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CONVOLUTION AND THE FOURIER-WIENER
TRANSFORM ON ABSTRACT WIENER SPACE

IL YOO

ABSTRACT. In this paper we define the convolution of
functionals on abstract Wiener space and establish the rela-
tionship between the Fourier-Wiener transforms of each func-
tional and the Fourier-Wiener transform of their convolution.
Also we obtain Parseval’s and Plancherel’s relation from the
above relationship. The main results in a paper of Yeh then
follow from our results as corollaries.

1. Introduction. In their papers [1, 2] Cameron and Martin intro-
duced and established the existence of the Fourier-Wiener transform
for certain classes of functionals on classical Wiener space. Further,
they established an appropriate version of the formulas of Plancherel
and Parseval. J. Yeh [13] also defined the convolution of function-
als on classical Wiener space and proved the relationship between the
Fourier-Wiener transforms of each functional and the Fourier-Wiener
transform of their convolution. After that, Cameron and Storvick [3]
defined an L, analytic Fourier-Feynman transform on Wiener space,
and this concept was extended to L, by Johnson and Skoug [8].

More recently, Y.J. Lee [11] extended the Fourier-Wiener transform
on classical Wiener space to that on abstract Wiener space and applied
this transform to differential equations on infinite dimensional spaces.

In this paper we define the convolution of functionals on abstract
Wiener space and examine the relationship between the Fourier-Wiener
transforms of each functional and the Fourier-Wiener transform of their
convolution. Also we establish Parseval’s relation and Plancherel’s
relation from the above relationship. The main results in [13] will
then be corollaries of our results.
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2. Preliminaries. Let H be a real, separable infinite dimensional
Hilbert space with inner product ( , } and norm || -||. Let ||| - ||| be
a measurable norm on H with respect to the Gaussian cylinder set
measure m on H. Let B denote the completion of H with respect to
[I| - |||- Let ¢ denote the natural injection from H into B. The adjoint
operator ¢* of ¢ is one-to-one and maps B* continuously onto a dense
subset of H*. By identifying H with H* and B* with i* B*, we have
a triple B* C H* = H C B and (y,z) = (y,z) for all z in H and y in
B*, where (+,-) denotes the natural dual pair between B* and B. By a
well-known result of Gross [6], moi~! has a unique countable additive
extension v to the Borel o-algebra B(B) of B. The triple (H, B,v) is
called an abstract Wiener space and the Hilbert space H is called the
generator of (H, B,v). For more details, see [6, 9, 10, 11].

Let {e,} be a complete orthonormal (CON) system in H with the
en’s in B*. For each h in H and x in B, we define

(h,z) :nll}nolo ;(h,ek>(ek,m)

if the limit exists and (h, )~ = 0 otherwise. It is well known that for
each h (# 0) in H, (h,-)™~ is a Gaussian random variable on B with
mean zero and variance ||h||%.

Let [X] denote the complexification of a real Banach space X where
[X] = {z1 +iws : 21,22 € X} and |21 + @2||pg = (e ]3 + [Je2][3)/2.
For notational convenience, we use ||| - ||| as the norm for both B and
[B].

Definition 2.1. Let F be a functional defined on [B]. If the following
integral exists, then the functional

(2.1) Gr(y) = / F(z +iy)dv(z) fory e [B]
B
is called the Fourier- Wiener transform of F. In this case
Gr'w) = [ Fle-iy)dv(a)
B

is called the inverse Fourier-Wiener transform of F. Note that
Gr'(y) = Gr(-y).
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Now we consider some classes of functionals. The first class &
consists of functionals of the form

(2.2) F(z) = ®[(h1,2)~, ..., (hn,z)™]

where {hy,... ,h,} is a set of linearly independent elements in B* and
®(21,...,2y) is an entire function of n complex variables of exponential
type

(2.3 Boros ) < Aesp {BY [l .
k=1

The second class &, consists of functionals F'(x) satisfying the follow-
ing conditions:

(i) F(x + zy) is an entire function of the complex variable z for all
z and y in [B], and

(ii) there exist positive constants Ar and Br depending on F' such
that

(2.4) |F(z)] < Ap exp{Bpl|||z]||} for all z € [B].

Remark 2.2. When B = ([0, 1], the classical Wiener space, & is the
space Ey and &, contains the space FE,, introduced by Cameron and
Martin [2].

As in the proof of Theorem 1 in [2] and by Proposition 3.3 in [11]
and Lemma 2.3 in [12], we introduce the following theorems without
proof.

Theorem 2.3. If F(x) belongs to & or &,, then its Fourier- Wiener
transform Gr(y) exists for all y € [B] and belongs to the same class.

Theorem 2.4. If F € & or &, and a, B € C, then

/B/BF(Oéﬂc—Fﬂy)dl/(x)dy(y):/Bp(mz)dy(z)_
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Corollary 2.5. For F' € & or &,, we have Ga;(z) = F(z) for
z € [B].

