APPLICATION OF CATLIN'S BOX CONSTRUCTION TO SUBELLIPTICITY OF n-1 FORMS

LOP-HING HO

1. Introduction. Subelliptic estimates for the $\bar{\partial}$ -Neumann problem is the main tool in establishing local regularity for the solution of the $\bar{\partial}$ -Neumann problem, which has lots of applications in several complex variables. On strictly pseudoconvex domains, subelliptic estimates hold with $\varepsilon = 1/2$. The question is much harder on weakly pseudoconvex domains. The most outstanding works on weakly pseudoconvex domains are by Kohn [12], Catlin [1] and [2]. Catlin used D'Angelo's [4] notion of finite type to establish necessary and sufficient conditions for subellipticity. Catlin [3] constructed a plurisubharmonic function to prove that in \mathbb{C}^2 if a point $z_0 \in b\Omega$ is of finite type m, then a precise subelliptic estimate of order $\varepsilon = 1/m$ holds at z_0 . This result is established earlier in Kohn [12] and also in Fornaess and Sibony [7].

In this note we establish a result similar to the above-mentioned theorem in \mathbb{C}^2 . We will prove a result for (p,n-1) forms for non-pseudoconvex domains in \mathbb{C}^n . Some previous results in non-pseudoconvex domains are done in Hörmander [11], Ho [8, 9] and [10]. Hörmander dealt mainly with the case where the Levi-form is nondegenerate. Ho dealt with the case that the Levi-form of a vector field is bounded below by a certain nonnegative function. Here we deal with the case where there is a vector field whose Levi-form is nonnegative and with 'finite type' m, then we show that a subelliptic estimate of order $\varepsilon = 1/m$ holds for (p, n-1) forms. This is essentially the best result we can expect with the existence of such a single vector field. (See Catlin [1] and Ho [9].) We use extensively the 'box construction' and the method of constructing plurisubharmonic functions in Catlin [3].

Though it seems that the theorem is not a surprising one, we should note that the question of subelliptic estimate is much more subtle for non-pseudoconvex domains. We given an example in the last part

Received by the editors on June 7, 1994, and in revised form on January 24, 1995.

Copyright ©1996 Rocky Mountain Mathematics Consortium

that there is a domain in which there is a three-dimensional cross section being pseudoconvex and of finite type, but there is no subelliptic estimate for all (p, 1) up to (p, n - 1) forms for the original domain.

Let us first introduce some definitions and notations.

Definition 1. Let Ω be a smooth domain in \mathbb{C}^n and $z_0 \in b\Omega$. Then a subelliptic estimate is said to hold for (p,q) forms at z_0 if there is a neighborhood U of z_0 , $\varepsilon > 0$, C > 0, such that

(1)
$$||u||_{\varepsilon}^{2} \leq C(||\bar{\partial}u||^{2} + ||\bar{\partial}^{*}u||^{2} + ||u||^{2})$$

for all smooth (p,q) forms u compactly supported in U and which lies in the domain of $\bar{\partial}^*$. Here $|||\cdot|||_{\varepsilon}$ denotes the tangential Sobolev norm of order ε .

Let r be a smooth defining function of Ω , L_1, \ldots, L_n an orthonormal basis of smooth holomorphic vector fields in which L_1, \ldots, L_{n-1} are tangential to $b\Omega$, and $\omega_1, \ldots, \omega_n$ are (1,0) forms dual to L_1, \ldots, L_n . Then the Levi-form is

$$c_{ij} = \partial \bar{\partial} r(L_i, \overline{L}_j), \qquad i, j = 1, \dots, n-1.$$

If λ is a smooth function on Ω , then we write

$$\lambda_{ij} = \partial \bar{\partial} \lambda(L_i, \overline{L}_j), \qquad i, j = 1, \dots, n-1.$$

 $||\cdot||_{\phi}^2$ denotes the L^2 norm with weight $e^{-\phi}$ and $\delta_i u = e^{\phi} L_i(e^{-\phi}u)$. We denote

$$S_{\delta} = \{ z \in \Omega \mid -\delta < r(z) < 0 \}.$$

To simplify the notations we will often prove theorems for (0, n-1) forms though the theorems are stated for (p, n-1) forms. C represents a constant that may vary from line to line.

