND A.R. STRALKA

z and a continuous map ¢ : U — R such that
1. ¢(y)=01ifand only if y € OLN U,
2. ¢ is differentiable at z, and A¢(z) # (0,...,0).

Obviously, if z is a Cy-point of 9L, then there is a uniquely determined
tangent plane to L passing through z. We will show that the set of
C1-points of L is dense in OL. Let us start with a lemma

Lemma 3.3. Let f : [a,b] — R be a functwn and let a < 19 < b

be given. If f is differentiable at ¢, then f and f are differentiable at
ro, and

f'(ro) = f'(ro) = f'(ro)

Proof. Without loss of generality, we may assume that 7o = f(r¢) = 0,
and, after replacing f(r) by f(r)— f'(0) - r, if necessary, that f'(0) = 0.

We then would like to show that f’(0) = 0. Since f is differentiable at
0 and since f'(0) = 0 for every € > 0 there exists a number § > 0 such

that —e|r| < f(r) < e|r| whenever |r| < §. By the definition of 7 this
implies that —e|r| < f(r) < |r| whenever |r| < §. Hence it follows
that f/(0)=0. O

Lemma 3.4. Let f : [a,b] — [c,d] be a continuous monotone function
with upper adjoint g and lower adjoint d. Then d(s) = g(s) and

g(s) = d(s) whenever f(a) < s < f(b).

Proof. Clearly, we are allowed to restrict our attention to the case
where f(a) = c and f(b) = d. In this case f is surjective and

9(s) = sup{r € [a,b] : f(r) = s}
d(s) =inf{r € [a,b] : f(r) = s}.

We conclude that d < g, hence d < g, since d is lower semicontinuous.
Moreover, if s’ < s, then g(s’) < d(s), since otherwise s = f(d(s)) <
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f(g(s")) = s'. therefore for f(a) < s < f(b) we have

g(s) =sup{g(s') : s’ < s}
< d(s).

It follows that d(s) = g (s) whenever f(a) < s < f(b). o

Lemma 3.5. Let f : [a,b] — [e,d] be a monotone continuous
function, and let g(r) = sup{s : f(s) < r} be the upper adjoint of
f. Assume that g is differentiable at a point ro with f(a) < ro < f(b)
and that g'(ro) # 0. Then f is differentiable at g(ro) and f'(g(ro)) =
1/g/ (o).

Proof. Let d be the lower adjoint of f. By the previous two lemmas
we have
d(ro) = g(ro)
and
d'(ro) = ¢'(ro)-
Let sg = g(rp). Since g is differentiable at rq, g is continuous at r¢ and
therefore =
d(ro) = g(ro)
=sup{g(r):r <ro}
=g(sup{r:r <ro})
= g(ro)
= 5p.
Since f is the lower adjoint of g, it follows that f(so) = f(g(r0)) < 7o.
If we had f(sp) < 7o, then for all f(sp) < r < 79 we had g(ro) =

9(f(g(ro))) = g(f(s0)) < g(r) < g(ro), and therefore g is constant
on the interval [f(sg),r0]. Hence it would follows that ¢'(r¢) = 0,
contradicting our assumptions. Therefore, f(sy) = r¢. Now let s, be
any sequence converging to sp, and assume that sy # sg for all A. Let
rx = f(sx). Since f is continuous, it follows that limy o, 7 = ro.
Since g and d are the upper and lower adjoints of f, we conclude that
d(rx) —d(ro) < sx — so < g(ra) — g(ro) which implies

A —To f(sx) — f(so0) Tx —To
o) —g(r) = sa—so d(ra) —d(ro)
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Hence
lim f(S)\) B f(S()) _ 1

n—oo Sx — So g'(To)

Lemma 3.6. Let L C [0,1]? be a full sublattice such that (0,0),(1,1) €
L. Assume that 0 < 9 < 1. If as1 is differentiable at 7o, then
(ro, a2,1(r0)) ts a C1-point of OL.

Proof. Let sg = ag,1(r9). For each 0 < ¢, let
U, = {(Ta S) : |T - 7'0|7 |S - SO‘ < 5}'

Since o ; is differentiable at 7¢, it is continuous at r¢. Hence, so =
az1(rg) = 54/2,1(7“0), and it follows that

a1,2(80) = a1,2002,1(ro) > To-

Since 5172 is lower semicontinuous, there is a number € > 0 such that
ro +¢ < \(_)1/172(80 — 6). Clearly, So— € < S = 01271(7‘0) = \0-6/271(7“0) <
a1 (ro +¢€), and it follows that

(re,se) = (ro+e,80 —€) € L°.
For every number ¢ < 0 consider the line

re(t) =re +t
sq(t) = se + gt.

