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DOMAINS OF TRIGONOMETRIC TRANSFORMS

GILBERT MURAZ AND P. SZEPTYCKI

ABSTRACT. It is shown that the maximal solid domains of
trigonometric transforms coincide with appropriate amalgam
spaces.

1. Introduction. To formulate our objectives in this note, we need
to recall the definition and some properties of the extended (maximal
solid) domain of an integral operator. For details, we refer to [2] and
[7].

Let X,Y be o-finite measure spaces with the measures denoted by
dz,dy, and let L°(X), L°(Y’) denote, as usual, the spaces of measurable
finite a.e. (complex valued) functions on X and Y, respectively. L° is
an F-space (vector metric complete) with the topology of convergence
in measure on all subsets of finite measure. This topology on L°(z)
may be defined, for instance, by any of the F-norms of the form
u — pg(u) == [ ®(lu(z)|)¢(x)dr, where ® is a positive increasing
continuous subadditive bounded function from R,y into (0,1) with
®(0) = 0 and ¢ > 0 with fd) < oo. The F-norms py are defined
similarly. It is convenient to assume that some such F-norms px, py
have been fixed throughout this paper.

For a kernel k, a measurable function on X X Y, the corresponding
integral operator
K :Dg CL°(Y) — L°(X)

is defined by:
(1.1)

Ku(z) = /Y (e, y)u(y) dy,

Dx = {u € (V)i Kuula) = [ Ir(a, o))l dy < oc } .
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Dy is referred to as the proper domain of K. It is an F-space when
equipped with the F-norm pg(u) := py (u) + px(Kau).

A subset of L° is solid if together with every function u it contains the
order interval {v € L°;|v| < |u| a.e.}. A topological vector subspace
of L° is solid if the topology is given by a base of neighborhoods of 0
which are solid or, in the case of metric space, by a solid (monotone)
F-norm.

Clearly D is a solid subspace of L°(Y").

On L°(Y) we consider the weakest solid additive group topology in
which the operator K : Dg C L°(Y) — L°(X) is continuous. It can
be shown that this topology can be defined by the (group) norm

px = py (u) +sup{px (Kv); v € Dk, |v| < |ul}.

The extended domain DK of K is then defined as the closure of Dy
in this topology-it turns out to be a solid F-space. The extension by
continuity of K to D is denoted by K.

We shall need the following characterization of Dy, [7]:

(1.2) ue Dy if and only if for every sequence u, € Dk, u, with
disjoint supports, such that |u,| < |u| a.e. we have Y |Ku,|*> < oo
almost everywhere.

The interest of Dy lies in the following maximality property.

K can be extended by continuity to a topological vector subspace L
of L°(Y"), provided:

(i) LN Dk is dense in L,
(i) K:LNDg — L°(X) is continuous.

Theorem 1.1 [2]. If L is any solid topological vector subspace of
L°(Y') satisfying (i) and (ii), then L C D and the extension (by
continuity) of K to L is the restriction of K to L.

By the definition, Dy itself satisfies (i) and (ii). In other words,

(1.3) Dg is the maximal solid subspace of L°(Y") to which K can be
extended by continuity.
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We notice that if £k = ki + iko, where k; and ko are real, and if K
and K5 denote the corresponding integral operators, then

(14) DK:DKlmDKz and DK:DKlmDKz-

The first identity follows readily from (1.1) and the second from (1.2).

In this paper we are interested in the trigonometric transforms related
to the Fourier transform.

Let X =Y =R, and let

f(z,y) = e ¥ = coszy — isinzy = c(z,y) — is(z,y).

We write the corresponding integral operator as F = C — iS and,
in the usual way, we identify C' and S with operators on the positive
half-axis, z,y > 0.

It is obvious that the proper domain of F is L.

To describe the extended domain of F', we recall the definition of the
amalgam space [P(L?); for details we refer to [4, 3]. If 1 < p, ¢ < oo,
then

oo

(15) P@%R»={ueL&am;§:<mummmﬂgp

n=—oo

=umm@mp<m}

There is an obvious modification of this definition if p or g is co.

We recall that in (1.5) the intervals (n,n + 1) can be replaced by the
intervals (na, (n + 1)a), where a > 0 is arbitrary; the resulting spaces
are the same and the norms obtained in this way are equivalent.