2. Subelliptic estimates. We will first give a theorem which is closely related to Theorem 2.2 in Catlin [2].

Theorem 1. Let Ω be a smooth domain in \mathbb{C}^n and V a neighborhood of a point $z_0 \in b\Omega$. Assume that in coordinates (z_1, z_2, \dots, z_n) the

tangential vector field $L = r_{z_1} \partial/\partial z_2 - r_{z_2} \partial/\partial z_1$ is nonvanishing in V and satisfies:

- 1. $\partial \bar{\partial} r(L, \overline{L}) \geq 0 \ in \ V$,
- 2. for all $\delta > 0$ sufficiently small, there is a C^2 bounded function g_{δ} in V such that
 - (a) $\partial \bar{\partial} g_{\delta}(L, \overline{L}) \geq 0 \text{ in } V$,
 - (b) in $V \cap S_{\delta}$ we have $\partial \bar{\partial} g_{\delta}(L, \overline{L}) \geq c \delta^{-2\varepsilon}$.

Then a subelliptic estimate (1) of order ε holds for (p, n-1) forms at z_0 .

Proof. Let L_1 be L in the statement of the theorem, and let u be a smooth (0, n-1) form in Dom $(\bar{\partial}^*)$. Then

$$u = \sum_{i} u_{i} \bar{\omega}_{i} \wedge \cdots \wedge \hat{\bar{\omega}}_{i} \wedge \cdots \wedge \bar{\omega}_{n}$$

where \wedge means that the term is missing. Since $u \in \text{Dom }(\bar{\partial}^*)$, $u_i = 0$ on $b\Omega$ for i < n, and it follows that $|||u_i|||_1 \le C(||\bar{\partial}u||^2 + ||\bar{\partial}^*u||^2 + ||u||^2)$ for i < n. It is not hard to see that we then need only to consider that $u = u_n \bar{\omega}_1 \wedge \cdots \wedge \bar{\omega}_{n-1}$. We will write $u_n = u$.

Expanding $||\bar{\partial}u||^2 + ||\bar{\partial}^*u||^2$ (the reader may refer to [6]) we see that

$$||\bar{\partial}u||^2 + ||\bar{\partial}^*u||^2 \approx ||L_1u||^2 + \dots + ||L_{n-1}u||^2 + ||\overline{L}_nu||^2.$$

Now

$$\begin{aligned} ||L_{1}u||_{\phi}^{2} &= ||\delta_{1}u + (L_{1}\phi)u||_{\phi}^{2} \\ &\geq ||\delta_{1}u||_{\phi}^{2} - ||(L_{1}\phi)u||_{\phi}^{2} \\ &= ||\overline{L}_{1}u||_{\phi}^{2} + \int_{b\Omega\cap V} c_{11}|u|^{2}e^{-\phi} dS \\ &+ \int_{\Omega\cap V} \phi_{11}|u|^{2}e^{-\phi} dV - ||(L_{1}\phi)u||_{\phi}^{2} \\ &+ O(||\overline{L}_{1}u||_{\phi}||u||_{\phi} + ||\delta_{1}u||_{\phi}||u||_{\phi}) \end{aligned}$$

where in the third line we use proposition (3.1.3) of Hörmander [11] and the fact that the first order derivatives of $[\delta_1, \overline{L}_1]$ involve only

 $\partial/\partial z_1, \partial/\partial z_2$ and its conjugates. It follows that

$$||\overline{L}_{1}u||_{\phi}^{2} + \sum_{i=2}^{n-1} ||L_{i}u||_{\phi}^{2} + ||\overline{L}_{n}u||_{\phi}^{2} + \int_{b\Omega \cap V} c_{11}|u|^{2}e^{-\phi} dS$$

$$+ \int_{\Omega \cap V} \phi_{11}|u|^{2}e^{-\phi} dV - ||(L_{1}\phi)u||_{\phi}^{2}$$

$$\leq C(||\bar{\partial}u||_{\phi}^{2} + ||\bar{\partial}^{*}u||_{\phi}^{2} + ||u||_{\phi}^{2}).$$