Let P,(t) = (r4(t), s4(t)). Then
A, ={t e R: Pyt) e L}

is a closed interval containing 0 in its interior. Indeed, suppose that
t1,t2 € Ag, and suppose that ¢; < 3. Then Py(t1), Py(t2) € L.
It follows that P,(t1) A Py(t2), P,(t1) V Py(tz) € L, and, since L
is connected, it follows the square @ with vertices P,(t1), P,(t2),
P,(t1) A Py(t2) and Py(t1) V Py(t2) belongs to L. But for every
t1 < t < ta we have (rq(t),sq4(t)) € @ C L. It follows that A, is a
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closed interval. Moreover, P,(0) = (14(0), 54(0)) = (¢, s:) € L°, hence
0 belongs to the interior of A,.

Next, we show that the function

c:{geR:q<0} =R
g infA,

is continuous. First of all, this function is well defined, since for every
g < 0 the negative number 2/q does not belong to A, (note that
L C [0,1])?). Repeating our above argument involving the square @, it
is easy to see that

Ay ={t: Py(t) € L°}.

Also,
o(q) = inf A7.

Fix go < 0 and § > 0. Then there is a number ¢ € Ay such that
t < o(qgo)+9. Since L° is an open set, we can find a neighborhood V' of
go such that P,(t) € L° for all ¢ € V. It follows that o(q) < t < o(go)+0
for all ¢ € V, and therefore o is upper semicontinuous at go. It remains
to show that o is lower semicontinuous at go. Suppose not. Then there
is a number § > 0 and a sequence ¢g) < 0 converging to go such that
a(gx) < o(qo) — J; without loss of generality we may assume that the
sequence (o(gy))x converges to a number rg < o(gg) — d. Let

(rxs8x) = (rgr(a(ar)), 845 (0(anr)))
= (re + U(Q)\)a Se + Q)\U(q/\))'

Then, by definition, (ry, s)) € L. The sequence (75, Sx)x converges to
(re + 70, 8e + qoT0) = (744(70), S¢o(70)), hence this element belongs to
L, and therefore 7y € A,,. It follows that o(go) < 79, a contradiction.
Since P_1(t) = (ro + &€ +t,s0 — € — t), it follows that inf A_; = —¢,
i.e.,
o(-1) = —=.

In the next step, we verify that

71 <q2<0=0(q2) <0o(q1)-
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Indeed, assume that o(q1) < o(g2). Let

ri=r.+o(q), s1=5c+qo(q)

re =re + 0(q2), s2 = 8c + q20(q2)-
Then 71 < re and, since 0(q1) < 0(g2) < 0, s3 < s;. Therefore, the
rectangle with vertices (r1, s1), (r2, $2), (71, s2) and (72, s1) belongs to
L. The ray starting at (7, s.) and passing through (ro, s2) enters that
rectangle at (72, s2) and therefore intersects the interior of the rectangle.

But then there is a t < o(gz) so that (ry,(t), s¢,(t)) € L, contradicting
the definition of o(gz).

It follows that the function
0" :{qg:q>0} = {t:t <0}
g o(—q)
is monotone and continuous, and satisfies 0*(1) = —e. In the following,
we will restrict this map to the closed interval [1 — r,1 4 7], where r

may be chosen in such a way that *(1 —r) < —e = 0*(1) < o*(1+7).
Let 1 =[1—r,14r]and I = [o* (1 —7r),0"(1 +7)].

For a fixed number t € I, let
7(t) =sup{g € I, : ¢ > 0 and ¢"(q) = t}.

Then
_04271(7“5 +1t)— s

T(t) =
®) (re +t) —7e
_aga(re+t) —se
e —
and 7 is the upper adjoint of ¢ — c*(q). Moreover, 7 is differentiable
at —e =rg —r., and
—eay (o) — (a2,1(ro) — se)

c2

7'(—¢) = —

~ —eagq(ro) —¢

c2
0/2,1 (Ta 0) + 1
g

> 0.
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Since 7(—¢) = (az21(re —€) — sc)/e = (az21(ro) — (so —€))/e =1, it
follows from Lemma 3.5 that the function ¢ — o(—q) is differentiable
at ¢ = 1, and hence o(q) is differentiable at ¢ = —1.