The space IP(L%(R4)) and the amalgam spaces involving L?¢ with
weight are defined similarly.

The domains of F' can now be described as follows:
(1.6) Dp = L'(R), Dp=I1*L".
The first statement is a repetition of what was said above, for the

second we refer to [8, 3]. The last reference contains the relevant
discussion of the Fourier transform on a locally compact group.
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In particular, the Fourier transform is continuous from [?(L') into L°
(actually the range F(I?>(L')) is contained in the amalgam [>°(L?)).

By (1.4), the proper domains D¢ and Dg contain L!; however, it
is easily seen that the domain Dg contains functions which are not
integrable at 0 and therefore it cannot be equal to L*.

It is plausible, but not obvious, that Do = L!.
Also, it is plausible, but not obvious, that D¢ coincides with (2 (LY).

It follows from (1.4) that D¢ and Dg contain l2(L1)~. Since Dg
contains Dg, it is clear from the preceding remark that Dg is strictly
larger than 12(L%).

In the first part of the paper we prove the assertions above which we
have qualified as plausible, but not obvious, and we describe Dg.

Several concrete and general examples, see, e.g., [9], show that the
size of Di depends on the rate of oscillations of the kernel k; for
instance, if k is of fixed sign, or if K is a convolution operator with an
almost periodic kernel, then Dg = Dg and K cannot be extended by
continuity to solid spaces beyond Dg. However, certain operators with
kernels of modulus one can be extended to “arbitrarily large” spaces,
provided the kernels oscillate “sufficiently fast” about 0. In examples
of this kind, regularity of k seems to have played a role, at least in
the proofs. To get an idea if this regularity assumption is essential, we
consider, as an example, the operator denoted by T' = SIGN (.5), with
the kernel k(z,y) = sign (sinzy). Clearly, this kernel oscillates at the
“same” rate as s but is discontinuous.

We show that 7' is continuous from L? to L? and, consequently, its
extended domain contains L' 4+ L2. We also show that this extended
domain is contained in [?(L!'). We are unable, however, to arrive at the
desired conclusion that Dy = [?(L'). It is possible that this conclusion
may be false, but we do not have a counterexample.

Concerning notations: whenever a measure space in consideration is
understood, we omit it from symbols such as L°, L', [?(L!), etc. By
u|E we mean the restriction of a function u to a set E and 1 denotes
the characteristic function of E. By a set we always mean a measurable
set and by a function we mean a measurable function.
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2. Domains of C' and of S. We will have several occasions to use
the following proposition.

Proposition 2.1 (see [6]). Let E C [0,1] be a set of positive
measure, and denote by N, x € R, the set {n € {0,£1,£2,...};nz €
E(mod 1). Suppose that a, > 0, n = 0,£1,+2,... is a sequence such

that } - a, = oco. Then ), N an =00 for almost every z € R.

The usefulness of this proposition can be seen in the proof of the
following result:

Proposition 2.2. Let k : Ry — R be a bounded periodic function,
satisfying one of the following two conditions.

(i) There exist b > 0 and e > 0 such that (k(t)) > € for allt € (0,b).

(ii) There exists a b > 0 such that for every a € (0,b) there is an
e > 0 such that k(t) > € for all t € (a,b).

Consider the integral operator with the kernel k(z,y) = k(zy), z,y €
R.. In the first case (i) we have Dg = L' and Dg C 1*(L'). In
the second case (ii) we have Dg|(1,00) = L'(1,00) and Dg|(1,00) C
12(LY(1,00)).

Remark. Clearly, what matters in the above proposition is that, near
0, x is of constant sign and that it is bounded away from zero; the size
of the period is irrelevant for the result.

Proof. We assume for simplicity that the period of  is 1, and we deal
first with the case (i). If u € Dk, u > 0, then

(2.1) /0°° K(zy)|u(y) dy = Z/O |k(zy + nz)|u(y +n) dy < oo

for almost all z.

