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THE BAER-KAPLANSKY THEOREM
FOR A CLASS OF GLOBAL MIXED GROUPS

STEVE T. FILES AND WILLIAM J. WICKLESS

1. Introduction. This paper considers the case of isomorphic
endomorphism rings E(G) and E(G’) of global, mixed abelian groups
G and G’'. Throughout, all groups are understood to be abelian, and
all isomorphisms E(G) = E(G’) ring isomorphisms. Before describing
new results, we recount some of the history of our general problem.
According to the Baer-Kaplansky theorem [4, Theorem 28], if G and G’
are torsion groups, then every isomorphism E(G) = E(G’) is induced
by an isomorphism of the groups themselves. Kaplansky’s proof of this
result plays off the abundance of cyclic direct summands of reduced p-
groups: primitive idempotents in F(G) correspond to direct summands
of G’ under the ring isomorphism, and an isomorphism G — G’ can be
constructed by utilizing a carefully chosen set of such idempotents.
By observing that Kaplansky’s method also works in the torsion-
free case if each group possesses a cyclic, nonzero direct summand,
Wolfson [16] subsequently proved a similar theorem for torsion-free
modules over the p-adic integers. Not surprisingly, the proofs of such
theorems in the mixed case require quite different techniques, because
idempotents in the endomorphism rings no longer suffice to recover the
full structure of the underlying groups and modules. Suitable methods
were developed in a sequence of papers by May [9, 5-8], and a wide
variety of Baer-Kaplansky type theorems were put forth by him for
local, mixed groups and modules in these accounts. This author’s
framework now seems indispensable for dealing with the problem of
isomorphic endomorphism rings of many classes of mixed groups, even
in the little-explored global case. The method we will use of embedding
both groups in the completion of a single torsion group (Lemma 1) is
due to him.

The class G of global mixed groups that we shall consider is described
below. We show that many nonisomorphic groups G’ € G with
E(@') = E(G) are possible for groups G in the class. Nevertheless,
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we determine a number of structural features of the groups G € G that
ensure G = G’ whenever G’ is an arbitrary group of the same torsion-
free rank as G and E(G) = E(G'). Our results are apparently the first
examples of Baer-Kaplansky type theorems for global, reduced mixed
groups of torsion-free rank greater than one.

For a mixed group G we henceforth let 7= T'(G) denote the torsion
subgroup and, for a prime p, let T, = T,,(G) be the p-torsion subgroup
of G. For G € G the direct sums and products &7, and IIT, are
understood to be taken over the (necessarily infinite) set of primes p
such that T, # 0. We put E = E(G). We use the work “rank” for
torsion-free rank and “dim” for dimension over (). When we say G is
mixed we mean that G is “honestly mixed” in the sense that 0 # 1" # G.
We consider mixed groups in a class G defined as follows.

Definition 1. The class G is the class of all reduced mixed groups
G such that

1) G has finite rank and
2) G/T is divisible and

3) G is self-small (Hom (G, ®G;) = &;Hom (G, G;) for any family of
groups {G;} such that each G; = G).

The following theorem provides a useful alternate characterization of
the class G.

Theorem 1 [1, Section 2]. For a group G the following are equivalent:
i) Geg
ii) a) The group G/T is a nonzero finite dimensional Q-vector space
and
b) each T), is finite and
c) the inclusion map i : ®T, — IIT, can be extended to a pure

embedding of G into 11T, and

d) if my is the projection of IIT}, onto any fized Ty and F is
some mazimal rank free subgroup of G, then w,(iF) = T, for almost
all primes q.
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Henceforth, for G € G, we suppress the pure embedding ¢ and
simply regard ®1, C G C IIT},. Since each endomorphism of G will
have a unique extension to an endomorphism of IIT},, we also regard
®E, C E C IIE,, where E, = End (T,). In this context E is the
pure subring of IIE, consisting of those A = (\,) € IIE, such that
AMG) CG.

We note for future reference that if A = (\,) € Hom (G,T) C E
and F is a maximal rank free subgroup of G € G, then kA(F') = 0 for
some k > 0. By ii)d) kA,(T},) = O for almost all p. Then, by ii)b),
E'kX(T) = 0 for some k' > 0. Since G/T is divisible and G is reduced,
E'kX = 0. Thus, for G € G, the ideal Hom (G,T) C E coincides with
T(E), the torsion subgroup (ideal) of E.

The groups in G were first studied in [3] in connection with the
problem of finding mixed groups G such that the endomorphism ring
E is a von Neumann regular ring or a right principal projective ring.
The paper [3] was motivated by earlier papers of Rangaswamy [11, 12,
13] and of Fuchs and Rangaswamy [2] which investigated Baer, right
principal projective and von Neumann regular endomorphism rings. In
[3] and [1] the following rational algebra played a key role.

Definition 2. Let G € G, and let V = G/T. Define

A(G) ={@ € Endg(V) | @ is induced by o € E}.

It is easy to check that, for each G € G, A(G) will be a @-subalgebra
of End (V). For G € G, A(G) =2 E/Hom (G,T) = E/T(E).

In [3] it was shown that for G € G if A = A(G) is semisimple
then E is regular. In [1] the flat dimension of groups in G as E-
modules was computed. Specifically, the flat dimension of the module
eG was proved to be equal to the flat dimension of the module 4V.
For an arbitrary finite dimensional @-vector space V, the problem of
characterizing those Q-subalgebras A C Endg (V') which can be realized
as A = A(G) for some G € G is discussed in [14]. In [14], this mixed
group realization problem is shown to be equivalent to the torsion-free
realization problem studied in [10].

