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CAUCHY TRANSFORMS OF MEASURES
AND WEIGHTED SHIFT OPERATORS
ON THE DISC ALGEBRA

R. HIBSCHWEILER AND E. NORDGREN

ABSTRACT. We consider families Fo, a > 0, of analytic
functions Fj,(z) on the unit disc that are obtained by inte-
grating (1 — e?2)~% with respect to complex measures p on
the unit circle. These families are Banach spaces which are
isometrically isomorphic to the dual space of the disc algebra.
The collection 91, of all multipliers of F, is shown to be the
set of adjoints of the commutant of a certain weighted shift
operator on the disc algebra.

It is known that if 0 < a < B, then Mo C Mg. We
show that this inclusion is proper in a number of cases.
Also, for various a we find conditions on the sequence of
Taylor coefficients of an analytic function that imply that the
function is a multiplier of Fg.

1. Introduction. In this paper we consider families F, of Cauchy
transforms of complex Borel measures on the unit circle T in the
complex plane. For a > 0 let F, consist of all functions f on the
unit disc of the form

Fu(2) :/de#(ew),

where p is a complex Borel measure on T. If [u] is the equivalence class
of all measures representing F),, then the norm ||F,||o = ||[1]|| makes
F. into a Banach space.

The family F; is of classical interest [8, 9, 20]. For example, it
includes the Hardy spaces HP for p > 1. The families F,, o > 0, were
defined by T.H. MacGregor [16] in connection with geometric function
theory. In particular, [16] includes the result that for 0 < a < 8,
Fo C Fa. We give a proof of the stronger result that F, C Fg,, the
subset of F3 consisting of transforms of absolutely continuous measures,
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and we also prove that the inclusion map is a compact operator of norm
one.

A second result in [16] is that for « and 3 positive, if f is in F, and
g is in Fg, then fg is in F,5. We give a new proof of this result and
add the observation that ||fg||a+s < ||f|l!l9]|5-

The main focus of this paper is on holomorphic functions ¢ on the
unit disc with the property that if f is in F,, then ¢f is in F,. Such
a function is called a multiplier of F,, and the space of all such ¢ is
denoted M. It follows from the closed graph theorem that a multiplier
¢ induces a bounded linear operator My on F, defined by My f = ¢f.
These operators are all adjoints of operators on the disc algebra, which
is the predual of F,. They are closely related to certain weighted shift
operators on the disc algebra.

The space F; and its multiplier family 9t; have been considered
extensively in the Soviet literature [20, 19, 12]. For example, in [19]
S.A. Vinogradov proved that the function ¢(z) = > ° ;) a,2™ is in 9y
if 277, |lan|log(n 4+ 2) < co. In addition, various necessary conditions
for membership in 9t; are established in [19].

More recently, the first author and MacGregor studied properties of
the families 9, in [11]. In particular, they used the inclusion of F,Fg
in Fo4p to prove that if 0 < a < 3, then M, C M. We include the
proof here with the additional result that if « < 8 and ¢ € M, then
[1Mll5 < (1Ml

In the case 0 < a < 1, it is known that 9, # P [10]. Some
of the major results of this paper concern conditions on a function
#(z) = > .0 anz™ that are sufficient to imply that ¢ is in M,. We
show that for 0 < a < 1, if 307 Ja,|(n + 1)!"*log(n + 1) < oo, then
¢ €M,. For 0 < a < B < 1, we use this condition to show that there
is a function in Mz not in M,. We also prove that if >~ |a,| < oo,
then ¢ € M,. Using this, we show that there is a function in 95 that
is not in 9M;. The general question of whether 90, is a proper subset
of Mg when a < [ remains open.

2. Spaces of Cauchy transforms. Letting T be the unit circle
in the complex plane, we consider the spaces C(T) and M(T) of
continuous complex-valued functions and complex Borel measures on
T, respectively. The space C(T) is a Banach space under the norm
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[|fIl = sup{|f({)] : ¢ € T} for f € C(T), and M(T) is its dual space
with the duality given by

(o = | Fau

for 4 € M(T). The norm of a complex measure is its total variation.
The disk algebra A is the subspace of C(T) consisting of those functions
having a continuous extension to the closed unit disc that is analytic
in the interior D. Equivalently, a function h in C(T) is in A, provided

2
h(e?)e™? df =0
0

forn =1,2,.... The measures y that annihilate A satisfy in particular
/ ein9 dp,(ew) -0
T

forn=0,1,2,.... By the F. and M. Riesz theorem, such measures are
absolutely continuous and their Radon-Nikodym derivatives constitute
the space H}. Thus, the dual space AP of A may be identified with
the quotient space M(T)/H}. The equivalence class of a complex
measure y will be written [u] or u + H}. We will next describe other
representations of Af that play a central role in this paper.

Fix a > 0. Let k2(¢) = 1/(1 — ¢2)* for z € D and ¢ € T. Then
k% € A, and for pr € M(T), we define a Cauchy transform F,, : D — C
of u by

1 .
F == @ = —_— 19 .
12 = 020 = | e d(e)

Clearly, each F), is analytic in D, and we define F, to be the collection
of all F,, as p varies over M(T). From the binomial series expansion of

kS we see that
o0

Fulz) = 3 Anle)pn=",

n=0

where A, () is the binomial coefficient
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and
[in :/ elnG du(ew).
T

An application of Stirling’s formula shows that a necessary condition
for a function f(z) = Y oo, anz" to belong to Fy is a, = O(n*™1).
The mapping p — F), is linear, and its null space is the set of measures
encountered above, viz. dy = gdf for ¢ € H}. Thus, F, may be
identified with A# = M(T)/H¢, and for h € A, we write

(hy Fu)o = (R [1])

and
[Eulla = [1[u]]l-
For example,
n m (Smn
(z",2")a = (Gia)

where §,,, = 1 if m = n and 4,,,,, = 0 otherwise.