Finally, let

¢(rys) = (r—re) —a((s — sc)/(r — 7).

Then ¢(r,s) = 0 if and only if (r,s) € L, and ¢ is differentiable at
(ro, S0). Moreover,

sotrosn) = (10 (223 ) o (200) )
=(1+40'(-1)/e,0'(-1)/e)
#(0,0). o

Theorem 3.7. Let L C R? be a full sublattice. Then the Ci-points
of OL are dense in OL.

Proof. Let x = (x1,z2) € OL. Then, using Lemma 3.1, we may
assume that \&271(1'1) < z9 < agi(x1). Assume first that as1(z1) =
22 = g 1(21). Then oy is continuous at ;. Using the monotonicity
of 3,1, we can find a sequence 0 < r) < 1 such that ay ; is differentiable
at 7y and such that limy_,o, 7y = x1. Then (ry, a2,1(r))) is a C1-point
of 0L by Lemma 3.6, and limy_, (73, @2 1(ry)) = (1, 22) = .

Hence we may assume that o 1(21) < ag,1(z1). Then we may pick a
sequence sy so that 5271(531) < 8y < az1(z1) so that limy_,o sy = 2.
For each such sy we have (12(sx) = @1, and 21 is constant on a
neighborhood of s). Hence it follows that (x;,s)) € OL is a Cy-point,
and the points of this form converge to (z1,z2) = z. O

4. Tangent hyperplanes to full sublattices of R". Let
L C [0,1]™ be a full sublattice of R™. For each 1 < i <mn, let
L' ={(x1, .. ,&...2n) €[0,1]" ' :z € L}

and let ' '
L — L
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be the canonical projection. (As usual, (z1,...,&;,... ,z,) abbreviates
(Z1,..- ,Ti—1,%it1,- .- ,Tpn).) Throughout this whole section, let L C
[0,1]™ be a full sublattice of Euclidean n-space. The A-seams of L are
given by the ¢; ;’s and the V-seams are given by the 3; ;’s. We plan to
show that the Ci-points are dense in the boundary of L. In a first step,
we will show that we can restrict ourselves to points that have only a
very restricted number of coordinates with 0’s and 1’s:

Proposition 4.1. Let x € OL. Then x is the limit of points y € OL
such that either 0 < y; < 1 for all coordinates, or there is exactly one
coordinate iy such that y;, € {0,1}.

Proof. Let x € OL be given. We shall prove this result by induction
on the total number of 0’s and 1’s in . First, we will renumber the
coordinates in such a way that there is a number my < m; < n so that

T, =0<=1<my

T, =1<—=mg <1i<mg.
If m;y = 0, then 0 < z; < 1 for all indices, and there is nothing to
show. Similarly, if m; = 1, then z; € {0,1} if and only if i = 1, and

the assertion of the proposition follows again trivially. Hence we may
assume that 2 < m;. We shall now reduce m; by at least 1.

Recall that for each index ¢ we have

Since all the maps 3; ; are continuous at 0 and all the maps «; ; are
continuous at 1 by Corollary 2.7, it follows that

lim §;(1/A) =L,
A—00
lim (1 -1/A)=T.
A—o0
Assume first that mg < m. Let

Y =2 Aem, 1(1—1/)).
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Then the sequence y* converges to z. Moreover, eventually y* = x; for
all my; <4, and also for all A, 0 < y,)‘nl_l <1-1/X < 1. Hence for my <
i we have 0 < y? < 1. Moreover y; = min{z1, a1 1, 1(1—1/))}, hence
if mg > 1 then y3* = z; = 0 and therefore y* € L. On the other hand,
if mg =1, then #1 = 1 and y3* = a1,y —1(1 — 1/A) = @1,y -1 (U, —1)5
and yy € 0L in this case, too.

Now note that the total number of 0’s and 1’s in all the y* is strictly
smaller than the total number 0’s and 1’s in x.

If mg = my, then = has no 1’s but only 0’s. In our above argument,
we replace yy by

v =2V 8, _1(1/0).