For G’ € G denote T" =T(G') and V' = G'/T".

In [15] the groups in G were put into a categorical setting.
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Definition 3. The category QG is the category with objects
groups in G and morphisms Hom g(G,G’) = {a@ € Homg(V,V’) |
@ is induced by o € Homz(G,G')}.

It is routine to check that QG is an additive category. In this setting
the algebra A(G) is just the QG-endomorphism ring of G. The category
QG can be regarded as a full subcategory of the category WALK.
Moreover, there is an equivalence between natural subcategories of QG
and subcategories of the category of torsion-free finite rank groups and
quasi-homomorphisms (see [15] for details).

We need the following result, giving some alternate characterizations
of isomorphism in QG. List the primes in their natural order. For
G € G and k > 1 denote G = ®i1<i<klp, and G} = G N1y, T).
Since each T, is finite, we have, for each k, G = G}, ® Gj,.

Theorem 2 [15]. Let G, G' € G. Then the following are equivalent:
a) GG in QG
b) There exists k such that G}, = (G'), as abelian groups.

c) There exist subgroups H C G, H' C G', each of bounded indez,
such that H = H' as abelian groups.

Let G € G and G’ be a group of finite rank such that £ = E’,
where E' = End (G'). We show in Lemma 1 that G’ € G. Indeed, we
can regard G and G’ to have a common torsion subgroup 1" = &7},
and each to be contained as a pure subgroup of II7,,. This fact, taken
together with the equivalent a) <+ b) of Theorem 2, shows that to prove
that G = G’ as abelian groups it will suffice to prove that G = G’
in the category QG. That is, we need to find inverse vector space
isomorphisms & : V — V', 3 : V! — V such that @ and /3 are induced
by group homomorphisms a: G — G’, 8: G' — G.

2. Ap-cyclic groups. In view of the central role played by
the algebra A = A(G) for groups G € G, it seems natural, in our
investigation of the possibilities for a Baer-Kaplansky theorem, to look
for some sort of condition involving A. For the remainder of the paper
we consider G € G satisfying the condition of the following definition.
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Definition 4. A group G € G is called Ag-cyclic if there exists

a vector v € V and a commutative subalgebra Ay C A such that
Ao?) =V.

For x € G C IIT,, we henceforth denote z, = m,(x), where, for any
fixed prime ¢, 74 : IIT,, — T} is the natural projection map.

If G,G’ € G are of rank one with F = E’ it is routine to check that
G 2 G'. Indeed, by Lemma 1 (to be proved in Section 3), we can regard
G and G’ to be pure subgroups of IIT,, with common torsion subgroup
@®T,. For any torsion-free elements = € G, =’ € G’ the projections z,
and x; each are generators of T}, for almost all p. Thus, after possibly
modifying z,z’ in a finite number of p-components, we can construct
an automorphism X of IIT), carrying  to «’. Since the groups G/Zz,
G'/Zz' are torsion and G’ is pure in IIT), it follows that AG = G'.

In the rank two case, the following result provided our original
motivation for considering Ag-cyclic groups.

Theorem 3. Let G € G be of rank two with G not Ag-cyclic. Then
there exists G' € G of rank two with E = E' but G not isomorphic to
G'.

Proof. Let G be as in our hypothesis. Suppose there exist a € A
and v € V such that {v,av} is rationally independent. Then, since
dimV =2, G is Ag-cyclic with Ay the subalgebra generated by {1,a},
a contradiction. Hence, for each pair of elements a € A, v € V, av is
a rational multiple of v. It follows immediately that A is semisimple
with no proper idempotents. By elementary ring theory, A is a division
ring. Further, suppose there exists an element a € A\Q. Then, for any
0 # v € V, the set {v,av} is independent, a contradiction. Thus, we
must have A = Q.

We divide the proof into two cases.

Case 1. The set of primes P = {p | T, = (up) ® (vp) with order
up > order v, > 0} is infinite. Let z,y be independent torsion-free
elements of G. Since the elements z, and y, generate 1), for almost
all p, we can choose an infinite subset P’ of P such that one of these
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elements, say xp, is of maximal order. Thus, for p € P’, we can write
T, = (zp) ® (wp) with order w, =order v, < order x,. Moreover, we
can choose w;, such that y, = c,z, ® w, for some integer cj,.

In this case we construct G’ as the pure subgroup of IIT), generated by
T and the torsion-free elements z’,y’. We construct ',y by specifying
their p-components for each prime p. First, for p ¢ P', set z,, = zp,
Yp = Yp- Next write P’ as the disjoint union of infinite subsets
P' = Ui<i<3P;. For p € P; we will define z), = x,, y, = dpx, © wp
in such a way as to ensure that G’ will not be isomorphic to G. To
determine the integers d,, suppose that G were isomorphic to G’ via
an isomorphism 6. Let

a
5 )

be the rational matrix of the induced isomorphism from V = G/T
to V! = G'/T with respect to the bases {Z, 7}, {Z',7'}. (Here and
henceforth a bar over an element will always denote a coset mod the
appropriate torsion subgroup.) Then, for almost all primes p, it follows
that 0(xp) = axy,+By,, 0(yp) = Y, +0y,. Substitution of the definition
of y; implies that, for almost all p € Py,

0(zp) = (o + Bdy)zp © By, 0(yp) = (v + ddp)zp S Swp.
Since y, = cpzp + Wy, it follows that
a(yp) = Cpa(mp) + G(wp) = Cp[(a + /de)wp D ﬂwp] + a(wp)-

Comparison of the two computed expressions for 6(y,) yields the
equation

0(wp) = [(v + ddp)zp ® dwp] — cpl(a + Bdp)zp & Bwp).