If u is a complex measure that is absolutely continuous with respect
to normalized Lebesgue measure m on T and the Radon-Nikodym
derivative of u is a trigonometric polynomial, then F), is a polynomial.
Since the set of such measures is weak* dense in M(T), it follows
that the polynomials are weak* dense in F,. In fact, the measures
dp = pdm, where p is a trigonometric polynomial in the unit ball of
L'(m), are weak* dense in the unit ball of M(T). It follows that the
polynomials in the unit ball of F, are weak* dense in the unit ball of
Fa.

The norm closure in M (T) of the measures p dm is the set of complex
measures that are absolutely continuous with respect to m and have
Radon-Nikodym derivatives in L'(m). The set of F, corresponding to
these measures is a norm closed subspace of F, which we denote F,,.
Thus F,, is the norm closure of the polynomials in F,. (See [3].)

3. Diagonal operators on the disc algebra. We are interested
in the multipliers of F,, and these will be introduced in Section 4. In
this preliminary section we gather together some known facts about
convolution operators, or coefficient multipliers of Fourier series, and
present a couple of observations on the spaces F,. To emphasize the
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analogy between multipliers of F, and Toeplitz operators on the Hardy
space H?, we will refer to convolution operators as diagonal operators.

A bounded operator is called compact in case it maps the unit ball
to a precompact set. Since A has the approximation property (in
fact it has a Schauder basis [2]), every compact operator on A is a
norm limit of finite rank operators (see [15]). A basic result, which
appears here as Theorem 3.1, is due to Fekete [5] and characterizes the
bounded convolution operators (see [21] and [14]). Also, the compact
convolution operators have been characterized by Akeman [1], Gaudry
[6] and Kitchen [13]. Their results pertain to C(T) and more general
spaces, but a version for A can be proved using similar methods. A
bounded operator D on A is called diagonal in case every 2" is an
eigenvector for D.

Theorem 3.1 (Fekete). A sequence {a,} is the sequence of eigenval-
ues of a diagonal operator D with respect to the eigenvectors {z"}5° if
and only if there exists a complex Borel measure v on T such that, for
alln >0, an, = (2", v). In this case Dh(z) = vxh(z) = [, h(zw) dv(w),
and | DI = |[V]]I

It is also of interest to characterize those diagonal operators that are
compact (see [1, 13]). We sketch a proof for the sake of completeness.

Theorem 3.2. The diagonal operator D induced by a complex
measure v is compact if and only if v < m. In this case, if ¢ = dv/dm,

then ||D|| = ||¢ + Hg||-

Proof. If v is a complex measure that is absolutely continuous with
respect to m, and if ¢ is its Radon-Nikodym derivative, then an L!(m)
approximation of ¢ by trigonometric polynomials leads to a norm
approximation of the diagonal operator induced by v by finite rank
operators. Conversely, suppose D is a compact diagonal operator and
D is the norm limit of a sequence of finite rank operators C,. Let
My be the isometry defined by Mgh(z) = h(e*z) for h in A. Then
the integrals D,, = (1/2m) 027r MyC,,M _4df are finite rank diagonal
operators that converge to D in norm. Each D, is induced by a measure
prdm, where p,, is a trigonometric polynomial, and, by Theorem 3.1,
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D is induced by a complex measure v. Since ||[dv — ppdm]|| — 0, it
follows that v is absolutely continuous. ]

As an example, suppose that the sequence {a,} is convex and
monotonically decreasing to 0. Then the function %(e?®) = ag +
23", ancosnb is nonnegative, belongs to L'(m) and has L'-norm
ap (see [21, Chapter 5]). Letting dv = dm, we see that a, = (2", v)
and, by Fekete’s theorem, there is a diagonal operator D having {a,}
as its sequence of eigenvalues. Since v > 0, ||D|| = a¢. In addition,
Theorem 3.2 implies that D is compact.

Example 3.3. Fix o > 0, and let a, = (n 4+ 1)/(n + o) =
Ap(a)/Ani1(a) for n > 0. Since the sequence of differences a,, — 1
or of their negatives satisfies the above conditions, it follows that the
function

Va(e?) = (ag— 1) + 2 Z(an —1) cosnf

n=1

is an L'(m) function of norm |1 — a|/a. Hence, if du = odm + dé,
where ¢ is the point mass at 1, then a, = (z",u) for n > 0, and
hence {a,} is the sequence of eigenvalues of a diagonal operator D,.
Also note that if E, is the diagonal operator induced by the sequence
{(1 — a)/(n+ )}, then E, is compact and D, = 1 + E,, where we
write simply 1 for the identity operator.

It was shown in [16] that F, C F3 for oo < 3. We illustrate the use
of diagonal operators by establishing the following stronger inclusion
relation and also show that the inclusion map is compact.

Theorem 3.4. If o < 3, then F, C Fpa, and the inclusion map is
a compact operator of norm one.

Proof. If f € F,, then there exists a measure p such that
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Consider the quotients ¢, = Ap(«)/An(B). We have

o L+ 0)
"T T (n+p)

and a computation shows that

dn+2 — 2qn+1 + dn
_I‘(ﬁ)F(n—i—a)((n—i—a—i—l)(n—i—a) n+a+1>

T T+ B\ (n+B8+1)(n+pB) n+p
> 0.

