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TWO POINT BOUNDARY VALUE PROBLEMS
FOR NONLINEAR DIFFERENTIAL EQUATIONS

YIPING MAO AND JEFFREY LEE

ABSTRACT. We study the existence of solutions to differ-
ential equations of the form z' + g(t,z,2',z") = f(t) with
two-point boundary value conditions.

1. Introduction. The purpose of this paper is to establish the
existence of solutions to certain nonlinear two point boundary value
problems. Namely, we consider problems of the form

(1) l'”(t) + g(t7$7wl7$”) = f(¢)

where g : [0,1] x R® — R is continuous and z(t) satisfies one of the
following boundary conditions:

(D) 2(0)=4,  z(1)=B;
(N) z'(0) = A, z'(1)=B
(M) z(0)=4, a'(1)=B
(M3) z'(0) = A, z(l)=B

This and similar types of boundary value problems have recently
received considerable attention. (See [1, 2, 4, 5, 7, 9, 11, 13, 14],
etc.) In most known existence results for the boundary value problem
(1), (D), (N), (M;) and (M3), the nonlinearity g depends at most on
the first derivative ' and hence defines a compact nonlinear operator
between some appropriate Banach spaces. In [11, 13], the authors
studied the similar nonlinear periodic boundary value problems and
allowed the nonlinearity g to depend on the highest derivative of z(t).
However, our conditions on g and on the boundary in this paper are
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different from theirs. Our conditions on g in Theorem 3.1 are similar
to those in [15] and conditions in Theorems 4.1, 4.2, 5.1 and 5.2 are
similar to those in [9]. It should be noted that we have allowed g in
the statement of the problem above to depend on z”. In this case the
abstract results used in [9] and [15] are not applicable to our problems
above.

To show the existence of solutions to the considered problems, we will
use the continuation theory for k-set contractions [5, 8]. Our method
in this direction relies on an abstract theorem developed in [13] and a
priori bounds on solutions. For the convenience of the reader, we state
the abstract theorems in Section 2.

2. Abstract existence theorems. In this section we will state
some general abstract results that will be used in our study of the
equation (1).

Let X and Y be Banach spaces and (2 a bounded open subset of
X. Recall that a continuous and bounded map N :  — Y is called
k-set-contractive if, for any bounded A C Q we have,

I'y(N(A)) < kI'x(4)

where for a given Banach space Z, I'z(-) is a measure of noncompact-
ness given by

I'z(A) =sup{d > 0 : 3 a finite number of subsets
A; C A, A= UiAi,dim (Az) < 5}

Here, diam (A;) denotes the maximum distance between the points in
the set A;. Also, for a continuous and bounded map 7' : X — Y, we
define

I(T)=sup{r >0:rT'x(A) <Ty(T(4)),AC X}

Now, let T': X — Y be an invertible and bounded linear map, and
let N:Q — Y be a k-set-contractive map with k& < [(T) and such
that, for all z € 9Q we have T'(z) # N(z). One can associate with the
pair (T, N) a topological degree D((T, N),2), the so-called Sadovskii-
Nussbaum degree. See [5]. This degree has many important properties.
In particular, it has a homotopy invariance property that allows one to
prove the following
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Theorem 2.1. Let T : X — Y be an invertible, bounded linear
map and Q C X bounded, open, and symmetric about 0 € 2. Let
N : Q :— Y be k-set-contractive with k < I(T). Then, given y € Y
such that T'(z) + AN(z) # Ay, for all x € 0Q and X\ € (0,1), there

exists an © € Q such that

T(x) + N(z) =y.