Since w,, is of strictly smaller order than z,, for almost all p € P, we
must have

(v +0dy) — cpa+ Bdy) = (0 — cpB)dp + (v — cpa)
(e ;

(mod p)

Suppose (§ — ¢,8) = 0 (mod p) for infinitely many p € P;. Then
(v — cpa) = 0 (mod p) on this same infinite subset. But this implies
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ad —yB = 0, a contradiction. Thus, for almost all p € Py, (0 — ¢pf)
is not congruent to zero (mod p). But then, for almost all p € P;, we
can choose d, to violate the congruence (f),. Now, we enumerate the

set of invertible rational matrices {g }] and construct the d,’s so that,

for each candidate for the matrix of a possible induced isomorphism
from V to V', (), will fail for infinitely many p € P;. At this stage we
know that, however we define z;,,y;, on P»U P3, the group we construct
cannot be isomorphic to G. For future needs we also choose each d,
not congruent to zero mod p.

We next employ the primes in P, U P3 to make F' = E. Let G' € G
be such that @7, C G' C @®T, and regard E' C IIE,. The ring
Ey = {A = (\p) € IIE, | thereexistsqg = g(A\) € @Q such that,
for almost all p, A, = left multiplication by ¢} will be a subring of
E' = E(G'). Furthermore, if A" = A(G’') = Q, then E’ will coincide
with Fy. (The ring Ey is simply the inverse image of Q C A’ under the
ring epimorphism E' — E'/T(E') = A'.) Thus, since A = A(G) = Q,
to make E' = Ey = F it suffices to make A’ = Q).

For p € Py set z, = zp, y, = wp; for p € Ps set z, = wp,

Yy, = p. Regard A" C End (V') and identify End (V') with M(Q)
by associating each map with its matrix with respect to the basis
{Z',y'} of V'. Now, looking at the set of primes P, U P3 and recalling
that order z,, > order wy, shows that any element a’ € A’ must have an

> 0]. Say that a’ is induced by 6 € E'.

associated matrix of the form [ 06

Then, for almost all p € Py,
0(y,) = dpb(z,) + 0(wp) = dpax, + 0(wy) = 0y, = ddpzy O Jwp.

Arguing as above, we see that d,(a — ) = 0 (mod p) for almost all
p € Pi. Since no dp, is divisible by p, we have o = §. Thus, A’ = @ and
the proof in Case 1 is complete.

Case 2. The set P is finite. In this case we must have L = {p | T,, =
(up) # 0} is infinite. Otherwise T}, would be a rank two homogeneous
p-group for almost all p. But then T, = (z,) ® (yp) for almost all
p. This would imply that A 2 M»(Q), a contradiction. We construct
G’', exactly as in Case 1, by utilizing the set of primes L to construct
suitable independent torsion-free elements z’,y’. We just sketch the
similar but easier arguments for this case. Write L = Ui<;<al;, a
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disjoint union of infinite subsets. Assume, without loss of generality,
that, forp € L1, x, = up, 0 # yp = cpup. On Ly set ), = up, y,, = dpuy,
the d,’s chosen, in a similar manner to that of Case 1, to ensure that
G' cannot be isomorphic to G. On Ly set ;, = up, y,, = 0. On L3 set
Yp = Up, T, = 0. On Ly set x,, = y,, = u,. The definition of z},,y;, on
the set of primes Us<;<4L; will ensure A’ = @, hence E' = Ey = E.
O

3. Reduction lemmas and first results. In this section we prove
three lemmas that simplify our work in proving isomorphism theorems
for Ap-cyclic groups G € G. We get some immediate results as direct
applications.

Lemma 1. Assume G € G has torsion T = &T, and G’ is a group
such that E = E'. Then there is a pure embedding ¢ : G' — IIT, with
T C oG such that E = E(pG'). Moreover, G' € G if G’ has finite
rank.

Proof. First we note that G’ contains no Z(p>) or @ for then E’
would contain a copy of Zp or . But, since G is pure in 11T}, with each
T, finite, F contains neither Zp nor Q. Therefore, G’ is reduced. Let
¢ : E' — E be an isomorphism and 7" = ©T}, be the torsion subgroup
of G'. For each p, ¢ induces an isomorphism ¢, : T,,(E') = T,(E) = E,.
Since G € G each E, = E(1,) is finite, hence so is T,(E’). It follows
that 7, must also be finite and, hence, that T),(E’) = E(T,). Thus,
¢p : E(T,) = E,. By the Baer-Kaplansky theorem, ¢, is induced
by an isomorphism ¢, : 7, — T,. The isomorphisms ¢, in turn
induce an isomorphism ¢ : IIT, — IIT, such that ¢(a’) and pa/@ ™"
agree on T for all o' € E'. Since IIT,/T is divisible and IIT), is
reduced ¢(a’) = pa’¢ ! (as endomorphisms of I17},), for all o/ € E'.
Thus, if @ € E, then a = ¢(a/) = pa’p~! for some o/ € E'. Tt
follows that E C E(pG'). Let 8 € E(pG'). Then ¢~ '8¢ € E' so
that B = ¢(p '8p) € E. Hence E(pG') = E and ¢ is the desired
embedding of G’ in IIT,.