Thus, the sequence {g,}§° is a convex sequence of positive numbers
converging monotonically to 0, and consequently the Fourier series

q(e) ~ qo + 2 Z Gn COS L0

n=1

is that of an L' function of norm ¢y = 1.

Define v to be the measure obtained as the convolution of p with
the function gq. Then v is absolutely continuous and v, = ¢,u,, or
equivalently,

Consequently,
f(2) =) Au(B)vm2"
n=0
1
= dv((),
IR
which establishes the result. a

The inclusion of the following theorem was first obtained in [16] with
different methods. The norm inequality is new.

Theorem 3.5. Forall o, > 0, FoFg C Fayg, and for f € Fo and
9 € Fp, lIf9llavp < [Ifllallgllp-
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Proof. For each function h in C(T) we consider its extension to the
closed unit disc obtained by taking its Poisson integral on the interior
and, for each probability measure p on [0, 1], define H, on T x T by

1
H,(z,w) = /0 h(tz + (1 — t)w) dp(t).

Then H, is continuous and ||Hp||oc = ||h||. If p and v are complex
Borel measures on T, then we obtain a bounded linear functional ¢,
on C(T) as follows:

¢p(h) = H,dp x v.
TxT

Since H), has the same norm as h, it follows that ||¢,|| < ||| ||v||. By
the Riesz representation theorem, there exists a complex measure A on
T such that

/hd)\: H,dp xv
T TXT

and [[Al] < |l [v]].

The special case with dp(t) = (1/B(a, 3))t*~ (1 — t)P~! dt, where
o and (B are positive numbers and B(a, 3) is the beta function, is of
interest to us. In this case we obtain the negatively indexed Fourier
coefficients \,, = A(—n) of A by taking h(z) = 2" and evaluating ¢,(h).
Thus,

An = /I‘XT/O [tz + (1 — )w]™ dp(t) du x v(z,w).

By virtue of the following calculation,

<Z> /olt'“(l — 1) dp(t) = (Z) B(k +§(,:’ —)k +6)
A

An(a+8) 7
we obtain
n 1
n
Ap = /tk 1-— "_kdpt/ R du x v(z,w
;(k) a-or*apte) [ (5 )
_ " Ap(a)An L
An(a+ﬂ) kVn—k
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Hence

An(a + /B)An = Z Ak(a)ﬂkAnfk(B)ank-
k=0

Thus, if f € F, and g € F3, then there are measures p and v such that
f(n) = Ap(@)pn and §(n) = A,(B)v,. Defining X\ as above, we see
that if h = fg, then h(n) = A,(a + B)Ay, and thus h € F, 5. Since

AL < Mlpll{1v]], it follows that [|h[|ats < [|fllallglls- D

We remark that the inclusion of F, in Fg for o < 8 in Theorem
3.4 is a corollary of Theorem 3.5. Note that Theorem 3.5 cannot
be improved to get FoFp included in F,yg,4, since, for example,
(1-2)"*(1 —2)"# = (1 - 2)~(@*A) which is not in Foyps.q-

4. Weighted shifts on the disc algebra.

Definition 4.1. A weighted shift on A is an operator of the form
W = DS, where D is a diagonal operator and Sh(z) = (h(z) — h(0))/z
for h € A.

The operator S is the “backwards shift operator” on A since
gm { 0 Tf n =0,
2» b ifn > 0.

Define weighted shift operators S, on A by S, = D,.S. Thus,

0 ifn=0,
Spz2" = {
(An-—1(a)/An(a))z""t ifn>0
{ 0 if n=0,
l(n/(n-14a)z" ! ifn>0.

By Example 3.3, S, = S+ E, S, and thus S, is a compact perturbation
of S. Also, for n > 1,

n
n—1+4+a«
6n71,m

n

<Sa2n,2m>a — <Zn—1’zm>a

— <Zn’ Zm+1>a,
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and hence for k£ > 0,
(8k2m, 2™y = (2", 2™ TR,

Also, it follows that

k_n __
Syt =

{ 0 ifn<k
(Ap—k(a)/An(a))z"F ifn > k.

For an analytic function ¢(z) = Y oo, d(k)z*, we define a linear
transformation ¢(S,) on polynomials p by

$(Sa) =D b(k)Ss.

k=0

Note that the sum is finite since Sy p = 0 whenever n exceeds the degree
of p. Also, for ¢ € F, we define My by Myq = ¢q for polynomials g.
Then for ¢ € F,, we have

(8(50) 2™, ") = <§jé<k>s§zm,z">a

Il
(e

©-
=
—~

IS
U3
S

i8]

3

~
Q

Thus, for polynomials p and ¢ we have the duality relation
<¢(Sa)p7 Q>a = <pa M¢Q>a-

An operator on a Banach space X is called closed in case its graph is
a closed subspace of X x X. It is called closable in case it has a closed
extension. An operator is closable provided (0, F) is in the closure of
its graph only if F' = 0.

Lemma 4.2. Both ¢(Sy) and My are closable whenever ¢ € F,.

