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A NOTE ON SIEGEL’S LEMMA

D.W. MASSER

Consider a system of M homogeneous linear equations in N variables
with coefficients in a number field K. If N > M the system always
has nontrivial solutions over K. For the purpose of finding “small”
solutions there are many results in the literature with the general name
of “Siegel’s lemma.” One of the most precise of these is due to Bombieri
and Vaaler [2].

The results of Bombieri and Vaaler, stated below, involve the height
of the system, the heights of the solutions, and the discriminant of the
field K. It is well-known that the heights enter into the estimates in
an optimal way. Recently it was proved by Roy and Thunder [9] that,
in general, the discriminant must also be present. Their work covers
all possibilities for M and N except N = M + 1. The purpose of the
present note is to settle the remaining case N = M + 1. It will turn out
that in this case the discriminant enters into the estimates of Bombieri
and Vaaler also in an essentially optimal way.

Let us now state precisely the results of [2] and [9] that are relevant to
our discussion. It is slightly more convenient to assume that the linear
equations are linearly independent, and at the same time to replace the
system by its solution space. Thus, let V be a subspace of K (as a
vector space over K) with dimension N — M strictly between 0 and N.
The height of V' was first defined by Wolfgang Schmidt [11], in terms of
Grassmann coordinates. We shall use the absolute (“nonlogarithmic”)
projective height H'(V') with L? norms at the infinite valuations. This
coincides with the definition H(A) of [2, p. 15] for any matrix A over
K with M rows and N columns defining a system S whose solution
space is V. It also coincides with the definition H'(S) of [9].

For a vector z in KV we define similarly H(z) as the absolute
(nonlogarithmic) projective height using instead the L! norms at the
infinite valuations. This coincides with the definition h(z) of [2, p. 15].
We also define H;(x) as the absolute (nonlogarithmic) affine height; if
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= (£,...,&En) this is just H(zp) for ;1 = (1,&;,...,&n) in KN,

Finally, let 2s be the number of nonreal embeddings of the field K,
and let Ak be the square root of the absolute value of the discriminant
of the ring of integers Ok of K (note, however, that this is the 1/|Ak]|
of [2, p. 23]).

We can now combine Theorem 9 and Corollary 11 of [2] as follows.

Theorem (Bombieri-Vaaler). Let M and N be positive integers with
N > M +1, and let V be a subspace of KV with dimension N — M.
Then

(i) there is a basis B in K™ of V with

[ H@@) < (22 Ak /x*)N =D/ H (),
zeB

(ii) there is a basis B in OF of V with

[ H#i(z) < AFm"(v).
zeB

Next, we can combine Theorem 2 and Proposition 5 of [9] as follows.

Theorem (Roy-Thunder). Let M and N be positive integers with
N > M + 2. Then for any integer d > 2 there are positive real
constants C and 7, depending only on M, N and d, with the following
property. There are infinitely many number fields K of degree d for
which a subspace V' of K with dimension N — M ezists such that

(i) for any basis B in K~ of V we have

[[H(z) > ctayH (V)

zeB

(ii) for any basis B in OF of V. we have

[1 Bi(2) > ¢ akm1 (V).
z€EB
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Of course, the discriminants Ak are necessarily unbounded in this
theorem. Also, in the present formulation (i) implies (ii), because
H,(z) > H(z) and H is projective. But actually the results of [9]
are stronger in several ways. For example, if N > M + 3, then their
Theorem 3 gives for even d an exponent ¥ = (2/d)[(N—M —1)/2] in (ii),
which is rather close to the exponent (N — M)/d in the upper bound
(ii) of Bombieri-Vaaler. Further, if N > M + 3, then their Theorem 2
supplies a subspace V in (i) for every number field K.

Now suppose that N = M + 1. Then we have H(z) < H'(V) for any
nonzero z in V (the two heights differ only in the choice of norms), and
therefore a lower bound (i) is not possible. The purpose of the present
note is to establish the lower bound (ii). More precisely, we shall prove
the following result.

Theorem. For any integers N > 2, d > 2, and any real ¥ < 1/d
there are infinitely many number fields K of degree d for which a one-
dimensional subspace V' of K exists such that

Hy(z) > ALH'(V)

for any nonzero x in OF of V.

In particular, the exponent (N — M)/d = 1/d in the upper bound (ii)
of Bombieri-Vaaler is best possible for N = M + 1.

The proof of our theorem breaks into two disjoint parts. They
involve the class index ix of the ring of integers of K. This was
introduced in [8] in the general context of orders in division algebras
(and later generalized further to semisimple algebras), but in the
present (commutative) situation the definition can be formulated as
follows. The class index is the smallest positive integer I for which
every ideal class of K contains an integral ideal A with norm N(A) < I;
equivalently, the smallest positive integer I for which every ideal Z
contains a nonzero element ¢ with |norm ¢|/N(Z) < I.

