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QUASICONFORMAL MAPS AND POINCARE DOMAINS

RITVA HURRI-SYRJANEN AND SUSAN G. STAPLES

ABSTRACT. In this paper we examine the invariance of
Poincaré domains under quasi-conformal maps which satisfy
a global integrability condition on the Jacobian. We show
directly that, under such a map, the image of a John domain
or a domain satisfying a quasi-hyperbolic boundary condition
is p-Poincaré for p > po, here pp depends on the quasi-
conformal map. Corresponding results are provided by (g, p)-
Poincaré domains. We also provide sufficient conditions for
which “rooms and corridors” domains are mapped to Poincaré
domains.

1. Introduction. In this paper we examine the invariance of
Poincaré domains under quasi-conformal maps which satisfy a global
integrability condition on the Jacobian. Sufficient geometric condi-
tions for Poincaré domains abound. Here we consider certain classes
of Poincaré domains which include John domains, domains satisfying
a quasi-hyperbolic boundary condition, and “rooms and corridors do-
mains.”

Hurri [13] has shown that Poincaré domains are invariant under
locally bi-Lipschitz maps. However, one can see from the Riemann
mapping theorem alone that quasi-conformal maps need not preserve
Poincaré domains. In fact, a simply connected domain formed by
adjoining a sequence of “rooms and corridors” domains [13, Example
5.2] to the unit ball can be constructed so that it is not Poincaré for any
exponent p. To ensure that the image domain is Poincaré, we utilize an
integrability condition introduced by Astala and Koskela [1]. Namely,
letting D and D* be domains in R™ and f : D — D* a quasi-conformal
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1396 R. HURRI-SYRJANEN AND S.G. STAPLES

map, we consider the condition

(1.1) /D Ji () dz < oo

for some ¢ > 0, where J;(x) is the Jacobian of f.

Condition (1.1) can be used in many cases to conclude that a given
domain D* is a Poincaré domain. For example, if D* is a simply
connected John domain in the plane, then the Riemann mapping
function f : B — D* from the unit disk B satisfies (1.1) with
D = B, see [17]. Our results (see Section 3) now imply that D* is
a Poincaré domain in a certain exponent range with efficient bounds
for the Poincaré constant. The necessary definitions and requisite
background are stated in Section 2. We commence Section 3 with the
result that John domains are mapped to Poincaré domains under quasi-
conformal maps satisfying (1.1) and follow this with a corresponding
result for domains satisfying a quasi-hyperbolic boundary condition.
While Astala and Koskela’s result guarantees that the image domain
in each of these cases would at least satisfy a quasi-hyperbolic boundary
condition, their method of proof is indirect and does not lead to
geometric estimates. The methods employed in this paper generate
estimates for the Poincaré constants of the image domain in terms of
the geometry of the original domain, the quasi-conformality of the map,
and the constant € in (1.1). The invariance of a general class of Poincaré
domains under global quasi-conformal maps is examined next. “Rooms
and corridors domains,” in particular, are contained in this class.

In Section 4 we treat the case of (g, p)-Poincaré domains. We show
that if condition (1.1) is satisfied for ¢ > &g > 0, then the image
of a (pa,p1)-Poincaré domain is p-Poincaré. For this range of ¢ this
result generalizes the theorems concerning John domains and domains
satisfying a quasi-hyperbolic boundary condition. Finally we study
a general class of maps related to local Lipschitz maps and prove
corresponding results for the image of a (ps, p1)-Poincaré domain.

2. Definitions and preliminary results.

Notation. Throughout this paper, we let D, D*, G and G* be domains
of Euclidean n-space R™, n > 2, with finite n-Lebesgue measure. We
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suppose that p € [1,00) and ¢ € [1,00) unless otherwise stated. We use
B™ for the unit ball, {z € R" : |z| < 1}.

The space LP(D) is the set of Lebesgue measurable functions u on
D for which |[ul[}, p) = [p[u(@)|Pdz < co. Let Lf, (D) denote the
space of functions which are locally integrable of order p on D. The
space of Lebesgue measurable functions on D with first distributional
partial derivatives in L?(D) is denoted by L} (D). In the Sobolev space,
W, (D) = LP(D) N Ly(D) we use the norm |ullw1(p) = [lullr(p) +
||Vu||Lr(p). Here Vu = (O1u,...,0,u) is the distributional gradient
of u. We let W | . (D) denote the space of functions that lie in W, (A)
for every compact subset A of D.

The average of a function u over a domain D with finite Lebesgue
measure |D| is up = (1/|D|) [, u(z) dz. Let A be a set. The Euclidean
distance from = € A to the boundary of A is written as d(x, 0A). We
let dia (A) denote the diameter of A. We write 7Q) for the cube with
the same center as Q and dilated by a factor 7 > 1.

The abbreviation a < b will be used whenever there is a positive
constant c¢; which does not depend on a or b such that a < c¢;b.
Similarly, a = b means that there are positive constants c¢; and ¢y which
do not depend on a or b such that cia < b < coa. We let ¢(x,... ,*)
denote a constant which depends only on the quantities appearing in

the parentheses.
We recall some definitions.