Proof. This is an elementary computation based on the preceding
duality relation. ]
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Theorem 4.3. For ¢ € F,, ¢(Sa) is bounded if and only if My is
bounded. In this case ¢(Sa) has a natural extension to A, and My has
a natural extension to F, given by MyF = ¢(So)*F = ¢F for all F in
Fo. Moreover, $(D) is included in the point spectrum of ¢(Se)-

Proof. Suppose ¢ € F, and My is bounded. Its extension to F, will
also be denoted by M. We write || My||o for the operator norm of My
acting on F,. Then for all polynomials p and g,

‘<¢(Sa)pa q>a‘ = ‘<pa M¢Q>a‘
< [|Mgllallpll |lalla-

By the remark in the next to the last paragraph of Section 2, the
polynomials in the unit ball of F, are weak* dense in the unit ball of
Fa, and thus

1¢(Sa)pll < [ Mg]lallpll.

Therefore, ¢(S,) is bounded, and it extends by continuity to the closure
of the polynomials in A, i.e., to all of A. We will denote the extension
to A by ¢(S,) also.

Suppose ¢ € F, and ¢(S,) is bounded. Then, for all polynomials p
and q,

(P, My@)a = (#(Sa)P, 0)a
= <pa ¢(Sa)ﬂq>a-
Thus, Myq = $(S,)q for all polynomials g. Hence, My is bounded

and ¢(S,)" is a bounded extension of My to F,. It will be shown that
$(S4)F is multiplication by ¢.

Suppose that ¢(S,), or equivalently My, is bounded. For each w in
D and each polynomial g,

(#(Sa)ky, @)a = <k$’M¢>Q>a = (ky, #9)a
= d(w)q(w) = (p(w)ky, @)a-

Thus, ¢(Sq)kSE = d(w)k2, and hence ¢p(w) is an eigenvalue of ¢(Sy).

For F € F,,

(¢(Sa)ﬂF)(w) = <k3n¢(sa)uF>a = <¢(Sa)kng>a
= ¢(w)(ky, Fla = ¢(w)F(w),
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and thus the natural extension of Mgy to F, is just multiplication by

o. ]

Note that Theorem 4.3 implies that ¢(D) is included in the spectrum
of Mg, which is a compact subset of the complex plane. This gives
another proof of the result that if ¢ € F, and if My is bounded, then
¢ € H>.

In particular, it follows that the spectrum of S, includes the closed
unit disc. We will obtain the opposite inclusion by showing that the
spectral radius of S, is one. Recall that the spectral radius is given
by the formula p(S,) = lim,, ||ST||*/™, so we must estimate ||ST|.
Let D, be the diagonal operator induced by the weight sequence
{(n+k)/(n+a+k—-1)}22,. Then D, 1 = D,, and Dy 415 = SDq .
Hence S5 = (DoS)™ = P,S™, where P,, = [[;=; Dax. Note
that P,, is the diagonal operator induced by the weight sequence

{An (a) /An+m (a)}.

Lemma 4.4. There exists a constant ¢ such that, for m > 1,
18] < e(m + 1)1~ log(m + 1)
whenever 0 < a <1, and
|IS&'[| < clog(m + 1)

whenever a > 1.

Proof. The norms of P, and S™ will be estimated separately. The
operator P, is diagonal with weight sequence ([T, (n+k)/(n+a+k—
1))22,. Suppose that 0 < a < 1. Thus, the weight sequence of P, — 1
is nonnegative, convex and monotonically decreasing to zero. Hence,
by Theorem 3.1 and the discussion following Theorem 3.2, the norm of
P,, —11is no greater than [];" , k/(a+k—1)—1<1/(™**"!) —1. By

m+a—1
m

Stirling’s formula, 1/(
constant k. Thus,

) is dominated by x(m + 1)'~* for some

[Pl < (m + 1)1

On the other hand, if @ > 1, then the weight sequence of 1 — P, is
nonnegative, convex and monotonically decreasing to zero. Hence, the
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norm of 1 — P, is no greater than 1 — []}*  k/(a+ k — 1) < 1, and
thus ||Pp]|| < 2.

Let T be multiplication by z on A, Th(z) = zh(z). Thus, T is an
isometry on A, and T™S™ = 1 — s,,,—1, where s,,h is the mth partial
sum of the Fourier series of h. Since ||s,,|| < Alog(m + 2) for some
constant A (see [21, volume 1, p. 67]), we have

5™ = [1T™S5™]|
< Alog(m+1)+1
< XNlog(m +1).

Consequently, for 0 < a <1,

1SS < 1Pl H1S™]]

k(m + 1)'7*N log(m + 1),

IA A

and putting ¢ = kA’ completes the proof of this case. In case o > 1,
IS 1] < [Pl [S™]] < 2X log(m + 1),

which establishes the lemma. O

The above estimates suffice to establish the following theorem. A
better estimate for ||.S%*|| will be obtained in Theorem 8.3.

Theorem 4.5. The spectrum of S,, and consequently also of M, is
the closed unit disc.

Proof. The spectrum includes D by Theorem 4.3. To see that it lies
in D, apply Lemma 4.4 and the spectral radius formula. O

It would be of interest to know if, more generally, the spectrum of
#(Sq) is (D) whenever ¢(S,,) is bounded.

5. Multipliers of F,.

Definition 5.1. A multiplier of F, is an analytic function ¢ such
that ¢F € F, for all F € F,.
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If ¢ is a multiplier of F,, then clearly ¢ = ¢1 € F,. Further, the
closed graph theorem shows that My is a bounded operator on F,.
Thus, if M, is the set of all multipliers of F,, then M, = {¢ € F, :
M, is a bounded operator on F,}. Hence, the following theorem is a
consequence of Theorem 4.3.