Then note that y? = B1m, 1(1/A) = Bim,-1(¥p,_1) and therefore
y* € OL. As before, limy* = x, and the number of 0’s of y* is decreased
by at least 1 since y), ,—1 > 0. This completes the induction step. a

Lemma 4.2. If L C R" is a full sublattice and if x € L\{T} such
that 0 < x; for all coordinates i, then there is a coordinate j such that
aji(z;) > x; for all i # j.

Proof. Assume not. Then for each j there is a number i such that

~—

aji(zi) < zj.

Since x < T, there is an index ko such that zx, < 1. Since the
assertion of the lemma is not true, there has to be ky # ko such that
Qo by (Thy) < Tk, Moreover, it is true that zx_; < 1 since otherwise
we would have

1= E)l/ko,kzl(]-) = \&ko,kl (a"kl)
< zp, < 1.

If the lemma were incorrect, we could continue in this way and find a
sequence of indices k) such that

kx # kxs1
T, < 1

Ek}\yk)\+1 (xk)\-'.l) < zg, .
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Since there is only a finite set of indices, there are numbers v < u such
that k, = k,. Since k, # k.41, we even have v 4+ 1 < 1. We obtain

~

a"ku Z akuvku+l © aku+17ku+2 ©-+-0 aku—lvku (wku)

> Qky yss © Okyin ke, (Th,)

= Qky kyyy © Xk k, (Th,)
> Ty,

and hence

Th, = Oy ks © Chyyy ko (Th, )-

Since L is a full sublattice, it follows from Theorem 2.6 that zj, €
{0,1}. However, by construction 0 < z, < 1, a contradiction. o

Lemma 4.3. If L C R" is a full sublattice, if n > 3, and if
z € OL\{T} such that 0 < ®m; for all coordinates i, then there is a
coordinate j such that

1. (@1,...,%&;,...7,) € OLI, and
2. a;i(z;) > xj for all j # i, or, if this is not true, then z; < B3;:(z;)
for all j # 1.

Proof. Since x < T and 0 < z; for all indices i, it follows from Lemma
4.2 that there is an index jo so that
5zjoﬂ'(a:i) > Tjos Vi 7A Jo-

Since z € 0L, we conclude from Proposition 2.5 that there are indices
10,11 so that
Qig,iy (xll) < Tig-

Obviously, i9g # jo. If we could find indices ig,i; # jo so that
Qig,iy (@i, ) < iy, then Proposition 2.5 implies that (z1,... ,Zjy,... ,Zn)
€ 0L’°. Hence we may assume that

(*) Ek,l(xl) > T, VEk,l ¢ {JO}vk # L.

Thus, necessarily i; = jg.
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If, for some ko # jo we had a, j,(j,) > T,, then we would be able

to conclude that Ekoyl(acl) > 1y, whenever | # ko (since this inequality
would be true for | = jo by the choice of ky and would follow from ()
for all other indices). Now iy = ko would lead to the contradiction

Tig = Thy < 6;]<707]'o (xjo) = a/imjo (37]'0) = \&ioyh (:L‘“) < &y

Therefore ig # ko, i.e., 90,50 ¢ {ko}. It follows that ai, j,(zj,) =
Qiy.iy (7)) < @iy, hence (z1,... ,8ks- y2n) € OLFO, and j = ko
would be the index we were looking for.

We are left with the case where we have
\&jOyi(xi) > Tjys Vi 7& Jo
EV/i,jo(ajjo) Swia Vl?é]o
Oék’l(ﬂ,‘l) > T, Vk),l ¢{]0},k)7’él

Note that this implies that x; < 1 for all indices 7. Hence we can repeat

the above argument with the [, ;’s in place of the Eivj’s, employing
the dual of Lemma 4.2. If Lemma 4.3 were not true, we would conclude
that there is an index j; so that

Ejl,i(xi) < Zj, Vi# 1
Bijiles) 2@, Vi
Bra(@) <ar, Yk iI¢ bk #£L
Now we use Proposition 2.4 to obtain
aij (zj,) > =, Vi# i
from the first of the last three inequalities. This, and the second

inequality for the Ei,jo’s gives jo # ji1. Pick any index ¢ with
jo # 1 # j1- Then we find the following two inequalities:

@i jo(Tj,) < @i
B jo,i(wi) < xjy-

This last pair of inequalities contradicts Proposition 2.4. ]
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We now start the proof of the main result. The argument uses
induction over the dimension n. Note that we took care of dimension
2 in Section 3. The following three propositions provide a base for the
induction step.