Denote the Jacobian matrix of f at z by F(z) and its determinant
by J¢(z). Define
|[f'(z)| = sup |F(z)h|.

heR™

[hl=1
A homeomorphism f : D — D* is K-quasi-conformal if f € Wﬁjloc (D)
and |f'(z)|™ < KJ¢(x) almost everywhere in D. From this definition
of quasi-conformal, it is apparent that condition (1.1) is equivalent to
condition (2.1),

(2.1) /D 1 (2)[" dz < 0o

for some § > 0. In the statements and proofs of theorems, we choose
to use whichever condition simplifies the computations.
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We begin with the definition of Gehring domains found in [1].

Gehring domains. A domain D* C R" is a Gehring domain, if for all
K > 1 there is a number € = ¢(K) > 0 such that

| r@prede <o
D

for each domain D and each K-quasi-conformal map f: D — D*.

We immediately follow with an equivalent definition, found in [23],
which we use in this paper.

The domain D C R™ is a Gehring domain if and only if, for all K > 1,
there exists a number 7 = n(K) > 0 such that

/ (Jg(z)) "dr < o0
D
for all K-quasi-conformal maps g defined on D.

Poincaré domains. Let D C R™ be a domain, andlet 1 < p < ¢ < co.
If there is a constant k = k(p, ¢, D) < oo such that

. 1 — q < P
(2.2) ;ggHu allLe(p) < K||VullLr (D)

whenever u € LL(D), then D is a (q,p)-Poincaré domain and we
write D € P(q,p). If ¢ = p, then we say D is a p-Poincaré domain
and write D € P(p). The (g,p)-Poincaré constant, £, (D), is the
smallest constant s for which (2.2) holds. If p = ¢, then we write
Kp,q(D) = kp(D). Here 1 < p < g < np/(n — p) whenever 1 <p < n.

We mention the following monotonicity result for Poincaré domains.

Theorem 2.3 [10, Theorem 1.8]. If D is a p-Poincaré domain with
|D| < oo, then D is q-Poincaré whenever q > p. Explicitly,

q
K‘Z(D) < 25I€P(D)7

for1<p<gqg<oo.
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John domains. Let 0 < a < 8 < co. A domain D in R" is called an
(c, B)-John domain, if there is an xy € D such that every z € D can
be joined to xy by a rectifiable path v : [0,d] — D with arclength as
parameter such that y(0) = z, v(d) = zo, d < 8 and

d(y(t),0D) = —t

for all t € [0,d]. We write D € J(a, ).

We shall later use the fact that John domains are Gehring domains,

[1].

Domains satisfying a quasi-hyperbolic boundary condition. The quasi-
hyperbolic distance between points 1 and 2 in D is given by

. ds
kD(CL'l,./L'Q) —lgf/ym,

where the infimum is taken over all rectifiable curves v joining z; and
x2 in D, [6].

A domain D satisfies a quasi-hyperbolic boundary condition, abbre-
viated D € QHBC (a), if there exists a point g € D and a constant
a > 1 such that

|zo — |
<
kp(20,2) < alog <1 * min{d(z0, 0d), d(z,0D)}

for all x € D.

John domains form a proper subclass of domains satisfying a quasi-
hyperbolic boundary condition. As forementioned, we always assume
that D has finite n-Lebesgue measure. Theorem 3.3 of [14] guarantees
that if D € QHBC(a) and |D| < oo, then D is bounded. The constant
a in this definition will play a role in estimating the Poincaré constant
in Theorem 3.15. We remark here that if D is bounded, then this def-
inition of QHBC (a) gives exactly the same class of domains as those
satisfying a quasi-hyperbolic boundary condition as originally defined
in [7], see [11, Theorem 2.6] and [13, p. 25].

Gehring has established the following key result on the distortion of
Lebesgue measure under quasi-conformal maps; the formulation is due
to Reimann.
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Theorem 2.4 [19]. Suppose that f : D — D* is a K -quasi-conformal
map. Then there exists a T = 7(K,n) such that for every cube Q@ C D
with TQQ C D and every measurable set A C Q, we have

|A*] <c(@>5_
@1~ \e|

Here Q* = f(Q), A* = f(A), c=c(K,n) and § = 6(K,n).

The integrability condition (1.1) of Astala and Koskela [1] was first
employed to exhibit the precise class of quasi-conformal maps under
which quasi-hyperbolic boundary condition domains are invariant.

Theorem 2.5 [1]. Let D C R™ with |D| < oo satisfy a quasi-
hyperbolic boundary condition, and let f : D — D* be a K-quasi-
conformal mapping. Then [, Js(x)' ¢ dx < oo for some e = ¢(K,n) >
0 if and only if D* satisfies a quasi-hyperbolic boundary condition.

3. p-Poincaré domains. It is well known that John domains are
p-Poincaré domains for p > 1 [15], and domains satisfying a quasi-
hyperbolic boundary condition are p-Poincaré for p > p' = n — ¢y,
where ¢y = ¢o(a,n) > 0 [13, Theorem 7.12] and [20, Corollary 1]. By
Astala and Koskela’s result, Theorem 2.5, the image of a John domain
under a quasi-conformal map with condition (2.1) must at lest satisfy a
quasi-hyperbolic boundary condition. From this alone, one can deduce
that the image would be p-Poincaré for p > n. The proof in [1] involves
establishing the equivalence of the global integrability condition with
that of the local Lipschitz function problem studied by Gehring and
Martio [7]. The techniques they employ do not generate estimates for
a quantitative geometric description of the image domain.

