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APPLICATION OF CATLIN’S BOX CONSTRUCTION
TO SUBELLIPTICITY OF n -1 FORMS

LOP-HING HO

1. Introduction. Subelliptic estimates for the d-Neumann prob-
lem is the main tool in establishing local regularity for the solution
of the §-Neumann problem, which has lots of applications in several
complex variables. On strictly pseudoconvex domains, subelliptic es-
timates hold with ¢ = 1/2. The question is much harder on weakly
pseudoconvex domains. The most outstanding works on weakly pseu-
doconvex domains are by Kohn [12], Catlin [1] and [2]. Catlin used
D’Angelo’s [4] notion of finite type to establish necessary and sufficient
conditions for subellipticity. Catlin [3] constructed a plurisubharmonic
function to prove that in C? if a point 2y € b2 is of finite type m, then
a precise subelliptic estimate of order € = 1/m holds at zo. This result
is established earlier in Kohn [12] and also in Fornaess and Sibony [7].

In this note we establish a result similar to the above-mentioned
theorem in C?. We will prove a result for (p,n — 1) forms for
non-pseudoconvex domains in C”. Some previous results in non-
pseudoconvex domains are done in Hérmander [11], Ho [8, 9] and [10].
Hoérmander dealt mainly with the case where the Levi-form is nonde-
generate. Ho dealt with the case that the Levi-form of a vector field is
bounded below by a certain nonnegative function. Here we deal with
the case where there is a vector field whose Levi-form is nonnegative
and with ‘finite type’ m, then we show that a subelliptic estimate of
order € = 1/m holds for (p,n — 1) forms. This is essentially the best
result we can expect with the existence of such a single vector field.
(See Catlin [1] and Ho [9].) We use extensively the ‘box construction’
and the method of constructing plurisubharmonic functions in Catlin
[3]

Though it seems that the theorem is not a surprising one, we should
note that the question of subelliptic estimate is much more subtle for
non-pseudoconvex domains. We given an example in the last part
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that there is a domain in which there is a three-dimensional cross
section being pseudoconvex and of finite type, but there is no subelliptic
estimate for all (p,1) up to (p,n — 1) forms for the original domain.

Let us first introduce some definitions and notations.

Definition 1. Let 2 be a smooth domain in C™ and zy € bQ). Then
a subelliptic estimate is said to hold for (p,q) forms at z if there is a
neighborhood U of zg, € > 0, C' > 0, such that

(1) 1l 12 < CQUOull* + 110 ul[* + [Jul[*)

for all smooth (p, ) forms u compactly supported in U and which lies
in the domain of 9*. Here || |- ||| denotes the tangential Sobolev norm
of order .

Let r be a smooth defining function of €2, L4, ... , L, an orthonormal
basis of smooth holomorphic vector fields in which Lq,...,L,_; are
tangential to bQ, and wy,...,w, are (1,0) forms dual to Li,..., L,.
Then the Levi-form is

cijzﬁéT(Li,fj), ij=1,...,n—1.

If X\ is a smooth function on 2, then we write

)‘ij :(95)\([/“1]), 7/,‘7:1, ,n_]_‘

|| -[I5 denotes the L? norm with weight e~? and ;u = e?L;(e"%u).
We denote
Ss={z€Q| -6 <r(z) <0}

To simplify the notations we will often prove theorems for (0,n — 1)
forms though the theorems are stated for (p,n — 1) forms. C represents
a constant that may vary from line to line.

2. Subelliptic estimates. We will first give a theorem which is
closely related to Theorem 2.2 in Catlin [2].

Theorem 1. Let Q be a smooth domain in C™ and V' a neighborhood
of a point zg € bQ). Assume that in coordinates (z1,za,...,2n) the
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tangential vector field L = r,, 0/0zy — 1,,0/0z1 is nonvanishing in V
and satisfies:

1. 90r(L,L) >0 inV,

2. for all § > 0 sufficiently small, there is a C? bounded function gs
iV such that

(a) 90g5(L,L) >0 inV,
(b) in VNS5 we have d0gs(L,L) > cdi~2.

Then a subelliptic estimate (1) of order € holds for (p,n — 1) forms
at zg.

Proof. Let Ly be L in the statement of the theorem, and let u be a
smooth (0,n — 1) form in Dom (0*). Then

u:Zuiwi/\---/\@i/\---/\wn
7

where A means that the term is missing. Since u € Dom (0*), u; = 0 on
b§) for i < n, and it follows that || |u;| |[1 < C(]|0ul|? + ||0%u||® + ||u||?)
for i < m. It is not hard to see that we then need only to consider that
U= Upwi A+ ANWp_1. We will write u,, = u.