If 7: G' = G'/T’ is the natural map, then ¢ induces an isomorphism
Hom (G'/T",T') — Hom (G/T,T) via a — ¢(ar) because ¢(an)(T) =
parp~YT) = 0 if o € Hom (G'/T’,T"). Since Hom (G/T,T) is zero,
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so is Hom (G'/T",T"). If T, = 0, then T}, = 0, so G is a pure subgroup
of IIT,4pTy. It follows that 1/p € E, hence 1/p € E' as well, so
that pG' = G'. Thus, if G’/T" is not p-divisible for some prime p, then
T, # 0. But this would yield a nonzero composition of homomorphisms
G'/T" — (G'/T")/p(G'/T") — T,, contrary to fact. Hence G'/T" is
divisible. Since each T}, is finite, G'/T" is divisible and G’ is reduced,
the inclusion map @7, — IIT, can be extended to a pure embedding
of G' into IIT,.

To finish the proof, set ¢G = G’ and suppose now that £ = E’ as
subrings of ITE,, and that G’ has finite rank. Note that we cannot have
rank G' = 0, for then G' = @1, and E' = IIE, # E. For the sake of
contradiction, assume that G’ # G. Then condition ii) d) of Theorem 1
must fail for G’, for we have already verified that the group G’ satisfies
ii a)—c). Let F’ be a maximal free subgroup of G’. Then m,(F’) # T,
for infinitely many p, so there exists ¢ € ILE, such that ¢(F') = 0 and
¥(Tp) # 0 for infinitely many p. Then (g) must be torsion-free for
some g € G, otherwise ¢ € Hom (G,T) = T(FE). Since G has finite
rank it is easy to construct a A € IIE, such that A\¢(g) ¢ G. But since
Y(F') = 0 then A\ € Hom (G',T) C E' = E, and we have the desired
contradiction. |

Lemma 2. Assume that G,G’' € G are purely embedded in IIT,,
each containing T = &1, with E = E' and rank G’ < rankG. If G
is Ag-cyclic, then G = G’ if there exists an element v' € V' = G'/T
whose annihilator in Ag is zero.

Proof. By the remark after Definition 2, identify A with E/T(E). We
claim there is a commutative, free subring C' C E such that 4y = QC,
where C = [C +T(E)]/T(E). If F = ©®Zz; is a maximal free subgroup
of G and @&, 3 € Ay, then for each i we have (a8 — Ba)(z;p) = 0 for
almost all p. Hence (af — Ba)T, = 0 for almost all p by Theorem
1(d). Thus, we can obtain commuting preimages of @ and 3 in E. It
follows that there exists a commutative set of preimages in E of any
fixed @-basis for Ayg. The subring of E generated by any such set is
the desired C.

Now let x € G be such that Agz = V. If a € Ay with az = 0,
then aV = aA¢Z = ApaZ = 0, thus a = 0. Since C' is isomorphic
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to C C Ay, it follows that the annihilator of = in C is zero. Then
rankCz = rankC = rankC = dimAy; = dimV so that Cz is a
maximal free subgroup of G. Hence 7,(Cz) = T}, for almost all p.
It follows that Cpz, = T}, for almost all p, where C}, is the image of C
under the natural projection map v, : IIE; — E,. Assume that there
exists v’ € V' with zero annihilator in Ay, and choose a preimage z’ of
v’ such that x;, = 0 whenever Cpz, # T),. For every p, we can obtain
cP) € C, such that Pz, = z,. If A = ()\p) € IIE, is defined by
setting \, = c(P) for each prime p, then X centralizes C, and \(z) = /.
Thus A\Cz = CAz = Cz’ C G'. Since G/Cxz is torsion and G’ is pure
in IIT,, it follows that A(G) C G'. The following chain of (in)equalities

dim V' = rank G’ < rank G = dim V = dim 4y = dim 4yv’ < dim V'

shows that Agv’ = V'. Let A : V — V'’ be the map induced by \. We
have

AV =QNCz = QCx' = Az’ = Agv' =V,
hence ) is an isomorphism. Because Ap is an automorphism of 7},
for almost all p (those p such that Cpz, = Cpz), = T}), there is a
homomorphism § : G’ — G such that § is inverse to A\. Thus, G = G’
in QG, as desired. ]

Lemma 3. Assume that G,G' € G are embedded in IIT, with
E = FE', and suppose that G is Ag-cyclic. Let Ay = ®1<i<iF; & J
be a Wedderburn decomposition for the commutative Artinian algebra
Ay, where each F; is a field and J is the radical of Ay. For 1 <i<k,
let f; € F; be the identity element. Then

a) We can choose the subring C' of Lemma 2 to contain a set of
orthogonal idempotents {e; | 1 < i < k} with & = f; for each i and

b) each ¢;G,e;G' € G and
c) GG if each e,G = e;G in QG and
d) E(e;G) = E(e;G") for all i and

e) A(e;G) can be identified with f; Af; and each ;G is f;Ag-cyclic
where f; Ay is the direct sum of a field and a nilpotent ideal.