In Theorem 3.1 we show directly that the image of a John domain
under a quasi-conformal map which satisfies (2.1) is p-Poincaré for
p > pg, where the lower bound for the constant py satisfies pg < n. In
an effort to produce efficient bounds for Poincaré constants, we prove
each of the cases p > n, p = n and py < p < n separately. The first
can be proved by relying mainly on a (g, p)-Poincaré estimate for John
domains. In the latter two cases we utilize the integral representation
theorem for John domains [15]. In the final case we use the additional



QUASICONFORMAL MAPS 1401

fact that John domains are Gehring. Note that, to prove the image
domain is p-Poincaré for p > pg, without regard to Poincaré constants,
the final case would be sufficient. We also remark that the image
domain here need not itself be John, see Example 3.12.

Theorem 3.1. Suppose that D and D* are domains in R™ such that
D e J(a,pB) for some a and 3, 0 < a < 8 < 00, D* = f(D) where [ :
D — D* is a K-quasi-conformal map and [, |f' (x)|" "¢ dz < M < oo
for some € > 0. Then D* € P(p) for p > n with Poincaré constant
B) 1+4ne/(p(n+te))

kp(D") < cle, my p) K27 M1 05) (—

‘D‘E/(n(nﬂ)),
(e%

Further, D* is n-Poincaré with Poincaré constant

16n
in(D*) < e(n) K2/ m MY/ () (é) |D|e/((n+2).

a
Finally, for the case pg < p < n, D* € P(p) with Poincaré constant

Kp(D*) < c(e, n’p)(Ig/a)16nK2/PMn/(p(n+6))N(n*p)/(pn)
- | DJe/((nte)p)+1/n=(n=p+n)/(pn)

Here the constants n > 0 and N are the Gehring domain constants for
D in [, |f'(z)|""dz < N < oo, and

bo = e ("(1‘ <n+§?n+n>>v’fiii>-

Proof of Theorem 3.1. Let u € C1(D*). We will estimate the constant

cin
1/p 1/p
inf (/ lu(z) — al? dm) < c</ |Vu(z)? dx) .
a€R * D*

Define v : D — R" as v(z) = (uo f)(z), z € D. Since |(f~1)'(y)|" <
KJ(y, f~1) almost everywhere for y € D*, we have

IS |
02, i) ool degi e dy

= K/;) |v(z) — vp|P|f (x)|" de.
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To estimate the righthand side of (3.2), let f’(z)* denote the adjoint
of f'(z); here f'(z) is the derivative of f at z. Then Vou(z) =
f'(2)'Vu(f(z)) and |f'(z)| = |f'(z)|. Thus,

/D V)Pl (@) de = /D Vu(f (@) P (@) de

(3-3) sK [ IVu(f ()P (=, ) dz

Now we need to calculate a bound for the constant c¢; in
Ga) [ @) - wPlf @ de < e [ [Fu@)If ) da.
D D

First consider the case p > n. We prove (3.4) using Holder’s inequality
in conjunction with a (g, p)-Poincaré estimate on John domains. First,

35 ([ 1w —vnl”f’(w)l”dw>l/p

n/(p(n+te))
< ([ raira)
D

e/ (p(n+e))
([ 10t = wpptero ac)
D

/(p(n+<))
< Mn/(p(n+s>>< / lo(z) — op [PV dx)
D

From [3] we obtain

e/ (p(n+e))
(3.6) </ lu(z) _vD|P(n+E)/£ dac)
D

Lne/ (p(n+e))
> | D|V/nel (2=

S C(Evnup) (g

- </D Vo(a)[P/? da:) o
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since D € P(p(n+e¢)/e,p/d), where p(n+e¢)/e < (np/d)/(n—p/§) and
p(n+c¢)/e >p/§,and 1 <p/d < n and § € (1,00). We specify how to
choose § later.

Again, by Holder’s inequality,

a1 ([ 1wuer dm>5/p

([ we@rair@eprswpemsa)

<([ IVv(w)”If’(w)"”dﬂc>1/p
([ir@pemreva) o

< | D|(+9G=D=p+n)/(p(n-+e)) ( / ()" da
D

' (/D IVo(@)P| £ ()P d$> 1/p

< M(p—n)/(p(n+6))|D|(5—1)/p—l/(n+6)+n/(p(n+s))

Combining (3.5)—(3.7) yields the constant in (3.4),

) (p—n)/(p(n+e))

B L+ne/(p(n+e))
> |D|1/n71/(n+a)'

/P = c(e,n, p) MY/ ) <a

These estimates will hold when we choose ¢ such that 1 < p/n < § <
e/(n+¢€) + p/n. To complete the proof when p > n, we need only
account for the occurrences of the constant K in (3.2) and (3.3).

Let p = n. To calculate the constant «,(D*) we apply the integral
representation for v in a John domain D,

(3.8) [v(z) — vB| < ¢(n)(B/a)'®" /D |z — yI' " Vo (y)| dy;
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here B = B(zg, c(n)a*/B%), zy is a John center of D, [15, Theorem 2.2
and Lemma 3.3]. We recall the potential theory estimate

69 [ o=yl dy < el r)(DP YO

for all # € D whenever r < n/(n — 1), [8, Lemma 7.12].