If we assume that L : X — Y is a Fredholm operator of index zero
and N : Q — Y is k-set-contractive with k < I(L), then we can prove
another existence theorem similar to Theorem 2.1 above. Using the
approach of Mawhin’s, it was shown by Hetzer [8] that, under the
above assumptions, if Lz # Nz for all z € 012, then one can associate
with the pair (L, N) a topological degree D[(L, N), 2] which has most
of the important properties of the Sadovskii-Nussbaum degree defined
previously. Using the corresponding homotopy invariance property for
this degree, one can prove the following

Theorem 2.2 [13]. Let L: X — Y be a Fredholm operator of index
zero, and let y € Y be a fixed point. Suppose that N : Q@ — Y is k-set-
contractive with k < [(L) where Q C X is bounded, open and symmetric
about 0 € Q. Suppose further that:

a) Lz # ANz + Ay for z € 00, X € (0,1).

b) [QN(z) + Qy,z] - [QN(—z) + Qy,z] < 0 for x € ker(L) N 09,
where [, | is some bilinear form on'Y x X and Q 1is the projection
of Y onto {coker (L)}. Then there exists x € Q such that Lt — Nz = y.

3. The Neumann problem (N). In this section we consider the
nonhomogeneous Neumann problem

II, + g(t7 x, "'El, x”) = f(t)

z'(0) = A, 7'(1) = B.

This problem is equivalent to the following homogeneous Neumann
problem:

(N)

x”+g<t,x+%(3A)t2+At,x’+t(BA)+A,x”+(BA))

= f(t) = (B - A).
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(N') Z(0)=0, 2'(1)=0.

We write
N 1 2
g(t,z,z1,22) = g( t,z + §(B — A)t* + At,zq
+dB—A%m+{B—A0

and
ft)=f(t)— (B~ A).
We put the following conditions on g and f. They are similar to the
conditions entertained in [15].
H3.1 g:[0,1] x R® — R is continuous.

H3.2 There exist measurable functions py,p— : [0,1] = R U {+oc}
such that

< T .

B+ = ZEI_T._IOO lnfg(tv T, T1, 372), te [07 1]

K- > lim Supg(tamamhmZ)a te [07 1]
T——00

uniformly for (z1,z2) € R2.

H3.3 There exist constants ¢; and ¢y such that

g(t,z,z1,2) > 1 for z >0, (¢, z1,z2) € [0,1] X R?
and

g(t,z,x1, 1) < ey forx <0, (t,z1,22) € [0,1] x R?

Theorem 3.1. Let H3.1-H3.3 be satisfied, and assume:
a) There exists a k € [0,1) such that

|g(t,m,x1,p) - g(t,x,xl,q)| S k|p - q|

fOT' (t7x7$17p)7 (t,il?,ﬂf]_, q) € [07 1] X R3'
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b) There exist positive constants po,p1,p2 and p such that
l9(t, @, z1,22)| < g(t, @, 21, 2) + polz| + p1]z1| + p2|22| +p
for (t,z,x1,22) € 10,1] x R3.

c)
1 1 1
/Ou_(t)dt</0 f(t)dt</0 fi (t) dt.

Then there ezxists an € > 0 such that when max{po,p1,p2} < €, the
problem (N) has a solution.

Remark. J. Ward [14] considered similar conditions for the existence
of periodic solutions to a class of semi-linear differential equations with
a compact nonlinear perturbation. The interest of our conditions lies
in the possibility of proving an existence theorem for the problem (N)
without needing any assumption on the growth of g(¢,z,z’,2") for
x > 0 (or else for z < 0). Also, notice that if g is nonnegative then our
key condition b) is automatically satisfied.

Proof of Theorem 3.1. Let X = {z(t) € C%([0,1]) | z'(0) =
z'(1) = 0} with the norm ||z|]z = max{||z||o,]|/2'||o, ||z|lo} Wwhere
[|hllo = supg<s<1{|h(¢)|}. Also, let Y = C(]0,1]) with the norm || - |Jo.
Of course, X and Y are Banach spaces. Next, let L : X — Y be given
by z(t) — z”(t). L is a bounded linear map. We will show that L is
a Fredholm map of index 0. First we just notice that if z(t) € ker(L)
then z(t) = c1t + co. However, z(t) € X and thus z/(0) = 2/(1) =0 so
that z(t) is in fact a constant function. Conversely, a constant function
is clearly in ker(L). So we see that ker(L) = R. Next, define a bounded
linear functional @ : Y — R by

We shall show that Im (L) = ker(Q). It then follows that coker = R
and that Index (L) = dim ker(L) — dim coker (L) =1 —1 = 0. Suppose
that y € Im (L) so that y(t) = z”(t) for some z € X. We then have

1 1
Q) = [ty = [ 2"t = 1) -0 =0,
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Thus Im (L) C ker(Q). Conversely, for y(t) € ker(Q) (so that
fol y(t) dt = 0) we define

2(t) = /Ot /0 y(s) ds dr.

