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WEAK SEQUENTIAL COMPLETENESS OF 5-DUALS

CHRISTOPHER E. STUART

1. Introduction. The property of weak sequential completeness in
sequence spaces has been considered by many authors and has been
used to prove results in summability theory and functional analysis
(see [2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15]). In this paper we
present a generalization of the following theorem of D. Noll (see below
for relevant definitions):

Theorem 1.1 [9, Theorem 6]. If E is a sequence space containing
® that has the weak gliding hump property, then E° is o(EP,E)-
sequentially complete.

We show, in Theorem 3.5, that if F is a sequence space containing ®
that has the signed weak gliding hump property (Definition 3.4), then
EP is 0(E®, E)-sequentially complete. The sequence space of bounded
series, bs, is shown to have the signed weak gliding hump property. It
is known that bs fails the weak gliding hump property (see [9, 5]).

2. Preliminaries. A sequence space is a vector space of sequences,
which can be scalar (R or C) or vector-valued. In this paper all vector
spaces are over R, largely for convenience.

A real-valued sequence space E is called a K-space if the inclusion
map E — w (the space of all sequences) is continuous, when w is given
the product topology (w = [];=;(R):;). A K-space with a Frechet
(complete, metrizable and locally convex) topology is called an FK-
space; if the topology is a Banach topology, then F is called a BK-
space.

The a-, 8- and y-duals of a sequence space E are defined to be

B — {(y,) : Z|m,yi| < oo for all (z;) € E}7

i=1
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EP = {(yz) : szy, converges for all (z;) € E},

i=1

and

EY = {(yi) F Sup

n
E LiYi
i=1

For a fairly complete list of sequence spaces and their duals, see [8,
p. 68].

Let ® = span{e’ : i € N}, where e’ denotes the sequence with 1 in
the ith position and zeros elsewhere. If E D ®, then F and E® or EP
are in duality with respect to the bilinear form z-y = Y ;> | ;y;, where
z=(z;) € E,y=(y;) € E* or EF.

We can define weak topologies (topologies of pointwise convergence)
o(E,E®) and o(E, E®) on E, and o(E®, E) and o(E®,E) on E® and
EP | respectively. EP is weakly sequentially complete if every o(EP, E)-
Cauchy sequence converges to an element of E”. Similar definitions
hold for E and E“.

< oo for all (z;) € E}

3. Main results. The primary tool used in proving Theorem 3.5 is
the following result, which is a useful generalization of the basic matrix
theorem of Antosik and Mikusinski, which has been used to prove many
fundamental results in functional analysis and measure theory (see [1,
13]). The theorem is stated and proved in a very general setting, that
of Abelian topological groups.

Lemma 3.1. Let X be an Abelian topological group and x;; € X
fori,j € N. If lim;x;; = 0 for all j and lim; x;; = 0 for all i, and
if (Ug) 1s a sequence of neighborhoods of 0 in X, then there exists an
increasing sequence of positive integers (p;) such that xp.p., Tp.p, € U
for j >1i.

Proof. See [13, Lemma 1]. o

We have the following generalization of the basic matrix theorem of
Antosik and Mikusinski.
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Theorem 3.2. Let X be an Abelian topological group and z;; € X
for alli,j € N. Suppose

(i) lim; z;; = x; exists for all j and

(ii) for each increasing sequence of positive integers (m;) there
is a subsequence (n;) and a choice of signs s; € {—1,1} such that
(32521 8ing )32y is Cauchy.

Then lim; z;; = x; uniformly for j € N. In particular,

limlimz;; =limlimz;; =0 and limz; =0.
i i i

Proof. (The proof is essentially that given in [13, Theorem 2].)

If the conclusion fails, there is a closed, symmetric neighborhood Uj
of 0 and increasing sequences of positive integers (my) and (ny) such
that Ty n, —Zn, ¢ Uy for all k. Pick a closed, symmetric neighborhood
U; of 0 such that Uy + U; C Uy and set i1 = my, j; = ny. Since

Tiyjy, — Tjy, = (Tiyg, — Tijy) + (Tijy — Tjy)s

there exists ig such that z;,;, — x;;, ¢ Uy for ¢ > 5. Choose ko such
that my, > max{iy, o}, nk, > j1 and set is = Mg, jo = Ng,-

Then ;,;, — i,5, ¢ U1 and x4, — xj, ¢ Up. Proceeding in
this manner produces increasing sequences (ix) and (ji) such that
i, — T, ¢ Uo and x5, — 24,5 ¢ Ui. For convenience, set
2kl = Tipjy — Tigyqjis SO 2k ¢ Ut