Using Holder’s inequality with exponents (n,n/(n—1)) and (3.8), we
obtain

/D|'U(I)*UB|n|f/($)‘” da < C(n)<<§> 16n>n
™

: /D 2=yl = Tu(y)[" dy ' ()" de,

where s < 1 will be fixed later. Fubini’s theorem, (3.9), and Hélder’s
inequality with ((n+¢)/e, (n + ¢)/n) yield

/D o(z) — vp|"|f (z)|" da

B 16n\ n
cewn((2)"
(0%
e/ (n+e)
/ </(|xy|1n)(1s)n(n+e)/e dx)
D D

n/(n+e)
( / |f'<x>|”+fdw) V()| dy.

We set s =1—1/(k(n —1)), k> 1. Then

/D lo(z) — vs|"|f'(@)|" de
16n\ n
gcuc,n)((@) ) M5 [ 9y ay
D

(0]

whenever € > n/(k—1). Now choose k > 1 sufficiently large so that the
preceding inequality is true and we have established a modified form of
(3.4) for the case p = n. We need only invoke the standard estimate,

lv —vp||Lr(p) < 2[|lv — ¢l|Lr(p)
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for any ¢ € R to see that
Hn(D*) < C(k‘, n)(B/a)16nK2/n‘D‘a/(n(n+a))M1/(n+a)_

The case p < n. We use the fact that there exist n > 0 and IV such
that

(3.10) / (@) M de < N < .
D
We will show that there is a constant ¢ such that
a1 [ @) wplf @l de<e [ [Fo@PIf @) da,
D D

We set 6 = (p(n —p))/(n —p+n) and choose an s such that
ne n(p—906—-1)
— V<5< ———=.
(n=1)(n+e)p (n—=1)(p - 9)
Such an s exists provided that p > n(1 —en/((n + €)(n + n))). The

integral representation and Hoélder’s inequality with (p — 4, (p —0)/(p —
§—1)) yield

/ o(@)| — vslP|f' ()" da
D

< C(n,p)<§>16np
'/D</D|w—y|1_"|Vv(y)|dy>p|f'(m)|nd$

< ¢(n, p) <§> o

(e’

p(p—6-1)/(p—9)
/ </(|Iy|1n)8(p5)/(p51) dy)
D \JD

p/(p—9)
e e N ) R T
D

1—

16np
< ¢(6,m,p,s) <E> (‘D‘l/n)np(P—5—1)/(p—6)+(1_n)sp

./D </D(|w_y|1—n)(1—s)(p—6)

p/(p—9)
Vo) P3| ()P dy) dz.
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Here the constraint p — § > 1 from Holder’s inequality is equivalent to
p> (n+mn)/(1+n). We apply Minkowski’s inequality, [24, p. 271], to
obtain

/D lo(z)—vpP| ()" da

16np
< ¢(é,n,p, 5) (E) (|D|M/myrpp=6=1)/(p=0)+(1—n)sp

. p—94 _ o 1=n\(1-s)p
([vewr=( [ te-vr
(p—90)/p p/(p—9)
-|f'<w>|"dx) dy) .

Here, by Holder’s inequality with ((n +¢)/e, (n +€)/n)

/ (|:E o y|1fn)(1fs)p|f/(x)|n dx
D

< ¢(e, n, p) MM/ F) (| D|L/nyne/ (nte)+(1=n)(1=s)p

Thus,
/ [v(z) — vp|"If(z)|" dz
D

16np
<c(d,e,m,p, ) (g) M/ (n+e)| p|e/(nte)+p/n—p/(p=3)

-(/D|Vv(y)|1’5 dy>p/(p5),

Holder’s inequality with exponents (p/(p — d),p/d) implies
[ wewray
D

= [ 9el) = ) DD ] 0
D

< ( [ 1vstrlswr dy) v

6/p
< /D P ()| P08 dy>
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Note that our choice of § gives (p — n)(p — §)/6 = —n. By combining
the above inequalities, we obtain (3.11) with

16np
¢ = o6, 5) (&) M/ (0+0) N3/ -8 pje/ (ko) o/ np/(0-9)

and hence

16n
kp(D¥) < 20(5,77,71,?)(@) K2/ppr/(p(nte)) N (n=p)/pn
ot
. ‘D‘E/((n+5)p)+1/n*(n*p+n)/(m)’

whenever

p>p0:max<n<l N >,n+17>‘ O
(n+e)(n+mn)) 1+n

Remark. We note that the case p > n can be proved using the integral
representation (3.8). The Poincaré constant estimate would then be

«

16n
5 (D) < c(n) (ﬁ) K210 01 (19| p|e(40) (np(n <)

which is not as sharp as the estimate given in Theorem 3.1 in the
exponent of 3/a.

For the calculation we fix 0 < s < ne/((n — 1)(n +¢)p) < 1. The
integral representation and Holder’s inequality with (p,p/(p— 1)) yield

| @) -vals @) do
<o (2)" [ wutwrir s
'/D(‘m_y|1_n)ps|f'(fv)|"da:dy

p
.</D(|x_y|1—n)p(1—s)/<p—1>f/(y)|<p—n)/(n—1) dy>
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Using Holder’s inequality with ((n + €)/n, (n + €)/¢) and with
(p
1

<(n+6)(p—1) (n+e)lp-1) )
p—n (nt+e)lp—-1)—(p—n)

we obtain

/D (0(2)] — vgl?|f (2)|" de

ﬂ 16np
< c(n,p) <E> MP/(nte) |D|5("+P)/("(n+s)).