It is easy to see that z(t) € X and L(z) = 2" = y. Thus, L is a
Fredholm map of index zero as promised. Next, define a (nonlinear)
map N : X —Y by

N(z(t)) = —g(t, z(t), 2'(t), 2" (t)).

Now, the problem (N) has a solution z(t) if and only if Ly — Nz = f
and r € X.

For the following lemma the reader is asked to recall condition (b) of
Theorem 3.1.

Lemma 3.1. There exist numbers M, € > 0, such that if condition
(b) of Theorem 3.1 holds and max{py,p1,p2} < €, then every solution
x(t) of the problem

Lz — ANz = \f, e (0,1)

satisfies ||z||l2 < M.

Proof of Lemma. Let Lz — ANz = Af for z(t) € X, i.e.,
(3.1) 2" (t) + \g(t, z(t), 2 (t), 2" (1)) = \f.

Integrating this identity, we have

1 1
/ Gt 2(), 2/ (), 2 (t)) dt = / F(#) dt.
0 0
Now, using condition (b) of Theorem 3.1, we have

t2

|§(t,$(t),$/(t),$”(t)‘ < g(t,x(t),x'(t),m"(t))—i—po x(t)"i_E(B_A)"FAt

+p1|@'(t) + ¢(B—A)+A| + pa|z” (t)+ B—A|+p
< §(t, x(t), ' (t), =" (t)) + polw(t)| + p1|2’ (t)]
+ pa|z” (t)| + p3
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where p3 is some constant. Integrating again and using (3.1), we get

1 1
/|§(t,$(t),x'(t),x"(t))\dtS/ gt z(t),2'(t), 2" (t)) dt
0 0

1
+pollzllo+palllo+pa [ [0 (2) dt+pa
0

(3.3) = pollz|lo + p1ll2’[lo
1 1
+p2/ |33”(t)|dt+p3+/ fdt
0 0
1
< mllallo il lo+p2 | [ (2) dt+pa
0

where p4 is some constant.

Now, by (3.1), we have
1 1 B
| leronar < [ g a.a 0.2 @)+ 1
Combining this inequality with (3.3), we get
1 1
| 12" @1t < pllello-+ mllello+p2 [ 1o (O] dt +ps
0 0

for some constant p;. Now, since 2'(0) = 0, we have 2/(¢) = ft 2" () dr,

0
so that ||z'|]o < fol |z" (t)| dt, and we get

1 1 1
/ |z"(¢)] dt < pollz|lo +p1/ |90"(t)|dt+pz/ |z ()| dt + ps.
0 0 0

Now we may assume that py,ps < 1/4, and so it then follows that

1
Po bs
3.6 / 2" (t)] dt < zllo + :
(3.6) | et Oldt < = T llello + o =

Claim. There is a number, 1y, such that for each solution z(t) to
Lz 4+ ANz =\Af,0< A< 1, there is a z € [0,1] with |z(z)| < 1o. Here
z may depend on z(t).
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The proof may be found in [15], but for the sake of completeness we
give the proof here. Suppose that, for each positive integer n there is a
An € (0,1) and a solution z,, of Lz + A\, Nz = A f with z,(t) > n for
t € [0,1]. Then we would have

/Olen(t) dt = /01 f(t)dt.

In other words,

Agﬁ%wwMW%W»ﬁ=Af@ﬁ-

On the other hand, we also have lim,_ oo §(t, z,(t), ) (¢), 2z (£)) >
p+(t). Now, using this and Fatou’s lemma, we get

[ faz [uwa

contradicting condition (c). Thus, there is a number 7 such that if
is a solution of Lz + ANz = Af, A € (0,1), then there is a number
s1 € [0,1] with z(s1) < 7y.

