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INTEGRATION AND L;-APPROXIMATION:
AVERAGE CASE SETTING WITH ISOTROPIC
WIENER MEASURE FOR SMOOTH FUNCTIONS

KLAUS RITTER AND GRZEGORZ W. WASILKOWSKI

ABSTRACT. We propose isotropic probability measures
defined on classes of smooth multivariate functions. These
provide a natural extension of the classical isotropic Wiener
measure to multivariate functions from C2”. We show that, in
the corresponding average case setting, the minimal errors of
algorithms that use n function values are ©(n=(d+4r+1)/(24))
and ®(n7(4T+1)/(2d)) for the integration and Lo-approximation
problems, respectively. Here d is the number of variables of
the corresponding class of functions. This means that the
minimal average errors depend essentially on the number d
of variables. In particular, for d large relative to r, the La-
approximation problem is intractable. The integration and
Lo-approximation problems have been recently studied with
measures whose covariance kernels are tensor products. The
results for these measures and for isotropic measures differ
significantly.

1. Introduction. We study the integration and Le-approximation
problems for multivariate functions f. For the integration problem, we
want to approximate the integral of f, and for the function approxi-
mation problem, we want to recover f with respect to the Lo-norm.
For both problems, we want to determine methods with minimal error
among all methods that use n function values. Moreover, we want to
know how these errors depend on the number n of evaluations, on the
number d of variables of f, and on regularity of f.

Both problems have been extensively studied in the literature, see,
e.g., [15, 24, 25| for hundreds of references. However, they are mainly
addressed in the worst case setting with the algorithm cost and error
measured by the worst performance with respect to a given class F' of
functions. Depending on the smoothness properties of functions from
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F', the minimal worst case errors strongly or only mildly depend on the
dimensionality parameter d.

For instance, if F' consists of functions with all partial derivatives
of order up to r bounded by 1, both integration and approximation
problems are intractable (prohibitively expensive) or even unsolvable
since then the minimal worst case errors are proportional to n~"/¢.
This is well known, see, e.g., [15, p. 36]. However, if F consists of
functions with bounded mixed rth derivatives, the minimal worst case
errors equal ©(n~"(Inn)@=1/2) see [3, 7], and O(n~"(Inn)(r+1@-1),
see [22, 23], for integration and Lq-approximation, respectively. This
means that now the dependence on d is only through the exponent in
Inn and a constant in the ©- or O-notation. However, for » = 0, both
problems are still unsolvable.

It is therefore important to see how difficult the problems are in an
average case setting. In the average case setting, the class F' is equipped
with a probability measure u, and the error of an algorithm is defined by
its expectation with respect to p. Like in the worst case setting where
optimality of algorithms and minimal worst case errors depend on the
properties of F', in the average case setting optimality of algorithms
and minimal average errors depend on p.

Recently, the average case setting for integration and Le-approximation
has been studied in [17, 82, 33] assuming that y is the r-folded Wiener
sheet measure. They proved that the minimal average errors equal
O(n~""Y(lnn)@=1/2) and ©(n=""1/2(Inn)@-D+) for integration
and Lo-approximation, respectively.

Wiener sheet measures are Gaussian measures with the covariance
kernel being a tensor product of scalar covariance kernels. Hence, the
mild dependence of minimal errors on d could be attributed to the
tensor product properties of p. Actually, similar bounds hold for a
larger class of probability measures that are tensor product Gaussian,
see [18, 19]. Therefore, it is important to see how the minimal average
errors depend on d when p does not have a tensor product form.

A classical example of a nontensor product measure is provided by
the isotropic Wiener measure. Integration and Lo-approximation with
such g have been considered recently in [31]. It turns out that the
minimal average errors for integration and Ls-approximation equal
O(n~1/271/2d)) and @(n~1/(24)). Thus, they depend essentially on
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d especially for Ly-approximation.