The method which we used in the proof for Theorem 3.1 yields that
kp(D) will be as given above.

Martio and Sarvas [16] have shown that («,)-John domains are
preserved under global quasi-conformal maps. However, as the next
example demonstrates, the class of John domains need not be invariant
under the quasi-conformal maps of Theorem 3.1.

Example 3.12. If D € J(o,8) and f : D — D* is a K-quasi-
conformal mapping satisfying (1.1), then D* need not be an (a/,3')-
John domain for any o’ and 3'. For example, let D* be a domain as
in [13, Example 7.15] and consider a Riemann map f : B(0,1) — D*.
From [13] we know D* € P(p) for p > 2 — ¢;, and D* is not in P(p)
whenever p € [1,2 — ¢3), here ¢3 > ¢1. Thus, D* is not an (o, 5')-John
domain for any o/ and /', whereas B*(0,1) is clearly a John domain.

Hurri [13] has given estimates for the p-Poincaré constants of («a, 5)-
John domains. We consider the following John domain and its image
and compute the p-Poincaré constants generated by Theorem 3.1.

Example 3.13. Let 6 € (0,1). Set D = B?\{B(0,1/3) U [2/3,1]}
and define the conformal map f : B2 — B? such that
z—144§
1(z) = 1+(-1+6)z"

Both D and f(D) = D* are annuli with a slit removed. Since D C B2,
we have the estimate

[irera < o

62+5
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Hence by Theorem 3.1, k,(D*) S 1/6 for p > n = 2.

For the case p < 2, we also employ the estimate
/ F(2) " dz < m(2— 6) 161221 = N,
D

for any 7 > 0. From Theorem 3.1, we then have x,(D*) < (1/§)4-P)/P
for1 <p<2.

On the other hand, D* is an (a*, 8*)-John domain where o* &~ § and
B* ~ 1. Theorem 8.5 of [13] provides the estimate

kp(D*) < e(n,p)(8* /") /P |D|H/"

for p > 1. For the domain D*, here, we would then obtain x,(D*) <
(1/6)'+2/P, Thus the constant provided by Theorem 3.1 gives a sharper
estimate than that given by Theorem 8.5 of [13], for all p > 1.

We conjecture that, in general, Theorem 8.5 of [13] could be improved
upon to give the estimate ,(D) < c(n,p)(B/a)|D|*/" for an arbitrary
(a, B)-John domain D.

Smith and Stegenga proved that all domains satisfying a quasi-
hyperbolic boundary condition are n-Poincaré, but this fails if n is
replaced by anything smaller [21]. In particular, the class of QHBC (a)
domains is p-Poincaré for p > p’, where p’ satisfies p’ — n as a — oo.
In the next example, we show that their result implies the constant
po of Theorem 3.1 must satisfy pg — n as € — 0, thus making our
estimate for py asymptotically sharp. The authors would like to thank
the referee for suggesting this example.

Example 3.14. Let D be the unit disk, and let f be a univalent
analytic function on D which extends to be Holder continuous with
exponent « on the closed disk. Then D* = f(D) € QHBC (a), where
a = a(a) satisfies a — oo as @ — 0, [2, 21]. By the result of Smith
and Stegenga, D* € P(p) for p > p', where p’ = n as a — 0.

However, Theorem 3.1 can also be applied. Theorem 4.4 of [1]
shows that [, |f'(z)|*T®dz < oo for some € > 0, where ¢ — 0 as
a — 0. Also, the Koebe distortion theorem [18] guarantees that
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Jp If'(@)| "dx < oo, for any < 1. Thus, Theorem 3.1 asserts that
D* € P(p) for p > py = po(n,&,n). By the preceding discussions, py
must satisfy pg — n as € — 0.

We present a theorem for domains satisfying a quasi-hyperbolic
boundary condition, Theorem 3.15. The proof is similar to the proof
for Theorem 3.1 and thus we will omit it.

Theorem 3.15. Suppose that D and D* are domains in R™ such that
D € QHBC (a), D* = f(D) where f : D — D* is a K-quasi-conformal
map and [, |f'(z)|""*dx < M < oo for some e. Then D* € P(p) for
p > n with Poincaré constant

kp(D*) = c(e, a, n, p) K/P MY/ ()| DI/ ((nte) e(n=3) (1=a)/(2ap(n+2)).

Here )\ is the constant associated' with the Whitney cube #-number
condition for D, #{Q||Q|*/™ ~ 27i|D|'/"} < ¢(D)2*.

We recall the following decomposition theorem on Poincaré domains
from [13, Theorem 4.11].

Theorem 3.16 [13]. Let a domain G be the union of domains
D; € Pp with kp(D;) < 1 < 00, t = 1,2,..., such that each domain
D; lies in a cube Q; with the following three properties.

There are constants N and s such that
(3.17) Y Xq, (@) < Nyuz o, (@)
j=1

for all z € R,

(3.18) Qi C sQ;
where 7 =1,2,...,1, and
(3.19) kp(Di)?|Qi| < exmin{|D; N D;—1|, |D; N Dj41l}.

Then G is a p-Poincaré domain.
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This result led to a precise characterization of “rooms and corridors”
domains, [13, 5.9]; thus, we are especially interested to see how the
domains of this theorem would be affected by a quasi-conformal map.
Note that since the standard techniques involved in such decomposition
theorems involve a covering argument, we must consider global quasi-
conformal maps, f : R — R", which would then be defined on all of
the cubes ); in the cover as well.