Expanding ||0u||? + ||0*u||? (the reader may refer to [6]) we see that
[0ul[* + (10" ul|* ~ || Lyul* + -+ + || Ln—yul* + || Lnul|*.

Now
| Lyul[} = |61 + (Lig)ull}

> [[dvull — [1(L1o)ull}

= ||ZIU/H§S +/ Cll|u|267¢ ds
baNv

+ $ulul’e™? dV — ||(L1g)ull;
Qv

+O(I| Lyullglully + 1d1ullolully)

where in the third line we use proposition (3.1.3) of Hérmander [11]
and the fact that the first order derivatives of [d1,L1] involve only
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0/0z1,0/0z2 and its conjugates. It follows that

n—1

Lol 3+ Lol + || Lol + / cifuf*e™" dS
i—2 boNV
+ pululfe”?dV —||(Lig)ull}

anv _
< C(l1oull + 107 ullg + [|ull3)-

If 4| < 1and 91, > 0, we put ¢ = e¥/3. Then ¢11 — |L1¢> > Cins.
Hence

n—1

ITrul + 3 Ll + | T + / buaful?e? AV
QNv

=2

< C(/|0ul? + 10"l * + [[ul ).
If we now put ¥ = g5, then we get the estimate
n—1
525/ [ul?dV + | Laul® + ) || Liul[* + | Lpul?
SsNV

=2
< C(l10ul? + 110" ul|* + |[ul ).

This estimate is similar to (2.8) in Catlin [2] except that we have

S || Liul|? instead of 3277 ||Liu||?>. The proof of Theorem 2.2 in
[2] goes through and we conclude that

[l 2 < C(l10ul* + [10%ul® + [lul]*). o

Let z = (21, 22,23, - -- ,2n). We write 2’ = (21, 22), 2" = (23,..- , 2n)
and denote the intersection of the domain 2 with the complex planes
in (z1,22) at 2" as

Q. (21,22) = {(21,22) € C? | 7(21,22,2") < 0} C C*.

We now state the main theorem in this paper.
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Theorem 2. Let Q C C" be a smooth domain, w" = (ws,... ,wy,)
a point in C™~2. Assume that the defining function r satisfies

1. Q. (21,22) C C? are pseudoconver for all 2" in a neighborhood of

w'.

2. Qi (z1,22) C C? is of finite type m at (21, z2) = (w1, w2).

Then a subelliptic estimate of order e = 1/m holds for (p,n—1) forms
for Q at (wy,wq, w").

Proof. Since we will modify Catlin’s argument in C? to construct the
function gs in Theorem 1 in C™, we will outline the argument in Catlin
[3] and adopt the necessary changes here. The main ideas in [3] are as
follows:

Let Q be a domain in C? and zq € b2. For each point w = (wy,w2) in
a neighborhood U of z, there are ‘boxes’ Qs(w) about w where the size
is approximately 7(w,d) in the z; direction and § in the zo direction.
T(w, ) is the é-type at w. (7(w, ) and T'(w, §) are defined in (1.6) and
(1.25) in [3].) There is an a > 0 such that for each w € U N bQ2, there
is a smooth function g, s on Q which satisfies

1. If gu, s is not plurisubharmonic at z, then
T(m(z),ad) < T'(w,9).

2. For z € Qus(w) NQ and L = s Ly + s9Lo,

(a) If90gw s(L,L)(2) > C((T(w,8))"%|s1]2+572|s2|?) fails at 2, then
T(m(z),ad) < T(w,9).

(b) 90gw,s(L, L) < C((1(w,0))~2[s1|* + 672|s2?).

Then U N bQ is decomposed into U N b§2 C U, K; where

K ={zcUnNbT(z,a™ 16) = T(z,a™ T16) = 1}.
For each ! define

A5 (2) = Zgzk,al (2), z€e
k=1
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where {z;} are points on K;. Then \;(z) satisfies
1. X(2) is a bounded function,

2. A;(z) is plurisubharmonic at z if I*(7(2)) = min{T(n(z),d) <
I} >1,

3.
0ON; (L, L)(2) = C((r(w,8)) [sa]* +67%|s2[?)

if ze{ze€Q;r(z) <cd,n(z) € Ki}.

Hence, by choosing € > 0 small enough the function
As(z) = Z)\f;(z)sl
1=2

is the required function that O0A;(L, L)(2) > C6=2¢|L|* in SsNU.

We now define the ‘boxes’ in our situation and see the necessary
changes that need to be made. We refer the reader to [3] for the
details. For the sake of simplicity, we assume the point of finite type
(wy, ws, w") is the origin. Let U be a neighborhood of the origin such
that dr/0zz # 0 in U.