We think that the isotropicity is an important property, at least for a
number of practical problems. However, the isotropic Wiener measure
is concentrated on continuous functions for which, with probability
one, the derivative does not exist at any point. Hence, it is not suitable
for studying problems defined over classes of smooth functions. To
remedy this, we propose a new measure that is a natural extension of
the isotropic Wiener measure. This is an isotropic Gaussian measure
and is concentrated on functions f with continuous partial derivatives
of order up to 2r.

We show that the minimal average errors for this measure are
equal to ©(n (T4 +1)/(24)) for integration and @(n~(4r+1)/(2d)) for
Ls-approximation. Clearly, these bounds depend essentially on d. The
results concerning Wiener sheet measures and our results indicate the
great difference between the average case settings with both measures.
Of course, this difference occurs only for multivariate problems since
for d = 1 both measures coincide.

Measures on spaces of smooth functions are often obtained from
measures on spaces of irregular functions by some kind of smoothing.
For instance, the r-folded Wiener sheet measure is obtained from
the Wiener sheet measure by r-fold integration with respect to each
variable. In this way the tensor product structure is preserved. In
order to obtain an isotropic measure, we apply the rth power of the
inverse Laplacian operator to the classical isotropic Wiener measure.

The paper is organized as follows. Section 2 contains the basic defini-
tions and problem formulation. In Section 3 we give the construction of
the isotropic measures on classes of smooth functions, and we analyze
the corresponding reproducing kernel Hilbert space. The error bounds
are obtained in Section 4, and the final section contains additional re-
marks, in particular on almost optimal methods.

2. Average errors: Basic definitions. We consider the follow-
ing integration and function approximation problems for multivariate
functions. Let F C C?"(D) be a space of functions with continuous
derivatives of order up to 2r. Since we are interested in isotropic mea-
sures, we take

D={zecR:|z| <1}
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as the unit ball with respect to the Euclidean norm |z| = (22 + -+ +
22)1/2. The space F is equipped with the norm ||f|| = max, || f(*]|s,
where the maximum is with respect to all multi-indices @ = [y, . .. , 4]
with Z?:l a; < 2r.

For every f € F we want to approximate S(f), where S : F — G
with

S(f) = Int () = /Df(:z:)dx and G =R
for the integration problem, and
S(f)=App2(f) =f and G = Lx(D)

for the approximation problem.

An approximation U, (f) to S(f) is computed based on information
N, (f) that consists of n values of f taken at some points from D,

Hence,
Un(f) = ¢n(Nn(f))a

where

¢n: Np(F) — G

is an arbitrary (Borel measurable) mapping; ¢,, is called an algorithm
that uses IV,,.

In the average case setting, we assume that the space F' is endowed
with a (Borel) probability measure p. Then the average error of
U, = ¢ o N, is defined by

e @5 = [ 15 - Un(f)léu(df)>1/2-

The nth minimal average error is then the minimal error among all
methods that use n function evaluations,

o 8 (S, 1) = i(?f ™8 (Un, S, 1),

i.e., minimization is with respect to the mapping ¢, as well as to the
knots x;. For a more detailed discussion, see, e.g., [25].
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We study the asymptotic order of the mth minimal average errors
r2v8 (S, ). Furthermore, we determine methods using n function
evaluations such that their errors differ from r2'&(S,u) at most by
a multiplicative constant.

3. Isotropic Wiener measure for smooth functions. In this
section we provide the definition and basic properties of the measure
@ = w, studied in this paper.

We begin by recalling the classical isotropic Wiener measure wy,
see, e.g., [1, 5, 12, 14]. This is the zero mean Gaussian measure
on Fy = C(D) with covariance kernel

_ e[+ lyl |z -y
5 :

KM%Mﬁ:Ff@V@WdW)

Since Ko(Qz,Qy) = Ko(x,y) for any orthogonal transform @ on R4,
the measure wq is isotropic, i.e., it is invariant with respect to any
orthogonal transform of D. Moreover, with probability one, any f
from Fj does not have any derivative.