Theorem 5.2. The following are equivalent:
1) ¢ is a multiplier of Fy,
ii) My is a bounded operator on Fy,
iii) ¢(Sa) is a bounded operator on A.
If the above hold, then My = ¢(Sa)* and ||My|la = ||0(Sa)l|-

The case of @ = 1 in both the above theorem and Theorem 5.4 below
were established by Vinogradov [19] with different methods.

Corollary 5.3. If ¢ is a multiplier of F,, then Mgy is weak®
continuous.

For each function ¢( ) = 3% ,#(n)2" and each w € D, we define
Gu by du(z) = Y0y d(n)urz"

Theorem 5.4. Suppose ¢ is holomorphic in D. The following are
equivalent:

i) ¢ is a multiplier of Fq,
i) {#(2)/(1 —¢z)*:( €T} is a bounded subset of Fy,
iii) {My, :0<r <1} is norm bounded.
If ¢ is a multiplier of F,, then
¢(2)

|M¢||a:sup{ m CET}
= sup{||My, ||« : 0 <r < 1}.

«

Proof. Suppose that ¢ is a multiplier of F,. Since 1/(1 — (2)* =
(k2 dc), where ¢ is the point mass at ¢, the condition in ii) is necessary,
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and the set in ii) lies in the ball of radius ||My||o in Fn. Conversely,
suppose the condition is satisfied and the set in ii) lies in the ball
of radius s. Let p be a complex measure of norm one. Since the
measures ¢ are the extreme points in the unit ball of M(T) and C(T) is
separable, there exists a sequence of complex convex combinations p,, of
point masses that converges weak* to u. Put F,,(w) = (kS pin), so (Fy)
converges weak™ to F), in F,. For a fixed n, suppose p, = Ej:l ¢;j0j,
where §; is a point mass at (; and the c; are complex numbers such
that 2?21 lcj| = 1. Then

and hence ¢F, lies in the ball of radius s in F,. By Alaoglu’s theorem,
there is a weak* convergent subnet, say (¢F,), converging to a G in
the ball of radius s in F,. Thus, for w in D,

G(’UJ) = <k$7 G>a = 11I}1<k$a ¢7Fn’>

= lim §(w) Fr (1) = $(w) Fy (w).

Hence ¢ is a multiplier of Fy, and ||[MyF,|la < s. Thus, |[Mg|lo < s.
It has been shown that i) and ii) are equivalent.

Suppose ¢ is a multiplier of 7, and 0 < r < 1. Fix polynomials p in
A and ¢ in F, each of norm one. Suppose the degree of each is less
than or equal to N. Consider the polynomial P defined by

P(w) = (p, dwq)a-

Note that the degree of P is no greater than N. The modulus of this
polynomial assumes its maximum at a point ¢ of T. Thus,

‘<p7 ¢TQ>C¢‘ < |<p7 ¢CQ>04|'

But a calculation shows that (p, ¢¢q)a = (P¢, ¢g¢)a, and since each of
p¢ and g¢ have norm one, it follows that

‘<p7 ¢TQ>04‘ < ||M¢||a-



642 R. HIBSCHWEILER AND E. NORDGREN

Therefore || My, |la < [|Mp||a-

If condition iii) is satisfied and s = sup{||My, ||« : 0 < r < 1}, then
for any polynomial p in A and any F in F,,

(P, My F)o = lim (p, My, F)aq.

Consequently, |(p, MgF)q| < s||p||||F||a- Thus, My is bounded, and
its norm is no greater than s. This completes the proof. o

A final characterization of multipliers, or rather multiplication oper-
ators on F,, is that they constitute the commutant of M,. To prove
this, we need to recall that an operator on a Banach space is a Fredholm
operator in case its kernel is finite dimensional and its range is closed
and has finite codimension. The index i(A) of a Fredholm operator A
is the difference of the dimension of its kernel and the codimension of
its range. The following lemma is standard. See, for example, [18].

Lemma 5.5. Compact perturbations of Fredholm operators are
Fredholm. If A is a Fredholm operator on a Banach space X, then
A¥ is a Fredholm operator on X*, and i(A") = —i(A).

Theorem 5.6. For each o > 0 and each w in D, the operator Sq —w
is surjective and its null space is the one-dimensional subspace spanned
by k5. The operator M, — w is injective, and its range is closed and
has codimension one.

Proof. The assertion concerning the null space of S, — w is the result
of an easy calculation. That S — w is onto is immediate since for h in
A if f(z) = (1~ wz) 'zh, then f € A and (S —w)f = h. Thus S —w
is Fredholm of index one. Since S, is a compact perturbation of S, it
follows that S, —w is Fredholm of index one. The assertion concerning
M, — w is now a consequence of Lemma 5.5. u]

For a > 0, F, is invariant under composition with MGbius transfor-
mations of D onto itself [10]. This result can be used to produce an
alternative proof of the following corollary.
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Corollary 5.7. For a > 0, if F € F, and F(w) =0 for some w in
D, then for some G in F, and all z in D,

F(2) = (z —w)G(2).

Proof. For w in D the range of M, — w is included in the set of
functions that vanish at w, i.e., in the annihilator of k. Since that
annihilator is a subspace of codimension one, the theorem implies that
the range of M, — w is all of that subspace. O

Corollary 5.8. For o > 0, if ¢ is a multiplier of Fy such that
d(w) = 0 for some w € D and (z) = ¢(z)/(z — w), then ¥ is also a
multiplier of F.