Proposition 4.4. Let x € OL be given, and assume that

1. For a certain € > 0 and all indices i > 1 we have Eu(r) =
whenever v; —e <r < xy.

2. (LEQ, . ,mn) S (Ll)o.
Then x belongs to the closure of the Cy-points of OL.

Proof. By assumption, the maps El,i are constant on the interval
[z; — €, z;], and hence for each y; € |x; — €, x;[ we have

El,i(yi) =ay,i(yi) = 21

Moreover, the assumptions of the Proposition imply that r < Ei,lal,i (r)
= Em(xl) whenever r € [z; — €, x;], hence

z; < ai,1(fv1)-

For each index i > 1 pick an element z; such that z; —¢ < 2} < z;
such that (z},...,z}) € (L')°, and let ' = (z1,2,... ,2},). Then for
i > 1 we have oy ;(z}) = 1 and «o; 1(x1) > x; > x, hence ' € OL. It
suffices to show that points of the form z’ are C;-points of L. Fix such
an element z/, and let § > 0 be chosen such that = + 6 < a; 1(z1 — )
for all indices 7 > 1; such a ¢ exists, since the maps Ei,l are lower
semicontinuous. Define an open set

V={(y2,.- ,yn) € (L") :2; —e <y; <, + & forall i > 1}
and let U = |zy — 0,21 + 6] x V. We define

p:U — R;
(yla"' 7yn)’_>y1_m1-

Then ¢(y) < O implies y; < x1 = aii(e; —€) = ai(y) and
yi < ;+0 < a;1(x1—9) < a;1(y1), hence y € L°. Moreover, ¢(y) =0
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implies y1 = 21 = ay,(yi) and y; < 2% +6 < a;1(z1 — 6) < i1 (y),
hence y € OL. And ¢(y) > 0 implies y; > z; = Elyi(yi) = a1, (%),
hence y ¢ L. Hence ¢(y) = 0 if and only if y € OL NU. Since
Ap = (1,0,...,0), the given point 2’ is a C;-point. |

Proposition 4.5. Let x € OL be given, and assume that

1. El7i(mi) <2 < ayi(z;) foralli>1,
2. mi(z) = (xa,...,2,) is a C1-point of OL'.
Then x is a Cy-point of OL.

Proof. Pick numbers r,s > 0 so that

ﬂ17i($i)<7‘<$1 <S<El,i($i) Vi> 1.

Since (xa,...,%,) is a Ci-point of OL', we can find an open set
Ul C {(y2y---yYn) : ¥2,--- ,Yn € R} containing (xa,...,x,) and a
real-valued function ¢! : U — R such that

1. ¢Y(y2,...,yn) = 0if and only if (y2,...,y,) € U' NOL, and
2. A¢'(za,...,x,) exists and Agl(za,...,2z,) # (0,...,0).
By making U! smaller if necessary, we may also assume that

3. If (y2,-.- yun) € UL N [0,1]" 1, then B14(yi) <7 < s < ari(yi)
for all 7 > 1.

Now let

U=]r,s[x U,
and let

p:U—-R

(y17"' 7yn) H ¢1(y27"' 7yn)'
Then .
Ad(z1y.-- yxn) = (0, A0 (z2,... ,24))
#(0,0,...,0)

and

¢(y1"" ’yn) :0<:>¢1(y27"' ayn) =0
= (Y2, ,yn) €U NOL
— (yla"- 7yn) E]T,S[X (UlﬂaLl).
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Hence it remains to show that
UNOL =]r,s[ x (U NOLY).

Indeed, y = (y1,.-.,Yn) € U N OIL implies that r < y; < s and
(Y2,--- ,yn) € UL N LY. Assume, if possible, that (ya,...,y,) € (L1)°,
ie, (y2,...,y,) € U N (LY. Then (y2,...,y,) € U NJ[0,1]"~1
and hence (3) implies that 81;(y;) <7 < y1 < s < au(yi) for all
i > 1. Now (y2,...,Yn) € (L')° implies 0 < y; < 1 for all 4 > 1, and
therefore 1,;(y;) < y1 and Proposition 2.4 imply that y; < Em(yl).
We conclude that

y1 < El,i(yi), Vi>1
Yi < 57i,1(y1), Vi> 1.