To introduce an isotropic measure w, on a class of regular functions,
we proceed as follows. Let A = Z?Zl 0?/0z? denote the Laplace
operator. For a nonnegative integer r, let

F,={feC*(D): flop =---= (A""'f)|ap = 0}.
The space F, equipped with ||f|| = max, ||f(*]|s is a separable

Banach space, and we consider the Borel o-algebra on F,.

The operator A" defines a bounded linear injection F;. — F. Define
T,.:Fy— F,

by
ﬂf_{A“f if f € AT(F,),
0 otherwise.
Clearly, T.(A"f) = f for any f € F, and A"(T.f) = f for any
f e A" (F,).
We need the following result for the Poisson equation in Hdlder
spaces, see, e.g., [6, p. 99]. Let C**(D) denote the Banach space of
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functions on D whose kth derivatives satisfy a Holder condition with
exponent A.

Proposition 1. The Laplace operator defines an isomorphism
{f € CF*2X(D) : flop =0} — C**(D), if k € Ng and 0 < A < 1.

A measurable mapping Fy — F, is called weakly measurable linear
operator, if it is linear on a measurable linear subspace V' C F, with
wp (V) = 1, see [8].

Lemma 1. T, is a weakly measurable linear operator and wy(A" (F.))
=1.

Proof. Due to a theorem by Kuratowski, see [26, p. 5], A"(A) C Fy is
measurable for any measurable A C F,.. This implies the measurability
of T,.. Clearly, T, is linear on A"(F,.).

Observe that C%* (D) C F, is measurable. We have wo(C%*(D)) =1
if and only if 0 < X\ < 1/2, see [1, p. 202] and C®*(D) C A"(F,) for
0 < A <1 due to Proposition 1. Therefore, wo(A"(F,)) = 1. O

We study measures w, which are obtained from the classical isotropic
Wiener measure by smoothing with some power of A1,

Theorem 1. Let

wy = Trw07

i.e., wr(A) = wo(T71(A)) = wo(AT(A)) for any measurable A C F,.
Then w, is an isotropic zero mean Gaussian measure on F..

Proof. Lemma 1 implies that w, is Gaussian with zero mean, see
[8, 10, 27]. The measure wy is isotropic, and A" commutes with
orthogonal transforms of D. Therefore, w, is isotropic, too. |

It is well known that the reproducing kernel Hilbert space H,, gener-
ated by the covariance kernel of a measure p plays an important role
in analysis of average errors. For instance, for the integration problem,
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nth minimal average errors equal the nth minimal worst case errors:

ro'® (Int, p) = r°" (Int, Hy,)
:=infinf sup |Int(h) — ¢, (Nn(h
(1) Mo ||h||us1| )= enall)

= inf sup Int(h).
No | 7]} 1,V ()=0

This property has been used in many papers, see e.g., [9, 11, 13, 16,
17, 18, 19, 20, 25, 28, 29, 31, 33, 35]. For the Ly approximation
problem we only have the inequality

ag"/? - 13 (Appa, ) < " (AP, Hy)

(2) —infinf sup [|h — én(Ne(h))]]cos
No én ||n||, <1

where a4 denotes the volume of the unit ball D C R?, see [33]. Here
||| denotes the norm in H,,. Therefore, in the following subsection we
provide some characterization of the Hilbert spaces which are generated
by the covariance kernels of the measures w,.

3.1. The reproducing kernel Hilbert space. We begin by recalling
some basic properties of reproducing kernel Hilbert spaces generated
by Gaussian measures, see, e.g., [2, 26, 29].

Let p be a zero mean Gaussian measure defined on a space F C
C?'(D). The covariance kernel of p is denoted by K,. Then the
corresponding reproducing kernel Hilbert space H,, C F' is the space
generated by finite linear combinations of K, (-,y) for y € D with the
inner product (-, -), defined by

<KM('7x)v KH('v y)>u = Kp(w,y).

Hence, K, is the reproducing kernel of H,,. Moreover, for a complete
orthonormal system {h;}; in H,, which is orthogonal in Ly (D), we have
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and
(3) fa) = _&(f) - hil).
i=1
Here
() = Il | Fhto) do
and convergence in (3) is understood in mean square sense with respect

to p. Observe that {¢;}; forms a sequence of independent random
variables with standard normal distribution.