Our theorem is now an immediate consequence of the following two
propositions.

Proposition 1. For any positive integer N > 2 and any number
field K there is a one-dimensional subspace V' of KN such that for any
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nonzero x in OF of V we have
H(2) > 272l H V),

where d is the degree of K.

Proposition 2. For any integer d > 2 and any real € > 0 there are
infinitely many number fields K of degree d such that

ik > A)C.

It would be interesting to know if Proposition 1 is best possible in the
sense that every one-dimensional subspace V of K~ contains nonzero z
in OF with H;(z) < Ci}(/dH'(V) for some C' depending only on N and
d. If so, it would mean that Siegel’s lemma in this case is essentially
linked to the class index.

Certainly Proposition 2 is best possible in the sense that ix < Ag
for every number field K (see the class index lemma of [8]). But for
even degree d, the € can be removed; see [10].

Now for the proofs. I am grateful to Jeff Thunder for the following
proof of Proposition 1, which greatly simplified my original argument
(involving the prime ideal theorem, Minkowski’s first theorem, etc.).

We start with the case N = 2. Consider the “worst” ideal class of K
consisting of ideals Z for which

(1) [norm {| > ixg N(Z)

for every nonzero ( in Z. Pick such a Z; like any ideal, the inverse
Z~! can be generated over O by two elements, say o« and 3. We
choose for V' the subspace of K? generated over K by (a,3). Then
2-12H'(V) < H(a,B) (again, only the choice of norms is different).
The righthand side breaks into the product of factors Hg, (o, 8) and
H;n¢(a, B) corresponding to the finite and infinite valuations respec-
tively. The former is well known to be (N(Z1))~1/¢ (see, for example,
[5, p. 54]). So we get

(2) 22 H (V) < (N(2)Y* Hint (e, 8).
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On the other hand, let z be any nonzero point in 0% of V. Then
x = ((a, B) for some nonzero ¢ in Z, and the height H;(z) breaks into
factors Hgy, (1,Ca, ¢B) and Hine(1,C(a,(B). The former is at least 1,
and the latter is at least Hiy(Ca,¢3), which is [norm ¢|Y/¢Hie(a, B).
Using (1), we get

Hy(z) > i}/ Y(N(2))Y? Hins (o, B),

and now Proposition 1 follows from this together with (2), at least if
N = 2. We make the same proof work for NV > 2 simply by adjoining
N — 2 zeros to the generator of V.

For the proof of Proposition 2 we shall also need the standard class
number hg of K. The general inequality at the end of Section 2 of [8]
implies the relation hx < i‘li( where d is the degree of K. But in our
commutative situation this can easily be improved as follows.

Lemma 1. For a number field K, we have
hK S iK(l +10giK)d_1

where d is the degree of K.

Proof (compare the proof of Lemma 6.1 of [7]). Let fx(n) be the
number of integral ideals of K with norm n. We will show that

(3) fre(n) < 7a-1(n)

the number of ways of writing n as an ordered product of d positive
integers. First suppose that n is a power p* of a prime p. If N(A) = n,
the integral ideal A must be a product P ---Pg" of all the prime
ideals Py, ... , Py of K dividing p, and we obtain the equation

(4) ny-ong =
for ny = pFtfr ... yNg = pFsfs and the residue class degrees fi,. .. » fq-
So the number f(p*) of (ki,...,k;) does not exceed the number

74—1(p*) of solutions of (4), and because g < d this leads to (3) for
prime powers. Since both sides of (3) are multiplicative functions of n,
we deduce (3) in general.
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Now, by definition, every ideal class contains an integral ideal of norm
at most ix. It follows from (3) that

(5) hx < Fa_1(ik),

where F;_;(z) is defined for real z > 0 by

Fi_1(z) = Z Ta—1(n).

But we easily verify the identities

Fy(z) = Z Fy 1(x/m) d=>1, Fy(z) = [z].

m<z
These lead by a straightforward induction to the inequality
d—1
Fi q1(z) < x< Z 1/m> .
m<z
Now Lemma 1 follows from this and (5) together with the obvious

estimate for the partial sum of the harmonic series. ]

We will also need the following upper bound for the regulator Rg of
K. Let t =d — s — 1 be the rank of the unit group Uk of K, where 2s
is the number of nonreal embeddings of K.

Lemma 2. Suppose thatt > 1. Then

Rp < (2d) H log Hy(n)
neu

for any set U of t multiplicatively independent units of K.