Proof. If ¢ is a multiplier of F, that vanishes at a point w of D
and F € F,, then ¢F vanishes at w. Corollary 5.7 now implies that
YF € F,. Thus 1 is a multiplier of F,. u]

It follows from the corollary that if ¢ = By, where B is a finite
Blaschke product, then 9 is a multiplier whenever ¢ is. Much stronger
results have been obtained in the case a = 1 in [20].

Theorem 5.9. An operator on F,, is a multiplication operator if and
only if it commutes with M, .

Proof. Clearly, every multiplication operator commutes with M, .
Suppose that A is an operator on F, that commutes with M. Applying
Theorem 5.6 and Lemma 5.5 to M, — w for |w| < 1, we see that
(M, — w)* is surjective and has a one-dimensional null space which is
invariant under A*. Thus, if we let K, be the image of k¢ in A* under
the natural imbedding, then K,, is in the null space of (M, — w)! and
AYK,, = ¢(w)K,, for some complex number ¢(w). We have

o(w) = (1, p(w)K,) = (1, A'K.,)
= (AL, K,,) = (ki, Al),
= (A1)(w).
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Consequently, ¢ € F,. Further, for F' € F,,
(AF)(w) = (k&, AF), = (AF, K,,)
= (F, A'K,,) = ¢(w)(F, K.)
= ¢(w)F(w),
and hence A = My. |

6. Density of polynomials in 91,. It will be shown that 901, is the
dual space of a Banach space and that the polynomials are weak* dense
in M. The set M, of multipliers of F, may be regarded as a subspace
of the set B(Fy, F,) of all bounded operators on F,. Whenever X and
Y are Banach spaces, the set of bounded operators B(X, Yﬁ) from X to
the dual space of Y may be regarded as the dual space of the projective
tensor product X ®, Y of X and Y (see [17]). Thus B(F,,Fy) is
isomorphic to the dual space of 7, ®, A, and the duality is determined
by the relation

(F®h,T)=(h,TF),
for h € A, F € F, and T € B(F4,F,).- On bounded subsets of
B(Fa, Fo) the weak* topology coincides with the topology generated
by the seminorms T' — |[(h,TF),| for h € A and F € F,. It will be

shown that 9, is weak™* closed. Suppose T' € B(F,, Fs) is the weak*
limit of a net (¢,,) in 9M,. Then for m >0 and F € F,,

(2™, TzF)o = im{z™, pp2F)q

{0 ifm=0
- lim, (2™ ¢ F)g ifm >0
= (2™, 2TF),.

Thus, T commutes with multiplication by z, and it is a multiplication
operator by Theorem 5.9. Hence, 9, is a weak* closed subspace of
B(Fa, Fu), and it follows that 90, is itself a dual space. This establishes
the following theorem.

Theorem 6.1. For each a > 0, M, is a dual space.

Theorem 6.2. The polynomials in the unit ball of M, are weak*
dense in the unit ball of M., .
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Proof. For § € R the mapping Vy : A — A defined by Vyh(z) =
h(e*z) is an isometry on A. Clearly, 6 — Vph is continuous for each h
in A. Let Uy = Veﬁ. It is easy to see that UpF(z) = F(e'?2) for each
F in F,. We claim that for ¢ € M,, 0 — UpMyU_g is continuous if
M, is given the weak* topology. Since the function 6 — UgMyU_jg is
bounded, it suffices to check that 6 — (h, UsM4yU_gF) is continuous
for each h € A and F € F,. If w = €, then, writing h,(2) = h(wz),
we see

(h UgsMpU_gF) o = (huw, My Fg) s
and continuity follows easily.

For each measure y on T, define My, by
2T .
M :/ UpMyU g du(e™),
0
where the integral exists in the weak sense:
2w
<h, M¢*HF>Q = / <h, U9M¢U_9F>a du(ew).
0
Since Uy MU _g is multiplication by ¢(e?z), it commutes with M., and

it follows easily that M., also commutes with M,. Thus, Mg, is a
multiplication operator. Since

2 )
(2™ My 1)e = /0 (™, Up)a dps(e®)

27
= [ g due)

= ¢(m)pm,
it follows that it is multiplication by

$xp(z) = d(n)un2".
n=0
Also, from the defining relation for M.,

2
(h MysuFhal < [ 1B VMU0 diel(e”)
< {11 Mool [F Lol 1]
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and thus
[[Mpplla < [|Mg|]allpl]-

If du = (1/2m) K, dm, where K,, is the Fejer kernel, then, since
[l = [ KnllL1m) = 1,
it follows from the preceding inequality that

om (D] < [|Mp|la;

where 0, (¢) is the nth Cesaro mean of ¢. Thus, the sequence {o,(4)}
is bounded, and Alaoglu’s theorem implies it has a weak* convergent
subnet. But examination of Fourier coefficients shows that every
convergent subnet of {c,(¢)} has the same limit ¢, and thus {o,,(¢)}
converges to ¢. O

For ¢ € M, for a > 0 and for 8 > 1, define polynomials s,(¢;3) on
T by

~ An_1(B)
— An(B)
These polynomials were first studied in [11]. Note that s, (¢; 1) = s,(¢)

and s,(#;2) = o,(¢). With v > 0, let K be the quasipositive kernel
defined in [21, p. 94] by

sn($38)(2) = ) = d(k) 2

~ Ank(7)
g (+Dka

where Dy, is the Dirichlet kernel. For 8 > 1, let du = K~ dm. Then
we have s,(¢;8) = p* ¢. This follows from a short calculation based
on the relation

ZAk(B - 1) = Am(ﬁ)
k=0

together with

A, x(B-1
H*¢=kz_07An((Bﬂ) )Sk(¢)-
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Since these kernels are uniformly bounded in L! norm for each 8 > 1,
the polynomials s, (¢;8) are uniformly bounded in 91,. Their Fourier
coeflicients converge to those of ¢, and thus it follows that they converge
weak™* in 9, to ¢. We have proved the following corollary.