Similarly, by using p_ and Fatou’s lemma, we can show that there
must be a number r2 > 0 such that, for any solution z there is a
corresponding value s € [0,1] with z(sy) > —ry. By continuity
we conclude that, for any solution z, there is some z, € [0,1] with
|z(22)| < ro, o = max{ry,r2}. Now, for any given solution z(t), we
have

m(t):x(zm)—i—/ () dr

so that
1

(3.7) llzllo < 7o + []z"[lo < 7o +/ |z (t)] dt.
0

Combining (3.6) and (3.7), we obtain

1 1
xll t dt < p—o <,r. + / xl/ t dt> + p—5 R
A| e < =2 (o + [ e 01at) + 22—
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Now there exists an € > 0 such that, when pg,p1,p2 < €, then
fol |z"" (t)| dt < pe for some fixed constant pg. Therefore, we also have
that, when pg, p1,p2 < e,

1

(3.8) 2'llo < / 1" (8)] dt < pe
0

and

(3.9) lello < 7o + ll2'llo < p5 + ro-

Now, given such a solution of " + A\j(¢, z, 2, 2") = )\f(t), we have,
using (3.8), (3.9) and condition (a),

|z"(8)] < |3(
< |§(t,$,$,,$ l) - g(taxax,70)|
+3(t, @, 2", 0)| + | £ ()]
< klz"(t)| + |§(t, 2, 0)| + | £ (1))
< klz"(t)| + pr.

Here p; is some constant. From this we see that ||z”||o < p7/(1—k) so
that if we let M = max{ps, p7 + r0,p7/(1 — k)}, then

lzl]e < M

for some sufficiently small € and pg, p1,p2 < €.

Lemma 3.2.
(L) > 1.

Proof. Let A C Z be a bounded subset, and let a = T'y (L(A4)) > 0.
Given € > 0, according to the definition, there is a finite number of
subsets A; of A such that diam ¢(L(4;) < a+¢. Since X is compactly
embedded into C*([0,1]) with norm || - ||1, and since A; are bounded
in X, it follows that there is a finite number of subsets A;; of A;
such that diami(A4;;) < € and, hence, diams(A4;;) < a + €, where



1508 Y. MAO AND J. LEE

diam ¢(-),diam 1 (-) and diam »(-) are defined with respect to the norms
[l llo, | |l1 and || ||2, respectively. This proves

Ix(A) < a =Ty (L(A)).

That is, (L) > 1. O

Lemma 3.3. N : X — Y is a k-set-contractive map with k as in
condition (a).

Proof. Let A C X be a bounded subset, and let ¢ = I'x(A). Then,
for any £ > 0, there is a finite family of subsets {A4;} with A = U; A;
and diam 5(A4;) < a+e¢. Now it follows from the fact that § is uniformly
continuous on any compact subset of R x R3, and from the fact that
A and A; are precompact in C*([0,1]) with norm || - ||1, that there is a
finite family of subsets {A4;;} of A; such that A; = U;A;; with

‘g(tvmaxlvuﬂ) - g(tvuv ulvu”)| <e

for any x,u € A;;. Therefore, for z,u € A;;, we have

0<t<1
< kllz" —u"||o + & < ka+ (k+ 1)e.

That is,
Iy (N(A4)) < kI'x (4).

We are now in a position to finish the proof of Theorem 3.1. We
apply Theorem 2.2 for Q@ = {z € X | ||z[lo < r}. It is easy to see
now that all of the necessary conditions in Theorem 2.2 hold except
for condition (b). We will now show that condition (b) also holds.
Define a bounded bilinear form [-,-] on Y x X by [y, z] = fol y(t)z(t) dt.

Also, define Q : Y — coker (L) by y — fol y(t) dt. Notice that, for
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z € ker(L) N O, we must have = r or x = —r so that, for such an z,
1
(QN@)+@F ] [QN(~2)+Quva] =1* [ (3(t,1,0.0)- o) e
1
[t —r0.0- ey

By condition (c), there is a number M; > 0 such that, if » > My,
then

/0(§(t,r,0,0)—f(t))dt-/0 (§(t, —7,0,0) — F()) dt < 0.