Now let K, = K,,, be the covariance kernel of w,, and let H, = H,,,
be the corresponding reproducing kernel Hilbert space. The norm in
H, is denoted by || - ||.-

Lemma 2. Hy C A"(F,) and H. = {A™"h: h € Hy}. Moreover,
[1Allr = [[A"A]lo

for any h € H,.

Proof. Since wo(A"(F})) = 1, we obtain Hy C A"(F,), see [8]. The
representation theorem for weakly measurable linear operators [8] and
(3), with p = wy, imply

Tof(z) =D &(f) - Tohi(x) = Y &(f) - A hi(x)
i=1 i=1
with convergence in the mean square sense. Therefore,
Kole) = [ T 1T () uold)
Fy

= ZA*”hi(x) - ATh(y).

Clearly, H := {A™"h : h € Hy}, equipped with the scalar product
(fr9)a = (A" f,A"g)o, is a Hilbert space. Moreover, K, (-,y) € H.
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The measurability of h — h(y) = T,.(A"h)(y) implies continuity, see
[4, 8], and therefore H has a reproducing kernel. From

oo

h(y) = Z<h7Airhi>H ' AiThi(y) = <h7Kr(7y)>H

we get H, = H and ||h||? = (h, h) 5. o

In Lemmas 3 and 4, we determine spaces X and Y with X C H,. C Y,
which are suitable for a worst case analysis of the integration and
approximation problems.

Consider the kernel Ky as a function on R?% x R%, and let ® denote
the Hilbert space of functions on R? having this reproducing kernel.
The following property of ® is due to [14] for odd d and [5] for arbitrary
d. Let || - || denote the norm on ®. In what follows, we write ¢ to

denote positive (perhaps different) constants which may only depend
on d. Then

(4) {p e CFRY) :p(0) =0} C @
and

1/2
lolle = - ( / A<d+1>/4sa<y)|2dy)
Rd

on this subspace. For d + 1 not divisible by 4, A(4+1/4 is understood
in the generalized sense, see, e.g., [21].

Due to [2] we have

(5) Hy={¢|lp:pecd}
and
(6) lAllo = min{[l¢[le : ¢ € @, ¢[p = h}

for any h € Hy.

Lemma 3. H, C C?*"'Y/2(D) and the embedding is continuous.
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Proof. Let (-,-) denote the Euclidean scalar product in R¢, and let
q(x,y) = cos(2m(z,y)) + sin(27(z,y)) — 1.
Then ¢(-,y)/|y|@t1/2 € Ly(R?) and Q : Ly(R?) — ®, given by

(Q9)(x) = c- / a(z, )y @2 - g(y) dy

Rg

is an isometric isomorphism, see [5]. Observe that

|Q(m +u, y) o q(xa y)| = | COS(27T<$ + u, y>) o COS(27T<I, y>)
+ sin(2m(x + u, y)) — sin(27(z, y))|
< c¢-min(|{u,y)|,1).

This yields

[ (ate+ ) = ate ) it dy

<e (|u2 [ w1 dy
{lyI<1/]u|}

o e
{ly|=1/|ul}

:c.|u|

and

(Q9)(z +u) — (Qg) ()|
Sc-/Rd\Q(w+u,y)—q(w,y)l/\yl(d“)/z-Ig(y)ldy

< glrame - Jult.

Using (5) we see that any function in Hy is Holder continuous with ex-
ponent 1/2. Moreover, the closed graph theorem implies the continuity
of the respective embedding. This proves the statement for » = 0 and,
together with Proposition 1 and Lemma 2, for r > 0. |

Lemma 4. {¢|p : ¢ € C®°(R?), suppy C int D\{0}} C H,, and
the norm on this subspace satisfies

lelpllr < A0 ¢-
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Proof. If p € C*°(RY) satisfies supp ¢ C int(D)\{0}, then A"y € @
and therefore A"p|p € Hy, see (4) and (5). We obtain ¢|p € H,
because of Lemma 2. Using (6), the estimate on the norm follows.
O

4. Average error bounds.

Theorem 2.
128 (Apps, wy) = O(n~ 41/ (2d))

and
T,zvg (Int, wr) — @(nf(d+4r+1)/(2d))‘

Proof. 1t is known, see [31], that
728 (Appa, w,) > n'/? . 38 (Int, w,).