Corollary 6.3. For every a > 0 and 8 > 1 and every ¢ € M, the
polynomials s, ($; 8) converge to ¢ in the weak* topology.

Corollary 6.4. For every a > 0 and B > 1 and every ¢ € M, the
polynomials s, (¢; B) converge uniformly on compact subsets of D to ¢.

Proof. This follows from

¢(Z) = <k’?,¢>a
nli_>nolo<k?,8n(¢§ B))a
= lim s, (¢;8)(2)

together with the uniform boundedness of the s, (¢;3). O

7. Properties of 91,. In this section various properties of the
families M1, are discussed. In [19] Vinogradov proved that if ¢ € My,
then the radial limit lim, _,;_ ¢(re'®) exists for all . The same result
is true for ¢ € M,, a > 0, and the proof proceeds just as in [19]. From
this fact it follows that there are functions in H*° that are not in i,
for any a > 0.

In the case of @« < 1, a stronger assertion can be made. Let
?(z) = > cpz®, where ¢ = 1/n?if k =2",n=1,2,... and ¢, =0
for all other k. Since Y - 1/n? < oo, ¢ € H*®. Since H® C Fi,
Theorem 3.5 implies that ¢(z)/(1 —2)“ belongs to Fp+1. We will show
that ¢(z)/(1 — 2z)* does not belong to any Fg with 8 < 1. Thus, even
though ¢ is continuous on the closed disc, it does not multiply F, into
itself, nor even into any Fz for § < 1. A calculation yields

% - i <§Amk(a)ck> z™.

m=0
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In particular, for m = 2/ the coefficient of 2™ in ¢(z)/(1 — 2)® is

m N
1
];) Ap—i(@)er, = z_:l Ap—an (@) 2

> L

_ N2 .
Because of the necessary condition for membership in F3, to show that
¢(2)/(1 — 2)* is not in Fpg, it is enough to show that b, # O(m’~1),
where b, is the mth Taylor coefficient of ¢(z)/(1 — z)®. But the above
estimate of b,, now yields

b 1/N?  m!=P
mB—1 = mB-1 N2

|
—
—
=}
oQ
[\
~
V)

which is unbounded. Therefore, ¢(2)/(1 — 2)* is not in Fp.

The inclusion of the following theorem is not new (see [11]); that it
is contractive is.

Theorem 7.1. If 0 < o < 3, then M, C Mg, and the injection
from My, into Mg is a contraction.

Proof. Let ¢ belong to M. By Theorem 5.4, {¢(z)/(1 —(z)* : |(] =
1} is a subset of the zero centered ball in F, of radius || My||o. Since
the family {1/(1 — ¢2)#=< : |¢| = 1} lies in the unit ball of F5_,, it
follows from Theorem 3.5 that {¢(2)/(1 — (2)? : |¢| = 1} lies in the
ball of radius ||My||« in Fg. Another application of Theorem 5.4 shows
that ¢ € 93?5 and ||M¢H5 < ||M¢||a. O

We conclude this section with the observation that the multipliers of
Faa coincide with those of F,, at least for « > 1. This was stated in
[12] for the case a = 1.

Theorem 7.2. The subspace F,, is invariant under every multiplier
of Fo for a > 1. Every multiplier of F, is a multiplier of F,, for a > 0.
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Proof. Suppose a > 1 and ¢ € M,. Then ¢ € H*, and consequently
¢ € Fiq. By Theorem 3.4, ¢ € F,q. It follows that ¢z" € F,, for
every n > 0. Since every absolutely continuous measure is the limit in
norm of its sequence of Cesaro means, it follows that every element of
Fae is a norm limit of polynomials. Thus, if f € F,, and polynomials
Pn converge to ¢ in norm, then ¢p, € Foq and {¢p,} converges to ¢f.
Hence ¢f € Faq-

Conversely, suppose ¢ is a multiplier of F,,, and let f be any member
of F,. By the closed graph theorem, multiplication by ¢ is a bounded
operator on F,,. By the observation at the end of the first section, f
is a weak™ limit of a bounded sequence of polynomials p,,. Thus the
sequence {¢p,} is bounded, and by Alaoglu’s theorem, it contains a
weak™ convergent subsequence. We suppose {¢p,, } itself converges and
g is its limit. For arbitrary w in D,

g(w) = nILH;O<k$, PPn)a
= lim ¢(w)pn(w) = (w)f(w)

Thus, ¢f € F, and ¢ is a multiplier of F,. o

8. Coefficient conditions. Let ¢ be holomorphic in the unit disc,
and suppose that ¢(z) = Y o> a,2". Vinogradov [19] proved that if
> o lan]log(n+2) < oo, then ¢ € M. It is of interest to find similar
conditions on the coeflicients of ¢ that imply that ¢ € 9, for a > 0.
Such conditions might suggest whether the inclusion in Theorem 7.1 is
proper. We begin by considering the case 0 < a < 1.

Theorem 8.1. Let ¢(z) = > o~ qanz" for |z| <1, and suppose that
O<a<l If

Z an|(n+ 1) *log(n + 1) < oo,

n=1

then ¢ € M, and in this case

1Myl < c(|ao| £ Janl(n + )" log(n + 1))

n=1
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for some constant c independent of ¢.