Proof. Select t suitably independent infinite valuations of K and
define the usual logarithmic map £ from the nonzero elements of K
into R!. Now the sum of the absolute values of the logarithms of
all the infinite valuations (counted with multiplicity) of a unit n is
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2dlog H1(n). So this is an upper bound for the L' norm of £(n). It
follows easily that the matrix formed with the £(n) for n in U has
determinant of absolute value

R < (2d)" [ ] log Hi (n).
neu

On the other hand, R = IRx > Rk, where [ is the index of the
subgroup of Uk generated by the elements of ¢/ modulo torsion. This
completes the proof of Lemma 2. o

Next, fix an integer d > 2, and write ¢ = d — 2. To construct
our special fields K we will use the polynomials P(X,Y) = P;(X,Y)
defined by

PX,Y)=(Y -1)...(Y —e)(Y2+ X) -1, d>3,
P(X,)Y)=Y?+X —1, d=2.

Let D(X) = Dy4(X) denote the discriminant (“non-square root”) of
P(X,Y) with respect to the variable Y, so that D(X) is in Z[X].

Lemma 3. The polynomial D(X) has a nonconstant factor in Z]X],
irreducible over Q, with odd multiplicity.

Proof. Tt clearly suffices to verify that D(X) has odd degree. If d = 2,
then D(X) = —4(X —1), so we can assume that d > 3. We calculate the
degree by examining the behavior of D(z) as X = z tends to infinity.

Now
D)= [[ —w)%
1<i<j<d
where Y = y;,...,yq are the zeros of P(z,Y). It is easy to see that

as © — oo these have the asymptotic values 1,...,e,i/z, —iy/z. A
straightforward calculation shows that D(zx) is asymptotically cz?¢+!
for a certain nonzero constant c. It follows that the polynomial D(X)
has odd degree 2e + 1, and this completes the proof. o

Lemma 4. There is a constant c, depending only on d, with the
following property. Let Sy be the set of integers n such that some zero
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Y =y of P(n,Y) does not generate a number field of degree d. Then,
for any x > 1 the set Sy contains at most cx'/? positive integers n < z.

Proof. Since P(X,Y) has degree 1 in X it is easy to see that it is
irreducible over C; and therefore also over Q(X) thanks to Gauss’s
lemma. This is the situation of the Hilbert irreducibility theorem. So
the set of rational ¢ such that P(¢,Y) is reducible over Q is contained
in a thin subset of Q in the sense of [12, pp. 121-123] (or, equivalently,
its complement contains a Hilbert set in the sense of [5, p. 225]). Now
Lemma 4 follows from standard cardinality estimates for thin sets; see,
for example, [12, p. 134] (or the much easier Corollary 2.3 of [5, p. 231]
would also suffice for the purposes of the present note). mi

Lemma 5. Suppose thatd > 3. Then there is a constant c, depending
only on d, with the following property. Let Ss be the set of integers n
for which there is a zero Y = y of P(n,Y) such that the numbers
y—1,...,y —e are multiplicatively dependent. Then for any x > 2 the
set Ss contains at most c(log w)ez positive integers n < x.

Proof. We write ¢y, co,... for constants depending only on d. Con-
sider first the affine variety V defined by P(X,Y) = 0. We already
noted that this polynomial is irreducible over C, and therefore V is
an irreducible curve. We claim that the functions ¥ —1,... )Y —e
on V are multiplicatively independent. For, suppose there is a relation
(Y—1)%-.- (Y —e)* = 1 with rational integers a1, ... ,a.. It is easy to
see that Y — 1 is not identically zero but has a zero at one of the points
of V above X = oo (compare the proof of Lemma 3). It follows that
the other factors in the relation are finite and nonzero at this point.
But this forces a; = 0. Similarly for the other exponents; thus, our
relation must be trivial and the functions are indeed multiplicatively
independent.

We now use the Theorem of [6, p. 422] with k = Q, V as above, and T’
generated by Y —1,... ,Y —e. For z > 2 let S5(z) be the set of positive
integers n < x in Ss; that is, the set of all positive integers n < x for
which there is a zero Y = y,, of P(n,Y) such that y, — 1,...,y, — €
are multiplicatively dependent. Standard arguments (for example, the
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Heights lemma of [6, p. 419]) yield the height estimate
(6) Hy(n,9n) < (max{2,n})* < e

for h = ¢y logz. Applying the theorem with d and h as above, we find
a polynomial Q(X,Y), of degree at most coh® for K = max{0,e? — 1},
which vanishes at the points (n,y,) for all n in S5(x) but which does
not vanish identically on V. Since V' is irreducible, the resultant R(X)
of P(X,Y) and Q(X,Y) with respect to Y is nonzero. It vanishes on
S5(x), and therefore the cardinality of Ss(z) does not exceed the degree
of R(X), which is at most cgh”. This completes the proof of Lemma
5. o

Lemma 6. Suppose that E = E(X) in Z[X] is nonconstant and
irreducible over Q. Then there is a positive constant C, depending
only on E, with the following property. Let Sg be the set of integers n
such that E(n) has some prime factor p > nt/4 with odd multiplicity.
Then, for any x > C, the set Sg contains at least C~'z/logx positive
ntegers n < x.