If $|\psi| \le 1$ and $\psi_{11} \ge 0$, we put $\phi = e^{\psi}/3$. Then $\phi_{11} - |L_1\phi|^2 \ge C\psi_{11}$. Hence

$$||\overline{L}_{1}u||^{2} + \sum_{i=2}^{n-1} ||L_{i}u||^{2} + ||\overline{L}_{n}u||^{2} + \int_{\Omega \cap V} \psi_{11}|u|^{2}e^{-\phi} dV$$

$$\leq C(||\bar{\partial}u||^{2} + ||\bar{\partial}^{*}u||^{2} + ||u||^{2}).$$

If we now put $\psi = g_{\delta}$, then we get the estimate

$$\delta^{2\varepsilon} \int_{S_{\delta} \cap V} |u|^{2} dV + ||\overline{L}_{1}u||^{2} + \sum_{i=2}^{n-1} ||L_{i}u||^{2} + ||\overline{L}_{n}u||^{2}$$

$$\leq C(||\bar{\partial}u||^{2} + ||\bar{\partial}^{*}u||^{2} + ||u||^{2}).$$

This estimate is similar to (2.8) in Catlin [2] except that we have $\sum_{i=2}^{n-1} ||L_i u||^2$ instead of $\sum_{i=2}^{n-1} ||\overline{L}_i u||^2$. The proof of Theorem 2.2 in [2] goes through and we conclude that

$$||u||_{\varepsilon}^{2} \leq C(||\bar{\partial}u||^{2} + ||\bar{\partial}^{*}u||^{2} + ||u||^{2}).$$

Let $z=(z_1,z_2,z_3,\ldots,z_n)$. We write $z'=(z_1,z_2), z''=(z_3,\ldots,z_n)$ and denote the intersection of the domain Ω with the complex planes in (z_1,z_2) at z'' as

$$\Omega_{z''}(z_1,z_2) = \{(z_1,z_2) \in {\bf C}^2 \mid r(z_1,z_2,z'') < 0\} \subset {\bf C}^2.$$

We now state the main theorem in this paper.

Theorem 2. Let $\Omega \subset \mathbb{C}^n$ be a smooth domain, $w'' = (w_3, \dots, w_n)$ a point in \mathbb{C}^{n-2} . Assume that the defining function r satisfies

- 1. $\Omega_{z''}(z_1, z_2) \subset \mathbf{C}^2$ are pseudoconvex for all z'' in a neighborhood of w''.
- 2. $\Omega_{w''}(z_1, z_2) \subset \mathbb{C}^2$ is of finite type m at $(z_1, z_2) = (w_1, w_2)$.

Then a subelliptic estimate of order $\varepsilon = 1/m$ holds for (p, n-1) forms for Ω at (w_1, w_2, w'') .

Proof. Since we will modify Catlin's argument in \mathbb{C}^2 to construct the function g_{δ} in Theorem 1 in \mathbb{C}^n , we will outline the argument in Catlin [3] and adopt the necessary changes here. The main ideas in [3] are as follows:

Let Ω be a domain in \mathbb{C}^2 and $z_0 \in b\Omega$. For each point $w = (w_1, w_2)$ in a neighborhood U of z_0 , there are 'boxes' $Q_{\delta}(w)$ about w where the size is approximately $\tau(w, \delta)$ in the z_1 direction and δ in the z_2 direction. $T(w, \delta)$ is the δ -type at w. ($\tau(w, \delta)$ and $T(w, \delta)$ are defined in (1.6) and (1.25) in [3].) There is an a > 0 such that for each $w \in U \cap b\Omega$, there is a smooth function $g_{w,\delta}$ on $\overline{\Omega}$ which satisfies