Proof. We first show that ¢ € F,. Let ¢1(2) = > - ,(an/An(a))z"
It follows from Section 2 that ¢ € F, if and only if ¢; € Fi.
Since 1/A,(a) = O(n'~?), the given coefficient condition implies that
¢1 € H*. Since H* C Fi, it follows that ¢ € F,. By Lemma 4.4,

> lanl lIS2]] < c<|a0| + > lan](n+ 1) *log(n + 1)) < o0

n=0 n=1

and hence the series > >° ja,S" converges to the bounded operator
#(Sa) on A. By Theorem 5.2, M is bounded, and the norm estimate
follows. O

Corollary 8.2. If 0 < o < 8 < 1, then there is a function that
belongs to Mg but not M,,.

Proof. Suppose that 0 < o < 8 < 1, and let ¢(z) = Y..°  anz",
where
o — {nﬁ_l/(logn)?’ ifn=2Ffork=1,2,...

0 otherwise.
Then
1— = Qk(ﬂ 1 k 1— k
Z\an\n—i— 1)'Plog(n + 1) Z 5 (27 +1) “Plog(2* +1).
n=1 1

This series converges by comparison with >"p~ , 1/k?, and thus ¢ € M.

To obtain ¢ ¢ M,,, we show that ¢ ¢ F,. Asin Section 2, a necessary
condition for ¢ to belong to F, is that a, = O(n®~!). For n = 2¥ we

have
an nl—anﬂ—l n,@—a

ne1 " (logn)®  (logn)®’

Since the last quantity is unbounded, it follows that ¢ is not in F,, and
therefore not in 91,. a

Let ¢(2) = > .7y an2z" for |z| < 1. An argument similar to the
proof of Theorem 8.1, together with the result of Lemma 4.4 that
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|1S2]| < clog(n+1) for o > 1, shows that if Y, |a,|log(n+1) < oo,
then ¢ € 9M,. This is also a consequence of Theorem 7.1 and
Vinogradov’s coefficient condition for membership in 9;. A stronger
result is needed to distinguish the families 91, for a > 1. The next
theorem deals with the case @ = 2. Since this paper was written,
Hallenbeck, MacGregor and Samotij [7] have obtained the stronger
result that, under the condition of the theorem, ¢ € 9, for all a > 1.

Theorem 8.3. Let ¢p(z) = Y o0 anz" for |z| < 1. If 37 lan| <
00, then ¢ € Mo, and in this case ||Mplloa < cd> ooy lan| for some
constant c independent of ¢.

Proof. As in the proof of Theorem 8.1, we show that >~ |a,|||S¥|| <
00, and for this it clearly suffices to show that {||S%||} is uniformly
bounded. For a function h(z) = > ", h(n)z" in A,

n52 Z Ak n Zk
k—-n+1;
- kZ:: k+1r ()"
Let -
Dn(e) Z cpe*®
k=—o0
where

B 1 fo<k<n
n/(k+1) ifk>n.

Except for finitely many terms, the sequence {c}7°, is nonnegative,
monotonically decreasing and convex. It also converges to zero. There-
fore, by Theorem (1.5) of Chapter V in [21], 9, is in L*(m). It will be
shown later that {||¢,||1} is bounded. Here, and for the remainder of
this proof, || - ||; means the norm in L'(m). Note that

2"S3h(z) = h(z) — (¥n * h)(2),

C_ = Ck

and thus
1S3 Al = 1[2" S5 hl| < (1 +|[¢n][1)]|R]]-
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It follows that ||S7|| < 1+ ||%s||1, which implies the result.

It remains to estimate ||¢,||1. Observe that, for k& > n, the Fourier
coefficients of v,, form a nonnegative, monotonically decreasing, convex
sequence that converges to zero. Therefore, as in the proof of Theorem
(1.5) on page 183 of [21], one can employ summation by parts twice to
obtain

n—1 2n

i T ) et

= 2n
7](’
+I§L(k+2)(k+3) k

wn:

where K, is the Fejer kernel. The L' norms of the three terms on the
right can be estimated separately. The first two are obviously bounded.
As for the third, since all terms are positive, term by term integration
yields

> 2n > 1 1
9 - =
2 (k+2)(k+3) "k;(mz k+3>
_2n
Cn+2’
and the proof is complete. |

Corollary 8.4. There is a function that belongs to Mo but not M.

Proof. It follows from the theorem that every function with absolutely
summable Taylor coefficients is in 2. But Corollary 1 on page 16 of
[19] implies that there exists such a function not in 9t;. Here is a short
construction of one such function. Choose an increasing sequence {Nj}
such that Ny 1 > 2Ng and Y.0% 1/n > k®. Let a, be 1/k? if n = Ny,
and 0 otherwise. If ¢(z) = >~ janz" for |z| < 1, then ¢ € My.
We claim that f(z) = ¢(2)/(1 — 2z) = > .°,¢cn2™ is not in Fy, and
consequently, ¢ is not in 9;. Note that ¢, = 0 for n < N; and
Cn = Z’Ll 1/j% if Ny < n < Ngt1. Thus {c,} is a slowly increasing
sequence with a jump of 1/k? at N for each k. The polynomials
pr(z) = Z;yz’“l(l/j)(zN’“"’j — 2Nk=7) are uniformly bounded (see [21, p.
182]). If f were in JFy, then the sequence {(pg, f)1} would be bounded.
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But,

This completes the proof. a
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