Choose a sequence of closed, symmetric neighborhoods of 0, (U,,),
such that U,, + U,, C U,,_1 for n > 1. Note that

U3+U4+---+Um:ZUj§U2 for each m > 3.
j=3

By (i), limy, 2, = 0 for each [ and by (ii), lim; z; = 0 for each k so by
the lemma there is an increasing sequence of positive integers (py) such
that Zp,p,, 2pipr € Uk+2 for k > [. By (ii) there is a subsequence (g)
of (p) and a choice of signs sj, such that (3277, skxs, )52, is Cauchy,
SO

o0
hllcn E 812g,q = 0.
=1
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Thus, there exists a ky such that

o0
g S1Zqp,q1 € Us,.
=1

Then for m > ko,

m ko—1 m
E :SIZ%O(H = E :SlZ‘IkOQI + E : SiZqkyq
=1 1=1 l=ko+1
1#£ko
kofl m
€ E Ukot2 + g Uii2
=1 I=ko+1
m+2
C E Uy C Us,
1=3
S0
oo
Zhy = E ' s12q,,q € Ua.
=1
ko
Thus,

oo
Sko2qraar, — E :slekOQZ — 2k, €Uz + Uz C UL
=1

Since U is symmetric, 24, 4, € Uy as well, which is a contradiction.
0 0
]

Definition 3.3. A matrix which satisfies the hypotheses of Theo-
rem 3.2 will be referred to as a signed KC-matriz.

A K-matriz as originally introduced by Antosik and Mikusinski
satisfies condition (i) of Theorem 3.2 and condition (ii) without the
choice of signs s;.

Theorem 3.2 is used to prove Theorem 3.5, which is the main result
concerning weakly sequentially complete -duals. First, a definition
which generalizes Noll’s definition of the weak gliding hump property
(WGHP).
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Definition 3.4. Let E be a sequence space containing ®. FE has
the signed weak gliding hump property (signed WGHP) if, given any
z € E and any disjoint sequence (I,) C Iy (the set of all finite
subintervals of N), there exists a subsequence (I, ) and a choice of signs
(sk) € {—1,1}N such that the coordinatewise sum Y, 5kCr,, ¢ € E
(C4 denotes the characteristic function of A).

As suggested by the name, the difference between the signed WGHP
and Noll’s WGHP is that the “humps” in Definition 3.4 are multiplied
by £1. Many sequence spaces, both scalar- and vector-valued, satisfy
the signed WGHP, in particular the space bs.

Theorem 3.5. Assume that E is a sequence space containing ® with
the signed WGHP. Then EP is o(EP, E) sequentially complete.

Proof. (The proof is a modification of the proof of Theorem 7 in [12].)

Let (y*) be a o(EP, E) Cauchy sequence. Denote by y the sequence
defined by y; = limy, y*-€7, that is, the coordinatewise limit of (y*). We
need to show that lim,, Z?zl y;x; = limy y*-z for all z € E. Obviously,

this will imply that y € E® and complete the proof. a

If the desired conclusion is not true, there exist an increasing sequence
of integers (n;), © € E, ¢ > 0, such that

ng o)
Z YiT; — lillcn Z y;-“:vj

=1 j=1

>¢ foralll.

Manipulating the lefthand side yields

ny oo ny ny [ee]

. k . k k
Z;ijj—ll,gl;ijj z;ijj—h]£n<;ijj+ > ij]-)‘
1= 1= J= 1=

j=n;+1
ng o0
= 1i,§1<2(yj3«"j—yfwj)— > yfﬂfj)-
j=1 j=n;+1

Since limy, yfa; = y;z;, limy, >ty (yiz — yFz;) =0. So

oo oo
liin < - Z yf%)‘ = lilgn Z y;-“xj >¢ foralll.
j=n;+1 j=n;+1
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Choose k; such that |Z;im+1 y;-“:cj| > ¢. Since the series is

<yl < /2.

convergent, there exists mi > ny + 1 such that |37 v

Therefore, | Z;n:lnl 41 y;-“:vj| > ¢/2, by the triangle inequality.

Let I; = {n1 +1,...,m1}. Now choose k2 > ki and an integer
ng > my (so named for notational ease) such that | Y272, y;-“z zj| >e.
ma

As above, we can find my > na + 1 such that |> 72 ., y;?zxj\ >e/2.
Let Iy = {ny+1,... ,mz2}. Proceeding inductively produces a sequence
I ={n;+1,... ,m;}. Note that

(%) ly¥i - Cr,x| > /2 for all i.