Theorem 3.20. Suppose that G = U2, D; is a p-Poincaré domain
by means of Theorem 3.16 above. Let f : R® — R" be a K-quasi-
conformal map, and denote f(D;) = Dj. Suppose that, for some q and
for a fized § = 6(K,n) and for all D} = f(Dj),

(3.21) Kp(Dj) /0 kg(D})? < co.

Then f(G) = G* is a q-Poincaré domain.

Proof of Theorem 3.20. For our domain G* we use the decomposition
G* = U2, D}, here each D} C QF = f(Q;). Note that now whereas Q;
need not be a cube, it still possesses key geometric properties as the
quasi-conformal image of a cube. We follow the method of [13, The-
orem 4.11] and establish the corresponding conditions of (3.17)—(3.19)
for G*. Since f is a homeomorphism,

(3.22) Y Xg@(@) < NXu 5(qy)(®)

follows directly. We prove that the image domains @ have the
engulfing property:

(3.23) Qi C5'Qj, s =5§(K,n,s), j=1,2,...,1i.

We first fix ¢ and then fix j <.

Condition (3.18) states Q; C sQ; for j =1,2,... ,4. Inner and outer
cubes comparable in size to @}, Q; and (sQ;)* are defined using ideas
from [5, 19] and [22].

We work with concentric cubes P, P;,S; with S; C @} C P; and
(s@Q;)* C P which satisfy

(3.24) |Pj| < e3]Qf] < calSj
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and
(3.25) |P| < e3(sQj)"-

We also use the concentric cubes P; and S; for which S; C QF C P;
and

(3.26) |Pi| < cs|Qi| < calSil-

Here c3 and c4 depend only on K and n, and we may assume that
P;,P; C P. Also note that the A,-measure result of Theorem 2.4
applied to f~1 gives

(3.27) % > (%)1/6@)"/5 — o(K,n,s).

Since P and P; are concentric, and |P;| < |P|, and
[Pj| = |1Qj] = (K, n, 8)[(5Q))"| = ese(K, m, 5) P
by (3.25) and (3.27), we can see that there is o = o(K, n, s) for which

P C O'Pj.

Moreover, there is a 7 = 7(K,n) such that P; C 7.5;. Hence, o7S;
satisfies
Q; CP, CoPjCotS; CoTQj.

Thus, QF C s'Qj, here s' = s'(K,n,s) and j =1,... ,i.

Using Reimann’s result, Theorem 2.4, for the K-quasi-conformal map
!, we determine the condition corresponding to (3.19) which G*
satisfies. We rewrite (3.19) as

. ) ) . )P
min{|Dllel|, |Dszl+1|} > (HP(DZ)) )
Qi Qi

C1

Then we obtain
(3.28)

g d DN Diy)| [f(DiN Diy)| 1 1/6K e
{ F@I 7 1F(Qi)] }Z<) (rp (D)P/°,
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where ¢ = ¢(K,n) and § = §(K,n) are the constants from Theorem
24.

We need next to examine Boman'’s theorem [4] for these domains Q.
Let 7* = {Q;} and 1 < g < co. We prove

(3.29) ‘

> g g

QieF*

Z aQ*XQ*

QieF*

Lq(R") La(R")

for any coefficients aQ: in R. Consider the conjugate exponent ¢’ for
g. We use the fact that [|Mpllg < cqllellq, here My stands for the
standard Hardy-Littlewood maximal function.

Consider any ¢ € Ly (R™). With only minor modifications, we can
follow Boman’s proof

Xsrorpd
‘/RZGQXQSOJC

= a Q
‘Z Q | ||8'Q*| Q*
1
< ()Y a *,|Q’f|c3—/ pdz
QZ IR L,
Q;Cg/ M(pdm
Q;j
/ZaQQMgad:v

D a0;Xe;
q
D aq;Xe;

_S CS

< (s)"es 1M ellq

< () sy

lllqr
q

and (3.29) follows. Now we make use of conditions (3.22), (3.23), (3.28)
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and (3.29) to show that G* is ¢-Poincaré. We have

330 [ low) - vn;

Qdy
SZ/ v(y) —vp;
i=1" D7
<203 [ o) oy
i=1Y D7
) [e'e) i— q
3 [ (S o)
i=1 i Jj=
<2071 (5y(D}))" / Vo(y)|? dy
B D?k

q
_|_2q 12/ <Z|’UD* UD;+1> dy

Qdy

9 dy

To estimate the last term,

q_ 1
ooy =vo; I = HrA e ]

. * — * q

Jj+1
2q_1 Jj+1

< g [ o) = oyt
DDl 2= o, ;
Now we apply condition (3.28),

|’UD; — UD;+1|q < 2q_1(661)1/61€p(Dj)_p/6

Z |Qh\ by "W U

<277 1(001)1/6%(173') Pk (D}
it

Z |Qh‘ ;| VI dy-

Qdy
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The engulfing property in condition (3.23) and the following inequality

1 i
(t;+tp) <23 69 1y >0,
j=1 j=1

%

yield

1—1
> lvp; —vps, [Xp:(x) < A(cer) V9 kp(D;) P/ kg (DY)
j=1

Jj+1

(e [ e @)
) |QJ| D !