Hence, to prove the theorem it is enough to show that 72V (Apps, w,.)
is bounded from above by O(n~(*47+t1/(24)) and that r2'& (Int,w,.) is
bounded from below by Q(n~(d+4r+1)/(2d)),

The upper bound follows from

& (App2, wy) < 7" (Appeo, Hr)
= O(r* (Appss, C*"/2(D)))
— @(n7(4r+1)/(2d))‘

Here the inequality is due to [33], see (2). The first equality follows
from Lemma 3, and the second equality is due to [15, p. 34].

To prove the lower bound for the integration problem we proceed as in
[31]. Consider arbitrary information N, (f) = [f(z1),..., f(z,)] with

x; € D. There are n equal-size cubes Q1,...,Q, C D with centers
V1, ... , U, that satisfy the following properties. For every 7,
(7) 0¢4Q; and z; ¢ Q; foralli,

(8) QiNQ; =2 ifi#j
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(9) the sidelength A of Q equals ¢ -n =Y/,

As in the previous section, ¢ denotes a positive constant independent
of n. Let ¢p € C*°(R) be a nonnegative function with ¢(¢) = 0 if and
only if ¢ > 1/16, and define

pi(z) = P(A 2 |z — vi]?).

Due to (8) and (9), these functions have pairwise disjoint supports,
each contained in @); C D. Furthermore, ¢;|p € H, holds because of
Lemma 4. Consider

_ fo(@)

1@ =15

With fO = Z(p”p.
i=1

Obviously, ||f||- = 1 and, because of (7), N,(f) = 0. Hence, due to
(1), we only need to show that Int (f) > ¢ -n~(@+47+1)/2d)  For this
end, note that Int (¢;) = ¢/n and thus

(10) Int (fo) = c.

Moreover,
ATpi(z) = g\t (z—v)) e n?/e,

where g = A"(]-|?). Using Lemma 4 and the estimate (3) in [31], we
obtain .

2 A

i=1

g~ )

2r/d | 1/2+1/(2d)

HfOHT <
[}

<ec- n2r/d

@
<c-n

This and (10) imply that Int (f) > ¢-n~(@+47+1/(24) a5 needed. O
5. Remarks.

5.1.  Almost optimal methods. We discuss linear methods U, =
¢n © N, whose average errors are proportional to the minimal errors
r2v8 (S, w,.). Such U, are said to be almost optimal.
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We begin with the Lo-approximation problem. The order of the nth
minimal average errors for this problem coincides with the order of the
nth minimal worst case errors for L.,-approximation on the unit ball
of the space C?'/2(D). This follows from Theorem 2 and [15, p. 34].
Moreover, inequality (2), stated in terms of nth minimal errors, also
holds for errors of linear methods U, see [33]. That is,

eavg (Un7 APPZ, wr) S ewor (Una APPoo, Hr)

= sup ||f — Un(f)|loo
[fIl-<1

for U,(f) = Y1, f(@i,n) - gi,n with knots z;, € D and functions
9in € L2(D). Hence, due to Lemma 3, it is sufficient to find linear
methods with

€ (Upy ApPoo, C*1 /%) i= sup  ||f — Un(f)|lo

11l g2r1/2<1

_ @(n—(4r+1)/(2d)).

Such methods are known, see, for instance, [15, p. 34]. One can
take knots x;, which form a uniform grid in D. The corresponding
algorithm ¢,, computes piecewise polynomials of degree at most 2r
in each variable which interpolate f on subgrids containing (2r + 1)¢
points. Hence, we see that a fairly simple method is almost optimal.