Thus, if we pick r > max{M, M}, then all of the conditions required
in Theorem 2.2 hold. It now follows by Theorem 3.2 that there is a
function z(t) € X, such that

Lr— Nz =f.
This finishes the proof of Theorem 3.1. u]
Example. Let g(t,z,z1,22) = hl(t,:vl,:z;z)e’””2 + hao(t,z1)e”, here
hi > 0 and hy > 0 are bounded continuous functions and h; satis-
fies sup |(0/0z2)hy(t, z, 1, 22)| < 1. (For example, hy(t,z,z1,22) =

(1/4) sin2(m2)e’z2.) By Theorem 3.1, the Neumann boundary value
problem

I” + hl(t, Il,I2)€712 + hz(t,wl ez = f(t)
2(0)=4, 2(1)=B

has solutions provided fol f(t)dt > B— A.

4. The mixed problems (M;) and (Ms,). In this section we
consider the mixed problems

(My) "+ g(t,z,z',2") =0, z(0) = A, z'(1)=B
and

(My) 2"+ g(t,z, 2’ 2") =0, z'(0) = A, z(1) = B.
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These are equivalent to

" +g(t,z(t) +tB + A,z'(t) + B,2"(t)) = 0,

(M5) z(0)=2'(1)=0
and
o) a" +g(t,z(t) +tA+ B — A, 2'(t) + A, 2" (t)) =0,

z'(0) = z(1) = 0.

Theorem 4.1. Let g : [0,1] x R® — R be a continuous map, and
assume that

(a) There is a k € [0,1) such that |g(t,z,z1,p) — g(t,z,21,q)| <
klp —q| forp,q € R.

(b) There are constants L;, i = 1,2,3,4, such that Ly < L3 < B <
Ly < Ly and

g(t,z,z1,22) <0 for (t,z1) € [0,1] x [Ly, Lo]

and
g(t,z,x1,22) >0 for (t,z1) € [0,1] X [Lg, L3].

Then there is at least one solution x € C*([0,1]) to the problem (My).
Remark. Similar conditions were used in [9].

Proof. Let
X = {a(t) € C2([0,1]) | #/(0) = a(1) = 0}

with norm || - ||2, and let Y = C([0,1]) with norm || - ||o, X and ¥
are Banach spaces. If we let T : X — Y be defined by z(t) — =" (T),
then ker(7T') = {0} and coker (T') = {0} so that T is an invertible linear
bounded operator. In a manner similar to the method used in the proof
of Theorem 3.1, one can prove that /(1) > 1. Now write

g(t7x7$17x2) = g(t,$+tB+A,Z1 +B,Z2),
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and let N : X — Y be defined by
a(t) — §(t,x(t),2'(t), 2" (¢)).

As in the proof of Theorem 3.1, N can easily be shown to be a k-set-
contractive map. We will use Theorem 2.1, and so we need to show
that there is an open, bounded subset 2 C X which is symmetric
about 0 € Q, and such that Lz + ANz # 0 has no solution on 9Q with
A € (0,1). We will show that, for solution z(¢),

LngSII(t)SLlfB, tE[O,l]

That is, Ly < 2/(t) + B < Ly for t € [0,1]. Suppose, by way of
contradiction, that there is a 9 € [0,1) such that z'(t) + B > Lj.
Since #'(t) is continuous and z'(1) + B = B < L;, we may assume that
L; < 2'(ty) + B < La. Also, by the continuity of z'(t), thereisa d >0
such that

Ly <2'(t)+ B < Ly

for t € (to — d,tp + 0). In fact, since z'(1) = 0 there must be a
ty € (to,to + 6) such that

(4.1) 2 (th) < ' (to).

But, when t € (¢o,t0 + ), we have L; < 2'(t) + B < Lg, and so it
follows that

g(t,z(t) +tB+ A, 2'(t) + B,z"(t)) <0,

and hence, z''(t) > 0. This means that x'(¢;) > 2'(t9) which contra-
dicts (4.1). Therefore, we must have z'(¢t) + B < L, for ¢ € [0, 1].