If both 4,5 > 1 and i # j, then a; ;(y;) > yi since (ya,...,yn) €
(L')°, and therefore a; ;(y;) > yi for all indices i # j. It then follows
from Proposition 2.5 that (yi,... ,y,) € L°, contradicting the fact that
(Y1,--- ,yn) € OL. Hence it had to be true that (ya,...,yn) € OL!,
and thus U NOL C |r,s[ x (Ut NIL).

Conversely, if y = (y1,...,yn) € ]r,s[ x (U N OL'), then, by
definition, y € U and (y2, ... ,¥,) € U' N[0, 1]~ L. Moreover, it follows
from (3) that B1;(y:) < Bri(y) <7 <1 < s < ari(yi) < avi(yi).
Since (yz2,...,yn) € OL' C L', it is also true that y; < a;;(y;)
whenever 7,5 > 1, and we conclude that y € L. Since y € L° would
lead to the contradiction (ya,- .. ,yn) € (L')°, we have y € OL. Thus,
y € UNOL, whence |r,s[ x (U NOLY) CUNIL. O

Proposition 4.6. Let x € OL be given, and assume that $1,(x;) <

T < El,i(mi) for all 1 > 1. If the Cy-points are dense in the boundary
of L', then x belongs to the closure of Cy-points in OL.

Proof. First we show that 7'(z) = (x2,...,x,) € OL'. This is
certainly the case if z; € {0,1} for some index i > 1. Hence we may

assume that 0 < x; < 1 for all 2 < ¢ < n. Hence B1,(z;) < z1 is
equivalent to z; < a; (1) by Proposition 2.4. If 7!(z) would belong
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to the interior of L', then we had z; < a; j(x;) whenever 2 < i, j < n,
and hence this inequality would hold for all 1 < i, j < n. We could
conclude that x € L° by Proposition 2.5, a contradiction.

Now let € > 0 be given. We have to find a C;-point y € JL so that
|z; — yi| < € for all indices ¢. As before, pick numbers r and s so that

Bri(z) <7<z <s< i), Vi>1.

Consider the open neighborhood U! = {(y2,... ,ys) € L' : B1,i(yi) <
r < s < El,i(y,’)} of (z3,...,2,). Then there is a C;-point
(y2,--- ,yn) € UL N OL' such that |x; — y;| < € for each i > 1. By
construction, y = (z1,ya2,...,yn) belongs to 0L, and by Proposition
4.5 this element is a Cy-point of L. O

Unfortunately, it is not true that we always have (1;(z;) < z1 <
El,i(wi) for all ¢ > 1, or, more generally, that there exists an index j so
that 3;;(z;) < z; < a;(z;) for all i # j. However, since we are only
interested in the closure of the C;-points, we can apply Proposition 4.1.
Therefore, if z € OL is given, we may assume that either 0 < z; for all
coordinates, or, if this is not possible, that x; < 1 for all coordinates; let
us assume that x; < 1 for all indices. If we work with this assumption,
we can apply the dual statement of Lemma 4.2 in order to find an

index j such that 5;;(z;) < x; for all ¢ # j. After renumbering the
coordinates, we may assume that j = 1. Hence we have

Bri(z:) <z <ari(w), Vi>1

Proposition 4.7. Assume that x € OL is given and that B4 ;(z;) <
z1 < aq,i(x;) for all i > 1. Furthermore, assume that the Cy-points of
OL' are dense in OL'. Then x belongs to the closure of the Ci-points,
or for every given € > 0 there is an element = such that

1. |z — )| <e,
2. @) ¢ Up {oni(@s), o)}

3. all the maps B;1 are continuous at z.
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Proof. Clearly, if 81:(z;) < @} < a1,(®;), then the results of
Section 1 show that (z,z2,...,z,) € L. If (z2,... ,z,) € OL, then

(), 22,... ,&,) € OL whenever 1 ;(z;) < x} < a1,(z;), and since
monotone maps are continuous almost everywhere, we could satisfy
conditions (1)—(3) of the proposition. Hence we will from now on
assume that

(z2,-..,2,) € (L?)°.