For the integration problem, the situation is much more complicated
since (almost) optimal selection of sample points z;, is unknown.
We only know (almost) optimal randomized methods even though
randomization does not help in the average case setting. Indeed, let
U, = ¢n o N, be a family of (almost) optimal methods for the Lo-
approximation problem, e.g., piecewise polynomial interpolation on a
uniform grid. Consider

(1) LML) =t (Ua () + 2 SO~ Unl)().

i=1

Here A is the volume of D and MZ(f) is the following randomized
information. It contains all values of N, (f) as well as the values f(¢;)
for n random points ty,...,t, € D, each generated independently
with uniform distribution on D. Then the average error of such a
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randomized method does not exceed (\/n)'/%e2V8 (U,,, Apps, w,), see,
e.g., [31], which proves (almost) optimality of ¢! o Mt.

5.2. Complexity. Our main results are stated in terms of minimal
average errors among all algorithms that use n function values. Ob-
viously, the same results hold if the permissible information operators
include evaluation of derivatives. Moreover, we could allow adaptive
selection of sample points, both deterministic and randomized.

Theorem 2 can also be used to determine the average complexity
of both integration and Ls-approximation problems. For a detailed
discussion of complexity, see, e.g., [25]. We only recall that the average
g-complexity of a problem, comp®'8 (¢,5, 1), is the minimal expected
cost among all methods ¢ o N whose average error does not exceed €.
Here we allow any information IV consisting of a number of function
(and/or derivatives) values; both the number of evaluations and the
sample points can be chosen randomly and/or adaptively. Also, ¢
can be a random mapping. We assume that the cost of one function
evaluation is ¢, whereas basic arithmetic operations have unit cost
1<ec.

From [30] we know that for Gaussian measures p, comp?®'8 (¢, .S, i)
is proportional to n(e) = min{l : 7"* (S, ) < e} if the nth minimal
average error r2V8 (S, 11) is a semiconvex function of n. From Theorem
2 we see that, for p = w, and S € {Int, Apps} the corresponding nth
minimal average errors are semi-convex. Hence,

Compavg (57 APP2, wr) = 8(572d/(4r+1))
and

comp®® (g, Int, w,) = @(Efzd/(dﬂrﬂ))‘

Moreover, nonadaptive linear methods (as discussed in the previous
subsection) are almost optimal also from the complexity point of view.

5.3. Weighted integration. Suppose we want to approximate a
weighted integral

S(f) = Tnt,(f) = /D f() - ple) da
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for a given nonzero weight function p € C(D). The corresponding
nth minimal average errors are of order n—(¢+47+1)/(2d) 55 in the case
p = 1. The lower bound follows as in the proof of Theorem 2 with the
only difference being that the cubes Q; are from a ball on which |p(z)|
is bounded from below by a positive constant. The upper bound is
achieved analogously to (11): Apply the classical Monte Carlo method
for Int, to the function f — U,(f) and add Int,(U,(f)).

5.4. Boundary conditions. Due to the construction of w,, we study
functions which vanish, together with some derivatives, at the boundary
of D. This restriction can be removed by introducing random boundary
conditions. We sketch this modification for the case r = 1.

The operator A and the restriction on the boundary 0D define a
bounded linear injection C?(D) — C(D) x C?(8D). Let T denote
the inverse of this operator, extended by zero to be defined on the
whole space C(D) x C?(0D). Moreover, let v denote a zero mean
isotropic Gaussian measure on C?(0D), such that the corresponding
reproducing kernel Hilbert space is a subset of C*'/2(dD). See [29,
34] for a construction of such measures.

Let C(D) x C*(dD) be equipped with the product measure wg ® v.
Proceeding as in Section 3, one can show that the image measure
p = T(wp ® v) is a zero mean isotropic Gaussian measure on C?(D).
The reproducing kernel Hilbert space H,, is contained in C*'/2(D).
Therefore, the upper bounds from Theorem 2 (and of course the lower
bounds) are also valid with the measure p.

Acknowledgment. We thank Erich Novak for valuable remarks and
comments.
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