Proof. Let m be the largest positive integer such that E(n) is divisible
by m for all integers n. Let Sg be the set of integers n > m? for which
all prime factors p of F(n) = E(n)/m satisfy p > n'/4. We claim that
there exists C’ > 0, depending only on FE, such that for any z > C’ the
set S§ contains at least C'~1z/log x positive integers n < x.

If the polynomial F(X) = E(X)/m has integer coefficients, this is
an immediate deduction from Theorem 9.7 of [3, p. 259], together
with Remark 3.8, since the condition (5.1) is satisfied. In general, one
should apply Theorem 9.3 directly to the numbers F(n). In that case,
the verification of the conditions (£21), (25(1)), (Qs3), (R(1,«)) (with
a = 1) is relatively straightforward and may be left to the reader; the
main observation needed is that the congruence class of F(n) modulo
an integer d is now determined by the congruence class of n modulo
dmg, where my is the largest factor of m composed only of primes
dividing d. This establishes the above claim in general.

To guarantee odd multiplicity we can use the Hilbert irreducibility
theorem as in the proof of Lemma 4. It is easy to see that the
polynomials +F(X) — Y? are irreducible over Q(X). Therefore, the
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set of rational ¢ such that at least one of £F(¢) is a square is contained
in a thin subset of Q. So, for some C"” depending only on E, there
are at most C”x'/? positive integers n < x such that at least one of
+F(n) is a square. Removing these from Sg, we are left with numbers
F(n) having at least one prime factor p with odd multiplicity; and
p > n'/* > m by definition. In particular, p does not divide m, and
since E(n) = mF(n) this completes the proof of Lemma 6. O

We can now start on the proof of Proposition 2. Fix an integer d > 2.
By Lemma 3 we can write

(7) D(X) = (BE(X))*F(X)

where u is odd, E(X) in Z[X] is nonconstant and irreducible over Q,
and F(X) in Z[X] is prime to E(X). We will apply Lemma 6 to this
E(X). Let R be the resultant of E(X) and F(X). Thus, R is a nonzero
integer.

By comparing cardinality estimates in Lemmas 4, 5 and 6, we see
that there are infinitely many positive integers n in the set Sg but not
in Sy or (if d > 3) S5. For such an n, let Y = y,, be any zero of P(n,Y);
then since n is not in Sy the number field K = K,, = Q(y,,) has degree
d. Let Ak be its discriminant. We start by proving that

(8) AK Z nl/s

if n is sufficiently large.

Recall that D(X) is the discriminant (nonsquare root) of the poly-
nomial P(X,Y") with respect to Y. It follows that the rational integers
A% and D(n) are equal modulo multiplicative squares. From (7) we
get D(n) = (E(n))“F(n). Since n is in Sg, the number E(n) has a
prime factor p > n'/* with odd multiplicity v, say. If n is sufficiently
large, this p cannot divide F'(n), otherwise it would divide the resul-
tant R. It follows that D(n) has the factor p with odd multiplicity uv.
Therefore, p also divides A%, and (8) is an immediate consequence.

In particular, Ax — 0o as n — 00, and so there are infinitely many
different number fields K = K, arising from our construction. This
allows us to apply the Brauer-Siegel theorem in the form

(9) log(hkRk)/log Ax — 1
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as n — oo (see, for example, [4, p. 328]).

The inequality (8) implies that the discriminant Ak is “polynomially
large” in n. We next prove that the regulator Rg is by contrast
“logarithmically small” in n. For the fields K it is clear that s = 1
if n is sufficiently large. In particular, Rk = 1 for d = 2. If
d > 3, then y, — 1,... ,y, — e are units of K. Since n is not in
S5, these are multiplicatively independent. Recalling from (6) that
Hy(yn) < n¢ for n > 2, we deduce from Lemma 2 the upper bound
Rk < c¢(logn)®, where ¢ depends only on d. Now (9) together with (8)
implies log hx/log Ak — 1. Finally, this combined with Lemma 1
leads to the assertion of Proposition 2. Our theorem is thereby
established. o

Added in proof. 1 am grateful to S. Louboutin for pointing out that
my Proposition 2 is an immediate consequence of my Lemma 1 together
with the results of [1]. In fact the fields k, that I construct are
essentially special cases of the fields constructed in [1] (p. 59) with
ry =d—2,r9 =1 and N = n. On the other hand it may be interesting
that my discriminant bounds (8) are sharper than the corresponding
bounds in Lemma 5 of [1].
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