We now let E = (0,b/2). Then for x € E, n € N, and y € (0,1), we
have k(zy + nz) > ¢ and (2.1) implies that >, .y fol u(y + n)dy <
oo for almost all . We use now Proposition 2.1 to conclude that
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> fol u(y+n)dy < oo and that u € L*. To prove the statement about
Dy, we first verify that Dy C L . To this effect, for ¢ > 0 we consider

loc
the integral operator Kj . with the kernel k(z,y), as before, restricted
to z € (0,b/c) and y € (0,¢). This is an operator with positive kernel
bounded away from zero, and general properties of integral operators [2]
imply that its extended domain coincides with its proper domain which
is L'(0,¢). Also, by the same argument, we have Dg|(0,¢) C DKb,c

which proves that Dy C Li..
Suppose now that u € ﬁK, u > 0, and let up, = 1 nt1)u. Then,

as in the preceding paragraph, u, € Dk for n = 0,1,..., and we can
apply (1.2) to conclude that:
(2.2)

n+1 2 1 2
Z </ k(zy)u(y) dy> = Z </0 k(zy + nx)u(y +n) dy> < 0.
n>0 n n>0

We now use Proposition 2.1 to conclude from (2.2) that

3 </nn+1u(y)dy>2 < oo

n>0

in the same manner as we concluded from (2.1) that if u is in Dg, then
ue€ L.

In the case (ii), we use the same argument as above, with the
following modifications. To verify the statement about Dk, we take
a = b/8 in the condition (ii), choose & accordingly, let E = (0,b/8),
and observe that s(zy + x + nx) > ¢ if z € (b/8,b/4), y € (0,1) and
n € N,. The same choice is appropriate for the proof of the inclusion
Dy C 12(L*(1,00)) provided we verify first that Dx C L _([1,0)).

To see this, we notice that for every ¢ > 1 there is an £ > 0 such that
k(zy) > e forall y € [1,¢] and z € (b/(2¢),b/c). O

We now apply Proposition 2.2 with suitable choices of k in order
to obtain the corresponding information about the domains of the
operators C' and T introduced in Section 1.

_Proposition 2.3. (i) If K = C or if K = T, then Dg = L' and
Dg C lz(Ll).
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(ii) For K =S, Ds = L'(w) where w is the weight, w = min(y, 1)
fory >0, and Ds C 12(LY (w)). In particular, it follows from (1.4) and
from (1.6) that Do = 1*(L') and Dg = I*(L"(w)).

Proof. In the part (i) the choice of x is obvious and the conclusion
follows from part (i) of Proposition 2.2.

In (ii) the information about Dg and about Dy for y > 1 follows from
(ii) in Proposition 2.2. Restricting the kernel s(z,y) to y € (0,1) and
z € (0,1/4), we rewrite the corresponding operator as

T /0 sin(zy) yu(y) dy

Yy

and notice that kernel (sin zy)/(zy) is positive and bounded away from
zero, hence its proper and extended domains are both L!.

Since the cosine transform C is continuous from [?(L') into L° and
D¢ is contained in 1?(L'), it follows from Theorem 1.1 that the two
spaces are equal. For the same reason, [?(L') C Dg; to see that the
same inclusion also holds for the larger space [?(L!(w)), we write this
space as the direct sum of L(0,1;w) = L(0,1;y) and I2(L'(1, 00)).
The first summand is contained in Dg, therefore in Ds, and the second,
with obvious identification, is contained in [*(L'). This completes the

description of extended domains of C and of S. ]

3. Continuity properties of the operator 7'. In this section we
show that the operator T' = SIGN (S) considered on a suitable dense
subset is continuous from L2 to L?, in particular, its extended domain
contains L' 4+ L? and therefore is larger than its proper domain which
is L',

We begin with the following lemma which in a more general form can
be found in [1].

Lemma 3.1. Let r(t) > 0, t > 0, be such that [;° ¢t 3/%k(t)dt =
¢ < 00, and consider the integral operator K with the kernel k(x,y) =
(1/z)k(z/y), x,y > 0. Then K is a bounded operator in L*(0,00) and
1K < c.
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For the sake of completeness we include a simple proof. The hypoth-
esis on  implies that, with ¢(z) = 2~ 1/2,

K*d(y) = / T k(e y) de
= [T e = coty)
0
and

Ko(x) = / Ty ke, y) dy = o2 / T RO dt = ().