If for some index 7 > 1 we had El,i(mi) < x1, then we could pick ele-
ments o ;(x;) < 2} < x1, |£; —2}| < ¢, and we had (2, 2, ... ,2,) €
OL. Again it would follow that we could satisfy conditions (1)—(3) of
the proposition. Hence we may also assume that z; < Eu(mi) for
all 4 > 1. Then, if we had z; < Ele(wj) for some index j > 1,
then B, ;(z;) < z1 < a1 (z;) and Lemma 2.4 would imply that
Bji(z1) < z; < aji(zy). Since (zz,...,z,) € (L')°, we could con-
clude that §;(z;) < x; < aji(z;) whenever i # j. Hence Proposition

4.6 would imply that x belongs to the closure of the Ci-points of L.
We now can restrict our attention to the case where

~—

T = Ollﬂ'(mi), Vi>1.

Now pick § > 0 so small that z2—¢ < 2%, < xo implies (24, z3,... ,2,) €
(LY)° and B (z;) < a12(xh) for all j. The elements (ay,2(zh), =5, T3,
., &) € OL approximate z for xo—§ < z}, < xo. If we had 51/1,2(3312) <
ay;(x;) for some index j, then we could again use Proposition 4.6
to show that (ayo(zh),xh,x3,...,z,) belongs to the closure of the
Ci-points of OL. These elements approximate z and hence z itself
would belong to the closure of the C;-points. Hence we conclude that
El,z(x’z) = 51,3@3) = x1 whenever z5 — § < z}, < z3. Repeating this
argument for the other coordinates, we conclude that there is a 6 > 0
such that ; = a ;(z}) whenever z; — § < z} < ;. Now Proposition
4.4 would imply that x belongs to the closure of the C;-points. ]

Using this last proposition, we may assume without loss of generality
that ;1 ¢ U {a1:(z;),a1:(z;)} and that all the maps £;; are
continuous at x;. We then can divide the indices into two classes:
there are those indices ¢ for which Eu(xi). Since Proposition 4.6
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already completely exhausts the case where there is no index of the
first type, we may assume that there is at least one index ¢ for which
the first inequality is true. We now renumber the indices in such a way
that the indices of the first type come first.

Proposition 4.8. Assume that for each n' < n and each full
sublattice M C R™ the Cy-points are dense in the boundary of M.
Let x € OL be given and assume that there is an index 1 < m < n so
that

1. Elvi(xi) < x1 for all indices i > 1,

2. 5171-(3%) <y < oqi(x;) foralli with2 <i<m
3. 71 < Eu(wi) whenever m <1< n

4. ;1 is continuous at x1 for each i < n.

Then x belongs to the closure of Cy-points of OL.

Proof. The proof will be an induction on m. We start however with
a few general remarks.

First, note that the continuity of the c; ;’s at 0 and 1 and (2) imply
that
O<az; <1, V1<i<m.

For each index 1, let

—~

b; = ﬁm(ﬂh) = ﬂi,1($1)-
Let ¢ < m. Then, since El,i(xi) < 1 < ai(x;), it follows that
bi = Bi1(x1) < a; < Ei,l(ml) = b;, hence
b; = x;, Vi<m.
If m < i < n, then our assumption (3) and Proposition 2.4 imply
b;=0=uz; or b <ux, Vm <i<n.
If1 <j<m<i<n,then El](mg) = Ei,j(bj) = Ei,jEj,l(m) <
fﬁ\i71(af;1) = b;, and it follows that

Bij(zj) =0=z; or Bi;z;)<zi,
Vi<j<m<i<n.
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Further, we have

xj<\0_;j,i($i): Vi<j<m<i<n.

Indeed, if Ei7j(xj) < &, then 2; > 0 and 0 < z; < 1, hence
Proposition 2.4 gives the equivalent inequality z; < Ej,i(xi). On the
other hand, assume that x; = 0 for some m < i. Then for 2 < 7 < m we
have Ezj(xj) = 0 = ®;, thus also §; j(z;) = 0 < x;, and it follows that
zj < aji(z;) = a;:(0) = aji(z;). If actually z; = aji(z;), we could
conclude that Elyj (z;) = Elyjaj,i(xi) > 5171-(3%) > 1, a contradiction
to Proposition 4.8 (2). Hence we have z; < a;;(z;) even if z; = 0.
This inequality also holds for j = 1 by our hypothesis (3).

Moreover, since 0 < z; < 1 for ¢ < m, we also obtain from Proposition
2.4 and Proposition 4.8 (1) that

z; <Ej,1(x1), vV2<j<m.