Proof. Use G.'(2) = Gp(—2) and Theorem 2.4. O

3. Convolution in Fourier-Wiener transform. We begin this
section by defining the convolution of two functionals defined on [B].

Definition 3.1. The convolution of two functionals F (z) and Fx(z)
is defined on [B] by

3.1 (F+F)(2) = /B Fl(yj;>F2<y\;;> dv(y)

if the integral on the right side exists.

Theorem 3.2. If Fi(x), Fy(z) € &, then the convolution (Fy*F»)(z)
exists for every x € [B] and belongs to &. Moreover, the Fourier-
Wiener transform Gp,«p,(z) of Fy * Fy exists and satisfies

z

(3.2)  Gpur,(z) = Gp, ( ﬁ>GF2 < - %) for every z € [B].

Proof. We first prove the theorem for the special case where
{h1,... ,hy} is an orthonormal set in B*. Let

Fk(a:) = @k[(hl,w)N, ey (hn, m)N]

where ®4(z1,...,2,), k = 1,2, are two entire functions of exponential
type of n complex variables. Since each (h;, )™ is normally distributed
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with mean zero and variance one, we have

(Fy * By)(z) = /BFl(y\%w>F2<y\;;> dv(y)
_ /B<1>1 {i((hl,y)N—i-(hl,w)N,... ,(hn,y)N+(hn,m)N)]

V2
| o (10,0 = (10,2) () = ()| )
— 0 [ 0 {%(uﬁ(hl,x)N,... ,un—}-(hn,m)N)}

B, [i(ul (@) U — (hn,x)N)]

n_,2
exp{—z%}dul---dun

k=1

where the last integral exists and belongs to & by Remarks 1-3 in [13].

From Remark 3 in [13] and Theorem 2.3, it follows that the Fourier-
Wiener transform G, .r,(z) of Fy x Fy exists for every z € [B] and is
given by

Gr ., (2) = /B(F1 x Fy)(x + iz) dv(z)
= (27r)_" /R2n P, [%(ul + v1 —‘ri(hl,z)N,.. .

U + Un +i(hn,z)N)]
o, [%(ul vy —i(h1,2)™, s U — Un — z’(hn,z)”)]

n_2 2
exp{—Zuk’;vk}dul---dundvl---dvn.
k=1

Next, letting pr = (ug + vx)/v2 and qp = (ugp — vp)/V?2 for k =
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1,2,...,n, we obtain

Crver (2) = (271')_"/% B, [pl + %(hl,z)ﬁ et %(hn,z)N]

R

i ~ i ~
¢2|:q1ﬁ(hlaz) 7"'aqn7ﬁ(hn72) :|
n 2 2
+
eXP{—E L"2qk}dpl---dpndql---dqn

k=1

:/BF1<:E+i%> du(a:)/BFg(a:—i%> dv(z)
en()ol-5)

In the general case where {hy,... , h,} is a set of linearly independent
element in B*, according to the Gram-Schmidt orthonormalization
process, we can write Fj(z), k = 1,2, defined by

Fr(z) = ®%[(e1,2)~, ..., (en, )]

where the ®}[z1,... ,2,]s are entire functions of exponential type and
{e1,...,e,} is an orthonormal set in B*. Now the result for the special
case applies, and the theorem is proved. ]

Proposition 3.3. Let {F1,(x)}, Fi(z), {F2n(z)}, Fa(x) be such
that

(1) limp oo Fin(x) = Fi(z) for every x € [B], k= 1,2,

(ii) the Fourier- Wiener transform exists for every Fi ,, n =1,2,...,
k = 1,2; the convolution (Fy, x Fa,)(z) exzists, its Fourier-Wiener
transform also exists and satisfies

(3.3) GF, ,+F, ,,(2) =GR, <%>GF ( - %)

for every z € [B] forn=1,2,...,

(ili) |Fen(z)] < Aexp{B|||z|||} for n = 1,2,..., k = 1,2, where
A, B > 0. Then the Fourier- Wiener transforms of Fy and Fy exist, the
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convolution (Fyx Fy)(x) exists for all x € [B] and has a Fourier- Wiener
transform, and, finally, (3.2) holds.

Proof. The equality (3.3) can be written

(3.4) /B (/BFM <y *\"’j; iz)Fm (y _\%— ’Z> dv(y)> dv(z)

- /B Fin (w%) dv(z) /B P (mz%) d (z)

for n = 1,2,.... Now we observe that for any n complex numbers
Rlyee+ s %n;

n

>

k=1

(3.5)

<n? Z |2k |.
k=1
By (iii) and (3.5), we obtain

(3.6)

Fin ( n E)‘ < Aexp{4B(||Jzll| + 121D}

Since [, exp{K]|||z||} dv(z) < oo for every K > 0, the right side of
(3.6) is integrable with respect to & over B for fixed z. Hence, (i), (2.1)
and the dominated convergence theorem give

(3.7)  lim BFk7n<x+(—1)kHi%> dv(z) = Gp, <(—1)’“+1%>

for k = 1,2, and for every z € [B].