It follows that K satisfies the well-known Schur criterion of bound-
edness in L?; see, for instance, [5] for a more general result, and the
argument is complete. O

We now consider the operator, T,
Tu(zx) :/ sign [sin(27zy)|u(y) dy
0

00 (nt+1) /2
= Z(—l)”/ u(z) dz.

n=0 [z

(3.1)

Proposition 3.2. If u is a characteristic function of an interval,
then Tu € L? and Tu can be written in the form

0 2n/x
S ) —ute + 1/

n=1 (2n—1)/z

Tu(z) = /01/90 u(z)dz —

where the last sum is convergent in L%. We also have Tu(z) =
lim, Tru(z), where

(2n+1)/z

Tru(z) = Z r"/ [u(z) — u(z + 1/z)] dz,
n=0 2

n/x

with the sum is understood as a limit in L2.
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Proof. If u(z) = 0 for all z > b, then for z < 1/b,Tu(z) = ||u||z1
and therefore Tu(z) is bounded. For large = the sum consists, after
cancellations, of at most two nonzero terms and can be estimated by
(2/z); it follows that Tu € L?. The statements concerning the limits
follow from the dominated convergence theorem. O

We consider next the composition of the sine transform with 77; this
can be represented in a form resembling somewhat the Poisson kernel.

Proposition 3.3. The composition ST can be written in the form
STu = lim, 1 (1 — r)K,u, where K, is the integral operator with the
kernel

folo) == | eos T ()] @ -2 +4r<sing>2],

0<r<i1.

The formula is valid for functions u which are characteristic functions
of intervals (and hence for step functions) and the limit is understood
in the sense of L*.

Proof. We use Proposition 3.2 and the fact that S is a bounded
operator in L? to write STu = S lim T,u = lim ST, .

We have, after a suitable change of variables,

0 00 z (2n+1)y 1
ST,u = Z r" / sin — [/ <u(z) - u<z + —>> dz] y~2 dy.
n=0 0 Y 2ny Yy

Integrating by parts and noticing that sin(z/y)y 2 dy=(1/z)(d(cos z/y)),
we get

STru = i Z r" ( /°° cos g[Qnu(Zny) —2(2n+ Du((2n + 1)y)

n=0 0

+ (2n + 2)u((2n + 2)y)] dy>

- i/ooo { ir"[cos <2n§> ~ 2cos <(2n—|— 1)%)

+ cos ((211 + 2)%)] }u(y) dy.
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By a standard calculation involving a geometric series, we see that
the sum in the curly parentheses equals (1—7)(1—2cost+cos2t)/((1—
7)2 4 2r(1 — cos 2t)), where t = z/y (here we use the assumption that
r < 1), which yields the conclusion. O

We now study boundedness properties of the operators K,.. Since 52
is a scalar multiple of the identity, and since 7', at least by the nature of
the oscillations of its kernel, resembles S, it is expected that ST should
inherit some of the properties of the identity.

Proposition 3.4. K, are bounded operators from L? into L?;

||KTHL2—>L2 SCOHSt(l—’r)il, 0§7‘<1

Proof. We use Lemma 3.1 with (t) = (| cost|sin®(¢/2))/((1 — )% +
4rsin®t). The integral in question can be written in the form

/ n(t)t—?’/?dt:/ k()32 dt+/ K ()32 dt,
0 A

B

where for some fixed @, 0 < o < 1, A = {t > 7/2;|sint| > a} and
B = R;\A. Then the first integral (over A) can be estimated by
const /[(1 —r)% + 2ar], the second can be estimated by const (1 —r)~!
and the proof is complete. |

Theorem 3.5. The operator T is continuous from L? to L?. The
extended domain of T contains L' + L2, hence is strictly larger than its
proper domain (which coincides with L), and is contained in [*(L').

Proof. Since S is a scalar multiple of a unitary operator in L2,
in particular S? is a scalar multiple of the identity, the theorem
follows from Proposition 3.4 by composing S (from the left) with the
continuous operator K,. : L?> — L?. The inclusion Dy in [?(L') was
established in Proposition 2.3. o

Remark. We were unable to obtain Theorem 3.5 directly, without the
intermediary of the composition ST. Also, as already indicated in the
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introduction, we were unable to establish our outstanding conjecture
that the extended domain of 7" is [?(L?').
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