Proof. Parts a) and b) are each an easy exercise. For c¢) note that
in QG, G = @®e;G, G' = @e;G'. To show that G 2 G’ in QG (and
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therefore G = G’ as abelian groups), it suffices to show each ¢;G = ¢;G’
in QG. Part d) follows since E(e;G) = E(e;G’) = e;Ee;. For e), note
that A(e;G) = E(e;G)/T[E(e;(G)] &2 fiAfi. The algebra f;Af; has
commutative subalgebra f; Ag. If Agv = V each e;G is f; Ap-cyclic with
fiAo(fiv) = f;V. Finally, for each i, fiAg = F; @ f;J as stated. i

We obtain our first isomorphism theorem as an immediate conse-
quence of our lemmas.

Theorem 4. Let G € G be Ag-cyclic with Ay semi-simple. Suppose
that G' is a group with rank G’ = rank G and E' =2 E. Then G' = G.

Proof. Using Lemma 1 we can regard &1, C G, G' C IIT,, and
E’ = E. Adopting the notation of Lemma 3, we need only prove
that e;G = e;G' in QG for each i. Since Ay is semi-simple, we have
fiAo = F;, a field. Say Agv = V. Then

) rank ;G = dim f;V = dim F;( f;v)
= dim F; < dim f;V’ = ranke;G".

The sole inequality in (f) holds since f;V' is a nonzero F;-vector
space. But rankG = ) ranke;G, rank G’ = ) ranke;G’'. Since
rank G = rank G’, we must have ranke;G = ranke;G’ for each i.
By Lemma 3, each e;G is f;Ap-cyclic. By Lemma 2, to show that
e;G = ¢;G' in QG, it suffices to find v} € f;V’ with zero annihilator in
fiAy = F;. Because each F; is a field, any nonzero v, € f;V' will do,
and the proof is complete. a

We mention for future reference that Theorem 4 can be proved under
the weaker assumption that rank G’ < rank G. In this case we would
choose a fixed i such that rank e;G' < ranke;G. Then (f ) would show
that, for this 7, rank e;G = ranke;G’. As above, we would conclude
that, for this ¢, ¢;G' = ¢;G. An induction on rank G would complete
the proof.

Arguing in a similar way as in the proof of Theorem 4, we can show
the following:

Theorem 5. Let G € G be such that the module AV is simple with
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commutative centralizer. Let G' be a group with rank G’ = rank G and

E'2FE. Then G' = Q.

Proof. Identify A with E/T(E). Regard T, C G, G' C IIT,
with E = E’. Here the centralizer of V is a field F and A is a
full d x d matrix ring over F. Let {e; | 1 < i < d} be a set of
preimages in E of a set of matrix units {f; | 1 < i < d} C A. In
the category QG there are associated decompositions G = @1<;<qeiG,
G' = ®1<i<qe;G'. For each i, the algebra f; Af; = A(e;G) is isomorphic
to F. Furthermore, ranke;G = dim f;V = dim F'. Thus, each ¢;G is
Ap-cyclic for Ay = A(e;G). Now we proceed as in the previous proof.
[}

4. Projection properties. In this section we consider the Baer-
Kaplansky problem for Ag-cyclic groups with non-semisimple Ay. We
can get positive results by assuming that G has a set of primes of one
of the two types described as follows.

Definition 5. An infinite set of primes S is called a weak projective
set (respectively, strong projective set) for the group G C IIT,, if for
each g € G of infinite order, g, # 0 (respectively g, ¢ pT},) for almost
allpe S.

Plainly, if S is a strong or weak projective set for G, so is any infinite
subset of §. Also, to check a set of primes § is a strong or weak
projective set, it is enough to check the appropriate condition for each
g € F, F a maximal free subgroup of G. This makes it easy to construct
numerous examples of groups G € G with weak or strong projective
sets.

Theorem 6. Let G € G be Ay-cyclic with a strong projective set S.
Let G’ be a group with rank G’ = rank G and E' 2 E. Then G' = @G.

Proof. By Lemma 1, regard @1, C G, G' C IIT, with E' = E.
Choose a set of orthogonal idempotents {ey, ... ,e,} with Ag = ®e; Ao,
€Ay = F; ® J;, as in Lemma 3. By replacing G,G’ with G}, (G')}
for a suitable k, we can assume that, as abelian groups G = ®e;G,
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G' = ®e;G'. Since this replacement will affect neither the hypotheses
nor the conclusion of Theorem 6, it will suffice to prove that our new
G = Gy, G' = (G");, are isomorphic. (Refer back to Theorem 2 and
the comments following it. Also note that if E(G) = E(G’) then
E(G}) = E[(G')f] for any k.)

Having made this replacement, we next observe that, since rank G' =
rank G, we must have ranke;G’ < ranke;G for some i. We will
prove that, for this i, ;G = e;G’. A rank induction argument then
will show that the remaining parts, @®;;e;G and @je;G’ are also
isomorphic. It is easy to check that these remaining parts satisfy
the hypotheses of Theorem 6. In particular, ®jx;e;G is @;-:€;A0-
cyclic, E(®;.ie;G) = E(®;j,ie;G’) and the set S will still be a strong
projective set for ®;.;e;G.