Hence, by (3.29) and (3.22)

o] i—1 q
Z/ . <Z|UDJ* —UD;+1|XD;($)> dx

S (G L Vol g @) ) i

[ vewldy.
G*
In order for G* to be a ¢-Poincaré domain we need to require
(3.21) rp(D;) " kg(D})? < e
as well as rg(D7) < cs in (3.30). Note that the latter condition follows

immediately from (3.21). O

Herron and Koskela [12] employed capacity techniques to study the
case when n-Poincaré domains are preserved under a given map f.
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They exhibited, [12, Example 3.6], a specific n-Poincaré “rooms and
corridors” domain, G C R", for which f(G) was not n-Poincaré. We
state here the relevant definition and result.

Sobolev capacity mappings. A homeomorphism f : D — D* is a
K-Sobolev capacity mapping if

K~ (s —cap (E, F; D)) < s — cap (f(D), f(F); D*)

K(s—cap (E, F; D))

IN N

for each pair of disjoint compact sets E, FF C D; here D, D* C R™ and
—cap(E,F; D) = inf " | Vaul”
s—cap (E,F3D) = int [l +[9uP)

is the Sobolev capacity of E and F relative to D,

W =W(E,F;D)={ucW}(D)NnC(DUEUF)
tulgp < culp >1+4+¢c€ R}

Theorem 3.31 [12]. If f: D — D* is a K-Sobolev capacity mapping
and D is an n-Poincaré domain, then D* is an n-Poincaré domain.

In the next example, we apply Theorem 3.20 to a class of “rooms
and corridors” domains. In particular, one can deduce from this
computation that the domain f(G) of [12, Example 3.6] is ¢-Poincaré
for some g > n.

Example 3.32. We consider a domain G as in [13, 5.9] which can
be written as a union of sequence of “rooms and corridors” positioned
symmetrically about the z;-axis, namely, G = U2;D;. Here the
domains D; 1 are cubes with sidelength M~(2*=1 Al > 1, and the
domains Ds; are “corridors” of dimension M2 + M~%~2 along the
r1-axis and of dimension bM ~2% b > 0, a > 1, in the n — 1 directions
orthogonal to the z;-axis. We position Dy; so that the length of the
r1-axis contained in each of Dy;NDy; 1 and Da;NDy;yq is (M ~2072) /2.
In addition, to ease computations, we assume that the limit point on
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the z1-axis of the sequence of domains, {D;}, is situated at the origin.
By [13], this domain is p-Poincaré for p > (n —1)(a — 1), where convex
Poincaré domain constants are used to establish (3.19).

We let f : R®™ — R™ be the radial stretching map, f(z) = |z|¥~1z.
This map f is K'-quasi-conformal, K’ = K'(K,n). In order to apply
Theorem 3.20 we need only examine how f distorts each D; and show
that (3.21) is satisfied.

For cubes Dy; 1, f(D2;—1) = D35, is an (a, 8)-John domain, with
a = a(K,n), 8 = B(K,n), [16]. Thus (3.21) follows immediately in
this case.

For corridors, Dy;, first note that f(D2;) = D3, is star shaped
with respect to f(z2;), where xo; is the center of Dy;. Using the
notation and estimates of [13, 3.1], for D3, we have Lo, ~ M %K
and lo; &~ M~2K =201 Tt follows that r,(D3;)? S M~2Kat2ai(n=1),

Now we estimate (3.21) using the fact that the p-Poincaré constant
K/p(Dgi) ~ M % for the convex domain D5;.

A simple calculation shows that (3.21) is satisfied when

>p/5+a(n—1)
1= K

Thus, f(G) is g-Poincaré for all such gq. O

4. (¢,p)-Poincaré domains. We begin with a result on (ps,p1)-
Poincaré domains. For appropriate values of p; and po, this class
of domains includes John domains and domains satisfying a quasi-
hyperbolic boundary condition. But there are other domains, too; for
example, star shaped domains with respect to a point, see [14].

Theorem 4.1. Suppose that D and D* are domains in R™ such
that D € P(p2,p1) for some p1 < pa. Suppose also that f : D — D*
is a K-quasi-conformal mapping and [, |f'(z)["**dx < M < oo for
e >n?/(p2 —n) > 0. Then D* € P(p) whenever 1 < p; <n < p.

Proof of Theorem 4.1. Let u € C*(D*). We will calculate the constant
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aig{(/* lu(z) —a|de>1/p < c</D |Vu(x)|pdx>1/p.

The main ideas in the proof are similar to those in Theorem 3.1 and
we provide only necessary modifications. Define v : D — R™ as
v(z) = (uo f)(x), z € D. As before, we obtain (3.2) and (3.3) and we
seek a bound for ¢; in (3.4). Again, we need to apply Holder’s inequality

vFv‘itht (p2/p,p2/(p2 —p)) and with (r = (n+¢)(p2 —p)/(np2),7/(r —1)).

42) ([ 1w —vnl”f’(w)l”dw>1/p

< (/ ‘f/(x)|np2/(p27p) dx
D

< /D (@) — vp P2 dm)l/p2

< Mn/(p("+6))|D|1/p—1/pz—n/(p(n+€))

([ 1) = ool dm)l/”;

here we require p < eps/(n + €) to assure r > 1. Since D € P(p2,p1)
with Poincaré constant k,, ,, (D), where p1 < p2 < np1/(n — p1) and
1 < p; < n, we obtain

43) ([ )= uop dw)l/ms%,m(m( /[ |w<w>|m)1/pl-

If p = n we proceed from (4.3) using Holder’s inequality with
exponents (n/p1,n/(n —p1)), then

1/p1 1/n
(/ V()P dac) < |D|<n—m>/<nm></ Vv(ac)|"dm> .
D D

Thus (3.4) holds for p = n provided that n = p < epa/(n + €).
This constraint forces the lower bound for €, ¢ > n?/(ps —n) > 0.