Similarly, one can show that z'(¢) + B > L3. Hence,

(4.2) llz'[]o < C4

Now, z(0) = 0 and z(t) = [, 2/(7) dr, so in fact

(4.3) [lz]lo < Ch.
Finally,

[z ()| < |g(t,z(t) +tB + A, 2'(t) + B,z" (t))]
< kl2"(t)] + |g(t 2(t) + tB + A, 2 (t) + B,0)|
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so that
(4.4) 12" [lo < Ca.

Combining (4.2), (4.3) and (4.4), we see that ||z|]s < M < +o0.
Let Q ={z € X | ||z||]2 < M + 1}. Then
Lz + ANz #0

for z € 90, A € (0,1). Applying Theorem 2.1, we finish the proof of
Theorem 4.1. O

Theorem 4.2. Let g : [0,1] x R* = R be continuous, and assume
that

a) |g(t,z,x1,p) — g(t,z,21,9)| < klp — g| for a constant k € [0,1)
and (t,m,x',ml,p), (taxaxlaQ) € [Oa ]-] X RB'

b) There are constants Ly, Lo, L3 and Ly such that Ly < Ly < A <
Ly < Ly and

g(taxamlax2) >0 fOT (tvxl) € [Oa ]-] X [LlaLQ]

and
g(t,z,z1,22) <0 for (t,z1) € [0,1] X [L4, L3].

Then the boundary value problem (Mz) has at least one solution in

c([0,1)].
Proof. The proof is entirely similar to that of Theorem 4.1. O

5. The Dirichlet problem (D). In this section we consider the
Dirichlet problem,

(D) 2" =g(t,z(t),2'(t), 2" (t)), z(0) = A, z(1) = B.
This is equivalent to
(D") z"(t) = g(t,z(t) +t(B— A)+ A,z'(t) + B— A, 2" (t))

with the homogeneous boundary conditions z(0) = 0, z(1) = 0.
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Theorem 5.1. Let g : [0,1] x R® — R be continuous, and suppose
that

a‘) |g(t,$,$— 17p) _g(t7m7x17q)| S k|p_ q|7 0 S k<1.

b) There exist constants L;, i = 1,...,8, such that L» > Ly > c,
Ly > L3 >c, Ls < Lg <c¢, Ly < Lg < ¢, where c= B — A, and such
that

g(t,w,ml,xz) > 0

for
(t,il?,xl,.l'z) S [0, 1] x R x ([Ll,LQ] U [L5,L6]) xR
and
g(t,fl:,wl,l'Q) < 0
for

(t,I,CL'l, 332) S [0, 1] x R x ([Lg,L4] U [L'/, Lg])
Then the Dirichlet problem (D) has at least one solution in C2([0,1]).

Proof. Let
X ={z € C*([0,1]) | z(0) = z(1) = 0}

and Y = C1(]0,1]). Define T: X — Y by z(t) — z"(t). Then T is an
invertible bounded linear map and [(T') > 1. Define N : X — Y by

z(t) = g(t,z(t) +t(B — A)+ A, 2'(t) + B — A, 2" (t)).

N is easily seen to be a k-set-contractive map. Now there exists an
M such that, if z(t) € C?%([0,1]) is a solution to Tx = AN(z) for
A € (0,1), then ||z||2 < M. For this, see Theorem 4.1 of [9]. We can
now use Theorem 2.1 to prove the theorem. For completeness, we state
one last theorem whose proof uses methods exactly similar to that of
Theorem 5.1 above.

Theorem 5.2. Let g : [0,1] x |[R®* — R be continuous, and assume
that

a‘) |g(t,x,m1,p) _g(taxaxla(JH < K|p - q‘a
b) there is a constant M > 0 such that zg(t,z,0) > 0 for |z| > M;
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c) for the constants L;, i = 1,...,8 of Theorem 5.1,
g(t,z,z1,22) >0,
for (t,x,x1,x2) € [0,1] X [-M, M| x ([L1, L2) U [Ls, Lg]) and
g(t,z,x1,22) <0

for (t,z,z1,23) € [0,1] x [-M,M] x ([Ls,L4] U [L7, Lg]), then the
Dirichlet problem (D) has a solution in C?([0,1]).
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