Note that, since E(e;G) = e;Ee; = E(e;G') and ranke, G’ <
rank e;G, the second part of Lemma 1 tells us that ¢;G' € G. Re-
name the summands e;G, e;G’ with the names G, G’. By Lemma 3, we
have reduced our problem to the case 49 = F' & J. Our goal will be to
apply Lemma 2. To do this, we need to find an element v’ € V! = G'/T
with zero annihilator in Ag. As in the proof of Lemma 2, we choose
a free subring C C E such that C = [C + T(E)|/T(E) is a full free
subring of Ay. Here we construct C in the form C = S & N where
S is a free subring of E with S = [S + T(E)]/T(E) the ring of inte-
gers in the algebraic number field F' and N is a free subring of E with

N = [N+ T(E)]|/T(FE) a full free subring of the radical J. As in the
proof of Lemma 2, if AgZ =V then Cx, = T}, for almost all p.

Let F' be a maximal free subgroup of G'. By deleting a finite subset
from S, if necessary, we can assume that for all p € S: (1) Czp = T,
(2) mp(F') = T, and (3) S/pS is semisimple. Let p € S and say
pS = P;--- P)” is a decomposition of pS, where {P}, PZ,... ,P"} is a
set of j,-many distinct prime ideals in S. Such a decomposition exists
since § = S, a Dedekind domain, and S/pS is semisimple. Plainly,
Jp < rankS. Thus, there exists a positive integer r < rank S and an
infinite subset S; C S with pS decomposing into exactly r distinct
primes in S for all p € S;. Note that S; is still a strong projective set
for G.

For each p € S1, let {e(1,p),...,e(r,p)} be the set of orthogonal
idempotents in the ring S/pS such that S/pS = ®1<j<re(4,p)S/pS =
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®1<j<rS/PJ. Regarding C/pC as an S/pS module, we have a similar
decomposition C'/pC = ®1<j<re(j,p)C/pC. Here each e(j,p)C/pC =
S/Pg ® e(j,p)N/pN is a local ring. For convenience, for each p € 8;
and 1 < j < r, denote the ring e(j,p)C/pC by CIJ; and the coset
e(d,p)xp + pTy] by wg. Since, for all p € 1, Cxp = T), it follows that
C/pC(zp + pT,) = T,/pT, and hence that:

(dp) Ip,/pTp = @ szj;xzjz;'

1<j<r

(In each decomposition (dj,) some of the zJ’s may be zero.)

Call a subset I C {1,...,r} a support set for an element y € F’
if there exists an infinite subset Sy = Sy(y,I) C S; such that, for all
P E Sa, yp +01Ip = 691990;;9;;; with acg; # 0 and 017; a unit in CIZ for
all j € I. (A single element y could have more than one support
set, corresponding to different choices for S;). Choose an element
z' € F' such that z’ has a support set maximal in the collection
{I c {1,...,7} | I is a support set for some y € F'}. To complete
the proof of Theorem 6, we show that v" = T’ is our desired element of
V' with zero annihilator in Ag.

Say that I is a support set for ' that is maximal in the collection
of support sets. Let So = Si(az',I) be as above. Then, for each
j € {1,...,r}\I, either zJ = 0 or the zJ coordinate of 2’ in (d,) is
a nonunit, for all but finitely many primes in S;. This holds since,
otherwise, I U {j} would be a support set for z’. By deleting finitely
many primes from S; we can assume that, for all p € Sy and for all
j ¢ I, either 27 = 0 or the zJ coordinate of z' in (d,) is a nonunit.
Also assume that p € So — p > 7.

We show that if j ¢ I, then ) = 0 for almost all p € Ss.
Suppose, by way of contradiction, that there exists a j ¢ I and
an infinite subset S3 C S such that a:g; # 0 for all p € S3. Let
F' = ®1<k<mZyx be the maximal free subgroup of G’ chosen above.
Then, since 7, (F') = 1), the set {e(j,p){yep +PLp) | 1 < k < m}
generates e(j,p)1,/pTp. Because each CIZ is local, for each p € S3 there
must exist y(p) € {y1,.-- ,Ym} such that [y(p) + pT,] has an invertible
) coefficient in decomposition (d,). Thus, we can choose an infinite
subset 4 C S3 and a fixed y € {y1,...,ym} such that, for all p € Sy,

[y + pTp] has an invertible z coefficient in decomposition (dj). We
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consider the set of elements H = {tz' +y | 0 <t < r}. Any element
of H will have an invertible zJ coefficient in (d,) for all p € Sy since
its coefficient will be the sum of a nonunit and a unit in the local ring
CIZ. Fix p € S4. Suppose, for some i € I and 0 < ¢, s < r, the elements
tz’ +y and sz’ + y each has a noninvertible l‘; coefficient. Since CI’; is
local (t — s)z’ also has a noninvertible z, coefficient. Since i € I and
p € S84 — p > r, it follows that ¢t = s. Thus, for each ¢ € I, at most one
element of H can have a noninvertible ac; coefficient. Since cardinality
I < r and cardinality H = r+1, at least one element of H has invertible
x}, coefficient in (dp) for all i € I and our fixed p € S;. Arguing as
before, there exists an infinite subset S5 C S5 and an A € H such that
h has an invertible z; coefficient in (d,) for all i € I and all p € S;.
But then h € H C F’ will have support set I U {j}, contradicting the
maximality of I in the collection of support sets. We have shown that
(j ¢ T — x} = 0) for almost all p € S;. Without loss, assume that

(j¢I—xi=0)forallpeS,.
Suppose that the annihilator of Z' in Ay is nonzero. Since C is a full

free subring of Ay it follows that there exists 0 # v € C with vz’ = 0.
For p € S, consider the decomposition (d,) of z’

/ — J
zp +pIp = @ CpTp-
1<j<r

Since vz, = 0 for all p, for all p € Sa, we have

0= D cileli.phlz,

1<j<r

Here we are simply writing v for the map induced by + on T, /pT),.