1. If $g_{w,\delta}$ is not plurisubharmonic at z, then

$$T(\pi(z), a\delta) < T(w, \delta).$$

- 2. For $z \in Q_{a\delta}(w) \cap \Omega$ and $L = s_1L_1 + s_2L_2$,
- (a) If $\partial \bar{\partial} g_{w,\delta}(L,\overline{L})(z) \geq C((\tau(w,\delta))^{-2}|s_1|^2 + \delta^{-2}|s_2|^2)$ fails at z, then

$$T(\pi(z), a\delta) < T(w, \delta).$$

(b) $\partial \bar{\partial} g_{w,\delta}(L,\overline{L}) \leq C((\tau(w,\delta))^{-2}|s_1|^2 + \delta^{-2}|s_2|^2).$

Then $U \cap b\Omega$ is decomposed into $U \cap b\Omega \subset \cup_{l=2}^m K_l$ where

$$K_l = \{ z \in U \cap b\Omega; T(z, a^{m-l}\delta) = T(z, a^{m-l+1}\delta) = l \}.$$

For each l define

$$\lambda_{\delta}^{l}(z) = \sum_{k=1}^{n} g_{z_{k},\delta_{l}}(z), \qquad z \in \overline{\Omega}$$

where $\{z_k\}$ are points on K_l . Then $\lambda_{\delta}^l(z)$ satisfies

1. $\lambda_{\delta}^{l}(z)$ is a bounded function,

2. $\lambda_{\delta}^{l}(z)$ is plurisubharmonic at z if $l^{*}(\pi(z)) = \min_{l} \{T(\pi(z), \delta_{l}) \leq l\} > l$,

3.

$$\partial\bar{\partial}\lambda_{\delta}^{l}(L,\overline{L})(z)\geq C((\tau(w,\delta))^{-2}|s_{1}|^{2}+\delta^{-2}|s_{2}|^{2})$$

if $z \in \{z \in \Omega; r(z) \le c\delta, \pi(z) \in K_l\}.$

Hence, by choosing $\varepsilon > 0$ small enough the function

$$\tilde{\lambda}_{\delta}(z) = \sum_{l=2}^{m} \lambda_{\delta}^{l}(z) \varepsilon^{l}$$

is the required function that $\partial \bar{\partial} \lambda_{\delta}^{l}(L, \overline{L})(z) \geq C \delta^{-2\varepsilon} |L|^{2}$ in $S_{\delta} \cap U$.

We now define the 'boxes' in our situation and see the necessary changes that need to be made. We refer the reader to [3] for the details. For the sake of simplicity, we assume the point of finite type (w_1, w_2, w'') is the origin. Let U be a neighborhood of the origin such that $\partial r/\partial z_2 \neq 0$ in U.

1. For each $(z',z'')\in U,$ there is a change of coordinates $\Phi:{\bf C}^n\to{\bf C}^n$ with

$$\Phi_{1}(\zeta) = z_{1} + \zeta_{1}$$

$$\Phi_{2}(\zeta) = z_{2} + d_{0}(z)\zeta_{2} + \sum_{k=1}^{m} d_{k}(z)\zeta_{1}^{k}$$

$$\Phi_{i}(\zeta) = z_{i} + \zeta_{i}, \qquad i = 3, \dots, n$$

where $d_0(z) \neq 0$ and $d_k(z)$ are smooth functions of $z, k = 0, \ldots, m$. In coordinates $(\zeta_1, \ldots, \zeta_n)$ the function $\rho(\zeta) = r(\Phi(\zeta))$ is of the form

$$\rho(\zeta) = r(z) + \operatorname{Re} \zeta_2 + \sum_{\substack{j+k \le m \\ j,k > 0}} a_{j,k}(z) \zeta_1^j \bar{\zeta}_1^k + O(|\zeta_1|^{m+1} + |\zeta_2| |\zeta| + |\zeta''|).$$

2. Define

$$A_{l}(z) = \max\{|a_{j,k}(z)|, j+k=l\}, \qquad l=2,\ldots,m,$$

$$\tau(z,\delta) = \min\left\{\left(\frac{\delta}{A_{l}(z)}\right)^{1/l}, 2 \le l \le m\right\}$$

and

$$T(z,\delta) = \min \left\{ l; \left(\frac{\delta}{A_l(z)} \right)^{1/l} = \tau(z,\delta) \right\}.$$

 $T(z, \delta)$ is the δ -type at z.