1. For each (2',2") € U, there is a change of coordinates ® : C" —

C" with
®,(¢Q) =21+
©5(¢) = 20 +do(2)Ga + Y _ di(2)¢F
k=1

where do(z) # 0 and di(z) are smooth functions of z, k =0,... ,m. In
coordinates ((1, ... ,¢,) the function p(¢) = r(®(¢)) is of the form

p(¢) =r(z) +Re (e + Z a; 1 (2) ¢ CF
j+k<m
k>0

+O0(IG™ +1¢l €]+ 1¢"]).-

2. Define
Ai(z) = max{|a;x(2)|,7 + k =1}, l=2,...,m,

#(2,6) = min { <%(Z)> Y << m}
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and

NPT Y R L

T(z,6) is the §-type at z.

3. We can define ‘boxes’ in ¢ and z coordinates as follows:

Rs(z) ={C € C* 1| < 7(2,0),|¢] < 6,i=2,... ,n}
Qs(z) = {2z € C" 2= ®((), ¢ € Rs(2)}-

4. Tt follows that the various estimates on derivatives of p hold in
R;(z). For example, we have

Ip(¢) = p(0)] <6, (€ Rs(2)
Dt p(¢)] < 8(r(z,6))7, CERs5(2), l=1,...,m.

5. From the derivative estimates in (4), we get the following:

(a) For w € Qs(z), we have

7(w,d) =~ 7(z,9).

(b) There exists a small constant d > 0 so that if z € Q4s(z), then
T(w,e) < T(z,0)

for all € < dé.
(c) There exists a constant C' such that if w € Qs(z), then

Qs(w) C Qcs(2)

and

Qs(z) C Qos(w).

6. The following proposition is similar to Proposition 2.1 of [3]:

Proposition 1. There exists an a > 0 such that for all points
w € bQNU, there is a smooth function g, s that satisfies:
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(@) |gw,s(2)] <1 for z € Q and gy is supported in Qs(z) N Q.
(b) If 89gw,s(L,L)(2) < 0, the inequality

889u,5(L, L) (2) > C(r(w,8)) 2

fails, then T'(w(z),ad) < T'(w,?).
(c) For all z € Qs(w)NQ,

859w,6(L7 Z)(z) < O(r(w, 5))_2'

Proof. The proof is the same as in [3] (2.1), except that we only
estimate in direction L;. Also we replace ¥(¢) = X(772|¢1]? +62|¢:2|?)
by X(772|¢1[24+872(|¢2|> +- - +¢a)?)). All the estimates in that paper
hold because of the estimates in (5). O

7. Now we can follow the same procedure as in the outline of Catlin’s
proof to decompose U N b2 into UK, and choose points {z;} on Kj.
Then define

)\f;(z) = Zgzk75l (Z)
k=1

with 6 = a™~'6. Finally, with ¢ > 0 small enough,

95(z) = > Aj(2)e’
1=2
satisfies all the properties in Theorem 1. a

3. Counterexample. Let  be defined by the function
r=2Re zs+|a|* + |22l — |21 [*[2s]” — |22 5] — [2a]".
Then it is easily seen that the domain

Q = {(21,22,Z4); (Zl,Z2,0,24) c Q} C 03
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is pseudoconvex and finite type at the origin. In fact, a subelliptic
estimate of order e = 1/4 holds both for (p,1) and (p,2) forms at the
origin for Q. But for the original Q the Levi matrix is

4]21)? — |23/ 0 —Z123
0 Al22]? — |23 ~Zyz3
—2123 —2223 —(‘Zl|2 + |Z2|2 + 4:|Zg|2)

It is not hard to see that

1. Along {z € bQ2; 21 = 22 = 23 # 0}, the Levi-form has two positive
eigenvalues and one negative eigenvalue. Hence, by a theorem of Derridj
[5], there is no subelliptic estimate for (p,1) forms. (The theorem says
that if the Levi-form has n — ¢ — 1 positive eigenvalues and ¢ negative
eigenvalues at z € b2, then there is no subelliptic estimate for (p, q)
forms at z.)

2. Along {z € bQ); 29 = z3 = 32; # 0}, the Levi-form has one positive
eigenvalue and two negative eigenvalues. Hence, same as above, there
is no subelliptic estimate for (p,2) forms.

3. Along {z € bQ2;25 = 321 = 322 # 0}, the Levi-form has three
negative eigenvalues. There is no subelliptic estimate for (p,3) forms.

This example in particular shows that the requirement that there is
a family of two-dimensional cross sections of Q being pseudoconvex is
necessary. It is not sufficient to have only one single piece of cross
section being pseudoconvex and of finite type.
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