Fix p € S;. If j ¢ I, then acg, = 0. If j € I then C‘Z) is invertible
and cg;[e(j,'p)’y]mg; = 0, hence [e(j,p)7]x] = 0. Thus, for all 1 < j <,
le(4,p)7]z), = 0. But then y(z, + pT,) = (vz), + pT, = 0+ pT).
Hence (yz), € pT,. Since p is an arbitrary element of the infinite
subset So C & C S and S is a strong projective set, then vz must be a
torsion element. Thus, there exists a positive integer k with 0 # ky € C
and (ky)x = 0. This contradicts the previously established fact that
the annihilator of z in C'is zero. This final contradiction completes the
proof of Theorem 6. ]
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Recall that, for any fixed prime ¢, v, : 11E, — E; is the natural
projection map. We can replace the existence of a strong projective
set for G with the existence of a weak projective set for G, provided
we also require that the projections C), = v,(C) be local subrings of
E, = End (T,) for almost all p € S. We sketch the similar but much
easier proof.

Theorem 7. Let G € G be Ay-cyclic with a weak projective set S.
Suppose that there exists a free subring C C E with C a full free subring
of Ay such that Cp, = v,(C) is a local ring for almost all primesp € S.
Let G’ be a group with rank G’ = rank G and E' 2 E. Then G' 2 G.

Proof. Regard G,G' C IIT,, with E = E’. Let C C E and S be as
in the hypothesis of Theorem 7. If Aoz =V, then Cx, = Cpzp, =T,
for almost all p. Let F' = @1<x<mZyr be a maximal free subgroup
of G'. By the second part of Lemma 1, G’ € G. Thus, for almost
all p, the group T}, is generated by {yip,... ,Ymp}. We can assume,
without loss of generality, that T, = Cpx, and that T}, is generated by

{Y1p,- - »Ymp} for all p € S. For p € S and each 1 < k < m, choose

cép) € ()} such that yg, = c,(ep)wp. It is easy to check that for each of

these p there must exist a k(p) with 1 < k(p) < m such that c,(:&) is a

unit in C}. Thus, there exists a fixed £ with 1 < %, < m and an infinite

subset S; C S such that, for all p € Sy, c,(cp ) is a unit in the commutative

local ring Cj,. If there were a 0 # v € C with vy, = 0, then, for all

Py Tp(YYE) = Vp('y)c,(f)mp = 0. Thus, we would have v,(y)z, = 0 for

all p € §;. Hence mp(v2) = vp(y)xp, = 0 for all p € S;. Since §; C S
it would follow that yx must be a torsion element. Since C' = Cz we
obtain a contradiction. We have shown that the annihilator of y; in C
is zero. Thus, yx € V' has zero annihilator in Ay, and we apply Lemma
2 to complete the proof. i

The condition that v,(C') be local for almost all p € S is independent
of the choice of the free subring C' C E with C full in Ay. Since an
infinite subset of a weak projective set for G is still a weak projective
set for G, we could (trivially) modify our condition to the requirement
that v,(C) be local on an infinite subset of S.
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5. Cyclic p-components and special J’s. Suppose G € G and
almost all the p-components 1}, of G are cyclic. If a,8 € E, then
(af — Ba), = 0 whenever T}, is cyclic, hence (a8 — Ba)G is bounded.
It follows that the algebra A = A(G) is commutative. Note that in this
case G is Ag-cyclic if and only if the module 4V is cyclic. Moreover,
for any subring C' C F, almost all of the projections C},, must be local
(being subrings of E(T},) for cyclic T,). With these facts in mind, we
can improve on Theorem 7.

Theorem 8. Assume that almost all the p-components T, of G € G
are cyclic, AV is cyclic, and G possesses a weak projective set. If G'
is a group with rank G = rank G’, then every isomorphism E' = E is
induced by an isomorphism G' = G.

Proof. Let ¢ : E' — E be an isomorphism. As in the proof of Lemma
1, ¢ induces an embedding ¢ of G’ in IIT, such that £ = E(pG’),
and it is not hard to check that ¢ is induced by an isomorphism of
the groups if aG = G’ for « in the center of E(IIT,). Because the
hypotheses of Theorem 7 are met, there is an automorphism g of IIT,
with G = ¢G'. Define a second automorphism a = («,,) of IIT, by
taking ap = g, if T is not cyclic, and o = B, otherwise. Then «
centralizes E(IIT}), and aG = ¢G'. o

Our next theorem is a modification of Theorem 8. We can drop the
requirement that G have a projective set if we require that J(A), the
radical of A, is suitably small.

Theorem 9. Assume that almost all the p-components T, of G € G
are cyclic and AV is cyclic. Assume also that dim J(A) < 2. If G’
is a group with rank G' = rank G, then every isomorphism E' = E is
induced by an isomorphism G' = G.