We now start our induction on m. First, assume that m = 2. Then
for all 7 > 2 we have

/Bl,i(mi) <z < \&171($1)

And for i = 2 we obtain

—~

61,2(x2) < 51,2(1'2) < < 01172(5172).
Moreover, as discussed before, we have
To < Egvi(mi), ] 75 2.

Now x5 is the infimum of elements ry such that oy > is continuous at
each ry and such that r\, < Eu(mi) for ¢ # 2. For i = 1, this last

inequality is equivalent to (12(rx) < x1. For each A, the element
(z1,7A,3,... ,2Tn) belongs to L, and

—~

B12(ra) <z < arg(zre) < oqa(ra) = 51,2(75\)-
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Hence, if those elements eventually belong to 0L, then it follows from
Proposition 4.6 that each of them is in the closure of the C;-points of
L, hence (z1, ... ,z,) belongs to the closure of the C;-points. Thus, we
may assume that for each A,

(xlar)\am&' .. axn) €L’
Then there is a number € > 0 so that
Ty < Th < Ty + € => (T1,T5,T3,... ,T,) € L°.

Especially, all coordinates are strictly between 0 and 1. Moreover, we
have

Bijlzj) <mi,  i#2,0#].
Indeed, for j # 2, this inequality follows from (z1, za+¢/2, z3,... ,2,) €

L°, and the same inclusion yields (;2(22) < Bi2(z2 +¢/2) < z;. For
a similar reason, we have

7 < ang(ey),  iA24 i 4]

If we actually had z;, < a;, 2(z2) for some ip > 2, then we could find
a sequence 7y < x;, such that limy_, ., 7y = z;, and such that

—~

Bini(wi) <7a < @igilwi), i # o
Since zo = f2,1(x1), we conclude that
(331, ey T 15T Tig41y- - - ,an) € 0L

for all A. It follows from Proposition 4.6 that each of those points
belongs to the closure of the Cy-points of L, and hence x would belong
to the closure of the C;-points. Hence, from now on we also may assume
that

xX; > a/iyz(l‘g), i 75 2.

For each i > 2 we can approximate z; from below by elements z so that
(z1,%, ... ,2h) € (L?)° and so that za < asg,(z}) and ) < a;2(z2).
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The element (z1, 2, 2%, ... ,2}) then belongs to L, and hence we may
assume without loss of generality that

Ev/i72($2) <z < ai’z(wg), Vi 7é 2.

Now pick € > 0 so small that |z; — y;| < € and i # 2 imply that
L aia(m2) <yi < aip(w),
2. (Y1,Y3,-.- ,¥n) € (L?)°.

Note that (2, is constant on the open interval ]Ei72(x2),ai72(x2)[.
Hence (the dual of) Proposition 4.4 implies that y is a C;-point of L.
This completes the proof for m = 2.

We now proceed with the induction step. Let m > 2. Use Lemma

4.2 on the coordinates 2,...,m in order to find a coordinate j; €
{2,...,m} so that for all i € {2,... ,m}\{jo} we have z;, < a;, (z;).
We renumber our coordinates so that j, = m. Utilizing one of

our previous inequalities (the one saying that z; < aj(z;) for all
1<j<m<i<n), we obtain

T < Emﬂ(mi), Vi #m.

We now can approximate x,, from above by elements y,, so that

1. 517m(ym) < i,

2. Ty < Ym < Emvi(wi) for all 7 # m,

3. oy, is continuous at y,.

Then 21 < a1,m(Tm) < 01,m(Ym) = Elym(ym). Moreover, (zi,...,
Tm—1,Ym>Tm+1,--- ,&n) € L, actually, since o = B21(x1), this point
belongs to the boundary of L, and it satisfies the hypotheses of the
proposition with m — 1 instead of m. By the induction hypothesis, all

the points belong to the closure of the C;-points. We finally conclude
that (z1,...,z,) belongs to the closure of the C;-points of OL. mi

We finally have completed the proof by induction of

Theorem 4.9. Let L C R"™ be a full sublattice. Then the Cy-points
of OL are dense in OL.
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Proof. By the results of Section 3 the statement holds for n = 2. The
results of this section, especially the part from Propositions 4.6 through
4.8 establish the induction step from dimension n to dimension n + 1.
O
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