3. We can define 'boxes' in ζ and z coordinates as follows:

$$R_{\delta}(z) = \{ \zeta \in \mathbf{C}^n; |\zeta_1| < \tau(z, \delta), |\zeta_i| < \delta, i = 2, \dots, n \}$$

$$Q_{\delta}(z) = \{ z \in \mathbf{C}^n; z = \Phi(\zeta), \zeta \in R_{\delta}(z) \}.$$

4. It follows that the various estimates on derivatives of ρ hold in $R_{\delta}(z)$. For example, we have

$$|
ho(\zeta) -
ho(0)| \le \delta, \qquad \zeta \in R_{\delta}(z)$$

 $|D_1^l
ho(\zeta)| \le \delta(au(z,\delta))^{-l}, \qquad \zeta \in R_{\delta}(z), \ l = 1, \dots, m.$

- 5. From the derivative estimates in (4), we get the following:
- (a) For $w \in Q_{\delta}(z)$, we have

$$\tau(w,\delta) \approx \tau(z,\delta)$$
.

(b) There exists a small constant d > 0 so that if $z \in Q_{d\delta}(z)$, then

$$T(w, \varepsilon) \leq T(z, \delta)$$

for all $\varepsilon \leq d\delta$.

(c) There exists a constant C such that if $w \in Q_{\delta}(z)$, then

$$Q_{\delta}(w) \subset Q_{C\delta}(z)$$

and

$$Q_{\delta}(z) \subset Q_{C\delta}(w)$$
.

6. The following proposition is similar to Proposition 2.1 of [3]:

Proposition 1. There exists an a > 0 such that for all points $w \in b\Omega \cap U$, there is a smooth function $g_{w,\delta}$ that satisfies:

1392

L.-H. HO

- (a) $|g_{w,\delta}(z)| \leq 1$ for $z \in \overline{\Omega}$ and $g_{w,\delta}$ is supported in $Q_{\delta}(z) \cap \overline{\Omega}$.
- (b) If $\partial \bar{\partial} g_{w,\delta}(L,\overline{L})(z) < 0$, the inequality

$$\partial \bar{\partial} g_{w,\delta}(L, \overline{L})(z) \geq C(\tau(w, \delta))^{-2}$$

fails, then $T(\pi(z), a\delta) < T(w, \delta)$.

(c) For all $z \in Q_{\delta}(w) \cap \overline{\Omega}$,

$$\partial \bar{\partial} g_{w,\delta}(L,\overline{L})(z) \leq C(\tau(w,\delta))^{-2}.$$

Proof. The proof is the same as in [3] (2.1), except that we only estimate in direction L_1 . Also we replace $\psi(\zeta) = \chi(\tau^{-2}|\zeta_1|^2 + \delta^{-2}|\zeta_2|^2)$ by $\chi(\tau^{-2}|\zeta_1|^2 + \delta^{-2}(|\zeta_2|^2 + \cdots + |\zeta_n|^2))$. All the estimates in that paper hold because of the estimates in (5). \square

7. Now we can follow the same procedure as in the outline of Catlin's proof to decompose $U \cap b\Omega$ into $\bigcup K_l$ and choose points $\{z_k\}$ on K_l . Then define

$$\lambda_{\delta}^{l}(z) = \sum_{k=1}^{n} g_{z_{k},\delta_{l}}(z)$$

with $\delta_l = a^{m-l}\delta$. Finally, with $\varepsilon > 0$ small enough,

$$g_{\delta}(z) = \sum_{l=2}^{m} \lambda_{\delta}^{l}(z) \varepsilon^{l}$$

satisfies all the properties in Theorem 1.