Proof. We first show that if rank G’ = rank G and E’' = E, then
G' =2 G. Applying Lemma 1, we regard T, C G, G' C IIT, with
E = E' and note that G’ € G. By using a set of orthogonal idempotents
of A and repeating the steps that began the proof of Theorem 6, we may
reduce our proof to the case A =F & J with F a field and J = J(A4),
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and rank G’ < rankG. Note that in this reduction our new J, an
idempotent times our old J, still has dimension no greater than two.
Having made this reduction, we immediately conclude that G’ = G if
J = 0 (Theorem 4) or if G has a weak projective set (Theorem 8). (Like
Theorem 4, and with only a slight modification in the proof, Theorem
8 holds under the weaker assumption that rank G’ < rank G.)

For the remaining case assume that J # 0 and that G does not
possess a weak projective set. We will see that dimJ = 2 in this
case. Since 4V is cyclic there exists a torsion-free element © € G
such that Ez is of full rank in G. Choose 0 # & € J, and note that
support (ax) = {primes p | (az), # 0} is infinite but is not a projective
set for G. Since Fz is full-rank in G, it follows that we may choose
B € E(G) so that Sz is torsion-free and (8z), = 0 for all p in an infinite
set P C support (az). Then B cannot be a unit of A, so 8 € J. Because
of the supports of the elements ax, Sz no nontrivial combination of &
and 3 can annihilate Z. Thus, @ and /3 are independent, wherefore they
span J.

Since G’ € G, it is not hard to see that there exists ' € G’ such
that w;, generates the cyclic group 7}, for infinitely many p in both P
and support (Bz). We claim Z’ has zero annihilator in A = F & J. To
establish the claim, suppose that (5 + na + mf3)z = 0 where ¥y € F
and n,m € Z. First note that ¥ = 0 because otherwise J + na +mg is
invertible in A. Thus there is an integer k£ > 0 with k(na+mg)z’ = 0.
For p € P it follows that k:napx; = 0. We must have n = 0, otherwise,
for infinitely many p € P with z;, a generator of T}, a,x;, = 0. Thus
ap = 0 on this infinite subset of P C support (o), a contradiction.
Similarly, m = 0.

By Lemma 2, we have G’ = G. As in the proof of Theorem 8, one
can adjust the isomorphism to obtain one which centralizes E(IIT),).
This shows that the original ring isomorphism E’ 2 F is induced and
completes the proof. a

Corollary. Assume that almost all the components T, of G € G are
cyclic, AV is cyclic and rank G < 3. If rank G’ = rank G, then every
isomorphism E' = E is induced by an isomorphism G' = G.
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Proof. As in the proof of Lemma 2, since A is commutative and
AV is faithful, the cyclic module 4V is isomorphic to A. Thus,
dimA = dimV = rank G < 3. Hence dimJ < 2 and we can apply
Theorem 9. O

Let I be a nilpotent ideal of a rational algebra A. In the statement
of our final theorem, the nilpotency of I is the smallest positive
integer n such that I™ = 0. It is straightforward to check that if
n > d = dim/ then n = d 4+ 1 and I has a Q-basis of the form

{B1,5182,... ,01B2 -+ Bn—1} for some {B; | 1 <i<n—1} C 1.

Theorem 10. Assume that G € G is Ag-cyclic. Suppose that the
nilpotency of J(Ag) is greater than dim J(Aoy). If G' is a group with
rank G’ =rank G and E' = E, then G' = G.

Proof. As usual, assume that @7, C G, G' C IIT, with E' = E.
By the comments preceding the statement of our theorem, J = J(Ay)
has a basis of the form {31,8182,...,B8182 - Bn_1}. Again, we now
proceed as in the beginning of the proof of Theorem 6 to reduce to
the case: Ag = F @ J, G' € G, rankG' < rankG. Having made
this reduction, if our new J (an idempotent & times our old J) is
zero, we can conclude that G’ = G, by Theorem 4. Otherwise, our
new J will have a Q-basis {v1,7172,---, 7172 - Vk—1} with v; = &B;,
1< j<k—-1<n-—1 1In this case, let § € E be a preimage
of v17y2-+-Yx—1 under the map £ — E/Hom(G,T) = A. Since
Y12 Yk—1 # 0, then 8 ¢ Hom (G,T). Since E = E’', in view of
the remark in the second paragraph after Theorem 1, we have that
Hom (G,T) = T(E) = T(E') = Hom (G',T). Thus 6§ ¢ Hom (G',T).
Hence, there exists an element v' € V' with 175 -+ -y _1v" # 0.

We show that the annihilator of v’ in A is zero. An application
of Lemma 2 will then complete the proof. To this end, suppose that
a € Ag with

av' = (Y+qam + @nye + o+ geomnye o v-1)v' =0,

where v € F' and the ¢;’s are rationals. As before, v = 0, otherwise the
element a € Ag would be invertible. Thus, we have

Yi(g1 + @y2 + -+ @Go1v2 - 1)V = 0.
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If ¢; # 0, the element in parentheses is a unit of the commutative ring
Ao, hence y1v" = 0. But v’ was chosen so that yi7ys -+ ye_1v" # 0, a
contradiction. It follows that g = 0. We can now repeat this argument
to conclude that go = --- = qx_1 = 0. Thus a = 0, and the proof is
complete. ]

Corollary. Let G € G be Ag-cyclic withrank G = 2. If G’ is a group
with rank G’ = rank G and F' = F, then G' = G.

Taken together, the above corollary and Theorem 3 show that, for
rank two groups G € G, the class of Ag-cyclic groups coincides with the
class of groups for which our version of the Baer-Kaplansky theorem
holds.
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