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ARITHMETICAL CONSEQUENCES OF
A SEXTUPLE PRODUCT IDENTITY

JOHN A. EWELL

ABSTRACT. The author derives a sixfold infinite-product
identity in three complex variables. From this identity two
formulas, one giving the number of representations of a given
natural number by sums of four triangular numbers and the
other giving the number of representations by sums of eight
triangular numbers, are then deduced.

1. Introduction. The main result of this paper is the identity of
the following theorem.

Theorem 1.1. For each triple of complex numbers a, b, x, with a # 0,
b#0 and |z| < 1,

(1.1 I =2*)2(1 +aba®™ (1 +a b T2
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Section 2 supplies a proof of this theorem. In Section 3 we apply
the theorem to derive formulas for the numbers of representations of
a given natural number by sums of four triangular numbers and by
sums of eight triangular numbers. Our concluding remarks compare
our formulas with two formulas of Jacobi for representations of numbers
by sums of squares.
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2. Proof of Theorem 1.1. Our proof is predicated on the
celebrated Gauss-Jacobi triple-product identity

oo

(2.1) [[a-a*)a+ A+ ) = im"zt",

1

which is valid for each pair of complex numbers ¢,z such that ¢ # 0
and |z| < 1. We also require the following entirely transparent lemma.

Lemma 2.1. The function F : Z?> — Z?, defined by F(i,j) :=
(i + j,i — j), is one-to-one from Z? onto the set

E :={(r,s) € Z* | 7 and s have the same parity}.

(Of course, Z ={0,+1,%2,...}.)

Now, for an arbitrary triple a,b,z € C, with a # 0, b # 0 and
|z| < 1, we appeal to (2.1), first letting ¢ — ab, then letting ¢ — ab~!,
and multiplying the resulting two identities to get

H(l _ LIZZn)Z(l + abenfl)(l + aflbflenfl)
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3. Applications. First of all, we collect all of the arithmetical
functions which we shall eventually require.

Definition 3.1. For N := {0,1,2,...}, put P := N\{0}. Then, for
each k € P and each n € N,

?

r1+1 T+ 1
tk(n):ZH(acl,...,mk)eNk n=amx 12 —i—---—i—ackkT}

re(n) = {(z1,...,zk) EZk|n:xf+---+xi}|.

For each n € P, b(n) := the exponent of the exact power of 2 dividing
n, and then Od(n) := n2%™ is the odd part of n. For each k € N and
each n € P, oi(n) := the sum of the kth powers of all of the positive
divisors of n. (For simplicity, o(n) := o1(n).)

Secondly, we shall also require the following two well-known identities
due respectively to Euler and Gauss.

(e o]

(3.1) [[a+ama -2 =1,

(32 | Zw"(”“’/z

1

These identities are valid for each & € C such that |z| < 1. In passing
we note that the kth power of the right side of (3.2) generates the
sequence ti(n).

Corollary 3.2. For each n € N, t4(n) = o(2n+1).
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Proof. By appeal to (2.1) we express each series on the right side of
(1.1) as an infinite product.

o0

(3.3) [ —2*)(1 +aba® M)A +a tb 2" )

(1+ab71$2n71)(1 +a71bm2n71)

(1 _ $4n)2(1 4 a2x4n72)(1 + a72x4n72)

& - e

2I4n72)(1 + b72x4n72)

+m(a+a_1)(b+b_1)H(1—m4 )2(1 4 a2*™)

(1+a—2 4")(1+b2 4")(1+b 2 477,)

1

Next, in (3.3) we let a = b and subsequently let a — ia to get

H 1 — 2 1 + z2n— 1)2(1 _ a2x2n71)(1 _ a72m2n71)
1

H 1 _ x 1 —a x4n—2)2(1 _ a—2x4n—2)2
1

—(a—a™1)?- wH(l —2*)%(1 — a®z*)?(1 — a22*")%

Now, with D, denoting derivation with respect to a, we (i) operate on
both sides of (3.4) with (aD,)?, (ii) put a = 1, (iii) divide each side of
the resulting identity by the product

H(l _ wZn)2(1 _ m4n72)2,
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and, (iv) simplify by appeal to (3.1) to get

o 0 4n\4
2n+1 __ (l -z )
Zt4(n)x - xH (1= zin-2)a
0 1

oo

k‘k k.2k

z _2Z$7

1 — z2k 1 — x4k
1

Equating coefficients of like powers of x, we thus prove our corollary.
O

Corollary 3.3. For each n € P, tg(n — 1) = 23 qg3(0d(n)).

Proof. In (3.4) let * — —x, multiply the resulting identity and (3.4),
and then let z — /2 to get

(3.6) H(l —2")*(1 -2 (1 —a*2? N (1 — a2

_ H(l _ x2n)4(1 . a2x2n—1)4(1 _ a—zwzn—1)4
1
R ] | (RO RO O NI
1

Now we (i) operate on both sides of (3.6) with (aD,)*, (ii) put a = 1,
(iii) divide each side of the resulting identity by the product

[T —emta—a e,
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and, (iv) simplify to get

0 (1 _ x2n)8
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Finally, equating coefficients of like powers of x, we obtain the desired
result. |

Concluding remarks. Our real point of departure for the foregoing
discussion is part of a famous comment of Fermat [1, page 6], “...every
number is either triangular or the sum of 2 or 3 triangular numbers,....”
Gauss [1, page 17] first settled this part of Fermat’s comment. In fact,
he proved the following theorem.

Theorem. FEvery natural number is the sum of 8 or fewer triangular
numbers; that is, for each n € N, t3(n) > 0.

Recently, Ewell [2] gave a characterization of the positive integers n
for which ¢3(n) > 0.

Finally, we observe that Corollaries 3.2 and 3.3 parallel well-known
results of Jacobi for representations of positive integers by sums of
4 squares and by sums of 8 squares. These are: r4(n) = 8(2 +
(=1)")e(Od(n)) and rg(n) = 16(—1)" Zdln(—l)dd3, each of which is
valid for all positive integers. For example, see [3, page 314].
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