3. Counterexample. Let Ω be defined by the function

$$r = 2 \text{Re } |z_4 + |z_1|^4 + |z_2|^4 - |z_1|^2 |z_3|^2 - |z_2|^2 |z_3|^2 - |z_3|^4.$$

Then it is easily seen that the domain

$$\Omega' = \{(z_1, z_2, z_4); (z_1, z_2, 0, z_4) \in \Omega\} \subset \mathbf{C}^3$$

is pseudoconvex and finite type at the origin. In fact, a subelliptic estimate of order $\varepsilon = 1/4$ holds both for (p,1) and (p,2) forms at the origin for Ω' . But for the original Ω the Levi matrix is

$$\begin{pmatrix} 4|z_1|^2 - |z_3|^2 & 0 & -\bar{z}_1 z_3 \\ 0 & 4|z_2|^2 - |z_3|^2 & -\bar{z}_2 z_3 \\ -z_1 \bar{z}_3 & -z_2 \bar{z}_3 & -(|z_1|^2 + |z_2|^2 + 4|z_3|^2) \end{pmatrix}.$$

It is not hard to see that

- 1. Along $\{z \in b\Omega; z_1 = z_2 = z_3 \neq 0\}$, the Levi-form has two positive eigenvalues and one negative eigenvalue. Hence, by a theorem of Derridj [5], there is no subelliptic estimate for (p,1) forms. (The theorem says that if the Levi-form has n-q-1 positive eigenvalues and q negative eigenvalues at $z \in b\Omega$, then there is no subelliptic estimate for (p,q) forms at z.)
- 2. Along $\{z \in b\Omega; z_2 = z_3 = 3z_1 \neq 0\}$, the Levi-form has one positive eigenvalue and two negative eigenvalues. Hence, same as above, there is no subelliptic estimate for (p, 2) forms.
- 3. Along $\{z \in b\Omega; z_3 = 3z_1 = 3z_2 \neq 0\}$, the Levi-form has three negative eigenvalues. There is no subelliptic estimate for (p,3) forms.

This example in particular shows that the requirement that there is a family of two-dimensional cross sections of Ω being pseudoconvex is necessary. It is not sufficient to have only one single piece of cross section being pseudoconvex and of finite type.

REFERENCES

- 1. D. Catlin, Necessary conditions for subellipticity of the $\bar{\partial}$ -Neumann problem, Ann. Math. 117 (1983), 147–171.
- 2. , Subelliptic estimates for the $\bar{\partial}$ -Neumann problem on pseudoconvex domains, Ann. Math. 126 (1987), 131–191.
- 3. ———, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), 429–466.
- 4. J. D'Angelo, Real hypersurfaces, orders of contact, and applications, Ann. Math. 117 (1982), 615–637.
- **5.** M. Derridj, Inégalités a priori et estimation sous-elliptique pour $\bar{\partial}$ dans ouverts non pseudoconvexes, Math. Ann. **249** (1980), 27–48.
- 6. G.B. Folland and J.J. Kohn, *The Neumann problem for the Cauchy-Riemann complex*, Princeton University Press, Princeton, New Jersey, 1972.

- 7. J.E. Fornaess and N. Sibony, Construction of P.S.H. functions on weakly pseudoconvex domains, Duke Math. J. 58 (1989), 633-655.
- 8. L. Ho, Subellipticity of the $\bar{\partial}$ -Neumann problem on nonpseudoconvex domains, Trans. Amer. Math. Soc. **291** (1985), 43–73.
- 9. ——, Subelliptic estimates for the $\bar{\partial}$ -Neumann problem for n-1 forms, Trans. Amer. Math. Soc. **325** (1991), 171–185.
- 10. ——, Exact subelliptic estimates for n-1 forms, Math. Z. 211 (1992), 635–641.
- 11. L. Hörmander, L^2 estimates and existence theorems for the $\bar{\partial}$ operator, Acta Math. 113 (1965), 89–152.
- 12. J.J. Kohn, Subellipticity of the $\bar{\partial}$ -Neumann problem on pseudoconvex domains, sufficient conditions, Acta Math. 142 (1979), 79–122.

DEPARTMENT OF MATHEMATICS, WICHITA STATE UNIVERSITY, WICHITA, KS 67260