Consider the matrix (y* - Cp,z) = M = (M;;). We show that M is a
signed K-matrix. The columns of M converge to y-Cy;z. By the signed
WGHP, for every subsequence (p;) there exists a further subsequence
(gj) and a choice of signs (s;) such that the coordinatewise sum

oo
T = ZSjC]quL‘ € FE.
j=1
Hence,
o0
li ki .. _ ki |~
1?123/ sJCIqja: hzmy T
j=1
converges by hypothesis.
So M is a signed K-matrix and M;; — 0, contradicting (*). Therefore,

y-x = lim; y* - z, and so EP is o(EP, E)-sequentially complete. o

The sequence space

n
D i

i=1

-}

was the motivation in defining the signed WGHP. To see that bs fails
the WGHP, consider z = (1,—1,1,-1,...). Clearly, € bs but for
I, = {2n — 1}, Cypnr,z = (1,0,1,0,...) ¢ bs, and for no subsequence

bs = {(wi) : sup

n
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(In,) of (1) is Cu,r, = € bs. However, bs does satisfy the signed
WGHP, as we now prove.

Proposition 3.6. bs has the signed WGHP.

Proof. (Actually we show the stronger result that for all z € bs and
increasing (I,,) C Iy, there exists a choice of signs (s,,) € {—1,1}N such
that > s,Cp,x € bs.)

Let € bs, and let (I,,) be increasing in Iy. Note that |C;-z| < M
for any interval I € Iy and some M > 0, because there exists M /2 such
that sup,, | Y, z;| < M/2, and so

max(I) min(l)—1
|C['l'|: Z T; — Z T < M.
i=1 =1

Define a choice of signs recursively:
sy =sgn (Cp, - )
and .
Sni1 = [ sgn (Z skCr, ﬂc>] [sgn (Cr,.,, - 7))
k=1
where sgn (0) = +1.
Let y = Y, sxCr,x (coordinatewise sum). We show that y € bs by
showing that | Zf\;l yi| < 2M for any N.

max (I

We first prove by induction that | "% )y,-| < M for any n. For
n =1 the result is clear. If | Z;‘:lx(l") y;| < M, then, by construction,

max(Iy)
Z Yi + Z Yi
i=1

i€l +1

max(I,+1)
Yi

< M,

1=

—

max(I,)

since | Ziel”“ yi| < M and Zielnﬂ y; is opposite in sign to |, Ys-
Now for any N > 0 we can write

N Py
Du| <D v
i=1 i=1

N

Zyi

i=Pn—+1

< +
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where Py = max{max(l) : max(l;) < N} and Py = 0 if N <
max(I;). So

N Pn N
Swl < Y w4 Y wl<2M forann,
i=1 i=1 i=Pn+1

using the observation at the beginning of the proof. This proves the
result. O

It should be noted that Boos and Leiger have reported to the author
through private communication that there are examples of o(E?, E)-
sequentially complete spaces that fail the signed WGHP. It would be
highly desirable to have a “gliding hump” characterization of weakly
sequentially complete sequence spaces.

Finally, we present a modest application of weak sequential complete-
ness to show continuity of infinite matrices mapping between sequence
spaces. Let A = (ani) be an infinite matrix. A : E — F means
Az = (X, ank®r) = (yn) € F for all z = (z4) € E. The following
theorem of Swetits will be used.

Theorem 3.7 [14, Theorem 2.1]. Let E and F be spaces containing
® such that EP is o(EP, E)-sequentially complete, and F is o(F, F?)-
sequentially complete. If A is an infinite matriz, then the following are
equivalent:

a) A:E— F.
b) A':FP — EP.
c) A:EPF 5 F.

(Here, A’ denotes the transpose of A.)

Actually, an inspection of Swetits’ proof shows that a) = b) is true
only with the assumption that E? is o(E?, E)-sequentially complete.
Indeed, he shows that Az -y = A’y -z for z € F and y € FP. With
this observation we can prove the following:

Theorem 3.8. Let E and F be sequence spaces containing .
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Assume that EP is o(EP, E)-sequentially complete and that A : E — F.
Then A is (E,EP) — o(F,F®) continuous, that is, continuous with
respect to the weak topologies on E and F'.

Proof. Let z° be a net in F which converges to z € F in the topology
o(E, EP). We need to show that Az’ — Az in o(F, F#). By Swetits’
result, y - Az® = A’y - 2% for y € F#, and A'y € EP. Therefore,

Ay - 2® 5 Ay-z =y Az

So, Az? — Az with respect to the topology o(F, FP), which completes
the proof. a

It is interesting to note that, by the last theorem, the nontopological
signed WGHP implies a topological result, the weak continuity of A.
This can be viewed as an example of “automatic” continuity. That is,
continuity implied by nontopological assumptions, in this case on the
domain space.
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