> (p2—p)/(PP2)
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We conclude that D* € P(n); hence, D* € P(p) for all p > n by
Theorem 2.3. O

Corollary 4.4. Suppose that D and D* are domains in R™ such
that D is a Gehring domain and (p2,p1)-Poincaré for some p1 < ps.
Suppose also that f : D — D* is a K-quasi-conformal mapping and
[p If'(@)|"Tedz < M < oo for e > n?/(ps —n) > 0. Then D* € P(p)
whenever p > p1(n+n)/(p1+n); here the constant n > 0 is the Gehring
constant for D in [, |f'(z)]7"dz < co.

Proof of Corollary 4.4. As a result of Theorem 4.1, it suffices to
prove the case p < m. Starting from estimates 4.2 and 4.3, we seek
a suitable upper bound for [, |Vu(z)|P* dz. Holder’s inequality with
(p/p1,p/(p — p1)) and with

(n(p—m) n(p —p1) >

pi(n—p) n(p—p1) — pr(n —p)

yield

( /D V()P dm) o

1/171
([ 1ve@pis@iemmm e o-mmieas
D
1/p
< ([ mors@rra)
D
(p—p1)/(p1p)
( / | f/(x)|p1(pn>/(pp1)dx>
D

< Dl/pl1/””/(’7”)+1/’7(/D|f'(x)|”dx

) (/D Vo(z)P|f (2)["" dx> 1/p‘

The claim follows whenever n(p — p1)/(p1(n —p)) > 1. This holds true
forp>pi(n+n)/(n+p1). O

) (n—p)/(np)
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It is known that Poincaré domains are preserved under a locally bi-
Lipschitz homeomorphism [13]. We recall this definition and result.

Let D and D* be domains in R®. A homeomorphism f : D — D* is
locally bi-Lipschitz or an L — BLD homeomorphism, if for all x € D,

e L0~ F@]
y—a ly — x|

lim inf M > l
y—a ly — z| L

Theorem 4.5 [13, Theorem 2.1]. Suppose that D € P(p) with
Poincaré constant k,(D). Suppose that f is an L-BLD homeomorphism
of D onto a domain D*. Then D* € P(p) with Poincaré constant
2k,(D)L2(/P)IHL,

We now define a class of maps which is related to locally Lipschitz
homeomorphisms.

Let f: D — D* be a homeomorphism. Then define

Kp(x,f)zlimsup< sup M)p

r—0 yeS(z,r) |'1’. - y|

()

and set

Kp(f) = sup Ky(z, ).
zeD

We consider maps f for which K,(f) < oo. These maps were
examined by Gol’dshtein, Gurov and Romanov in [9], and we refer
the reader there for a detailed study of their properties. For p = n this
class coincides with the class of quasi-conformal homeomorphisms. In
addition, whenever K,(f) < oo, f is differentiable almost everywhere
and, for p > 1, such a homeomorphism f is ACL. If p > n, then f is
locally Lipschitz. If p < n, then for every compact set B,

|F(B)I/1BI = (Kp(£))™/ .
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If K,(f) < oo, then Kp, (f) < oo whenever p; >p >norp; <p<n.

Theorem 4.6. Suppose that f : D — D* is a homeomorphism with
K,(f) < o0, D € P(kp,p), and J}+S € LY(D) withe =1/(k—1) >0
and k > 1. Then D* € P(p).

Proof of Theorem 4.6. For any u € Wp1 (D*) we first establish
(4.7)

(/D lv(z) — vp|*P dl‘)l/kp < c(k,n,p, |D|)</D* V() dx>l/p

where v(z) =wu o f(z). Since D € P(kp,p),

([ 1vte —kapdx)l/kp( [ wuts I”If()l”dx>1/p-

By hypothesis, K,(f) < oo, thus

</D |v(x) _ vD|kp dx) 1/kp

< ek DV, [ 1Vali(@)PTs (o) o) "
~ctinp o0 () [ vuyra)

Now we need only show

(4.8) (/D o(z) kade>1/kp > (/ |u(z) b”dac)l/p

for some b € R, to prove that D* is p-Poincaré. Using Hoélder’s
inequality with exponents (k, k/(k — 1)),

[ ) b|de—/\v b (o) da

1/k (k—1)/k
< </ |v(z)—b|*P da:> (/ Jp(a)*/k=1) d:z:)
D D
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and (4.8) follows whenever b = vp.

Theorem 4.9. Suppose that f : D — D* is a homeomorphism with
K,(f) < co. Suppose that D € P(p) with |J¢| < M. Then D* € P(p).

The proof for Theorem 4.9 is similar to the proof of Theorem 4.6.

Remark. If we assume above in Theorem 4.6 that k = n/(n — p),
then Theorem 4.6 reads as follows: Suppose that K,(f) < oo, D €
P(np/(n — p),p) and J}H/p € LY(D). Then D* is a p-Poincaré
domain.
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