Similarly, by (3.5), the left side of (3.4) is finite for every z € [B] and
hence, by (i) and the dominated convergence theorem, and by (2.1) and
(3.1),

(3.8)

dn [ ([ (P ) () o)) vt
= Gpyur,(2)
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for every z € [B]. By letting n — oo on both sides of (3.4), and by
(3.7) and (3.8), this proposition is established. m

Let £ be the class of functionals F in &, such that lim,,_, o F(z,) =
F(z) holds for all  and z,, in [B] for which |||z, — z||| — 0 as n — 0.

Theorem 3.4. Let (H, B,v) be the abstract Wiener space such that,
for any x € B, Y. | (an, )~ u, converges in norm to x where {a,}
is a CON set in H which lies in B*. If Fi(z), Fa2(x) € &, then the
convolution (Fy* Fy)(x) exists for every x € [B]. Moreover, its Fourier-
Wiener transform Gp,«p,(z) ezists and satisfies (3.2).

Proof. Let

(39) Fion(e) = B Y-l ) e

k=1

and let

n

(3.10) Ty = Z(ak,x)Nozk

k=1

forn = 1,2,... and k = 1,2. To prove this theorem, it suffices to
show that {Fy ,(z)}, Fi(x),{F2n(z)} and F>(x) satisfy the conditions
of Proposition 3.3. From the definition of £, it follows that

lim Fyn(z) = Fp(x)

n—oo

for every z € [B] and k =1,2.
Let @k ,[21,. .. ;2] be defined by

(311) ék,n[zla"' 7Zn] :Fk[ZZJaJ]
j=1

for n = 1,2,... and £ = 1,2. By the definition of £ and Hartog’s
regularity theorem in [7], ®, is an entire function of the n complex
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variables {z1,...,2z,} and also that it is of exponential type follows
from
n
B s G Pl
j=1
n
< Apexp {BkZ|ZJ}
j=1

forn=1,2,... and k = 1,2. On the other hand, from (3.9) and (3.11),
it follows that

Frn(x) = @ pl(ag,2)™, ..., (ap, x)™]

for n = 1,2,... and k = 1,2. Therefore, each Fj () belongs to &,
and hence its Fourier-Wiener transform exists. Moreover, by Theorem
3.2, the convolution (F} , * F» ,)(z) exists and satisfies (3.3) for every
z € [B] for every n =1,2,....

Finally, let A = max{Ap,,Ar,} and B = max{Bp,,Bp,}. Since
>y (g, z)~ay, converges in norm to z,

n

> (aj,2)

|Fon()] < Aexp{B‘
j=1

| < ar et 1ol

for some positive constants A*, B*. By the conclusion of Proposition
3.3, this theorem is proved. o

Remark 3.5. Let (H,B,v) = (C{[0,1],Cy[0,1],m) be the classical
Wiener space where C§[0,1] = {z € Cp[0,1] : z(t) = fot f(s)ds, f €
L,[0, 1]} with inner product (z1, z2) = fol (dzy/dt)(t)(dze/dt)(t) dt. Let
{hn(s)} be the Haar functions which are a CON set on [0,1]. Then
{an(t) = fot hn(s)ds} is an orthonormal basis of C{[0,1] and, for any
z e Cy [0, ]_],

e'e] 1 (e o]
z(t) = Z/O hn(s) dz(s)an(t) = Y (an, )~ an(t)

in the uniform topology on Cy[0, 1] (see [4]). Thus, (C{[0, 1], Col0, 1], m)
satisfies the hypothesis of Theorem 3.4.
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Corollary 3.6. Under the hypothesis of Theorem 3.4, if Fi(x) and
Fy(z) belong to & or EX, then Parseval’s relation

(3.12) /BFl (%)g( - %) dv(z)
fon()en )

holds. Moreover, the formula (3.12) induces Plancherel’s relation of the

form
7(F) w0 =L [o(5)

(3.13) /B

Proof. From Theorem 3.2, Theorem 3.4 and Theorem 2.4, it follows
that (3.12) holds. Also by (3.12) and letting G, (z) = F3(z), we obtain

fen (i) ()5 e

and hence we have our formula (3.13) by using G,'(2) = Gp(—2),

Gr(z) = G'(2) and Corollary 2.5, which are the same trick found in
[11, Corollary 3.12]. o

dv(z).

Remark 3.7. Main results, Theorem 1 and Theorem 2, in [13], are
the special case of our Theorem 3.2 and Theorem 3.4, respectively.
Moreover, we can apply our results to many examples of abstract
Wiener spaces.
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