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EXTREME VECTORS OF
DOUBLY NONNEGATIVE MATRICES

CRISTA LEE HAMILTON-JESTER AND CHI-KWONG LI

ABSTRACT. An n X n real symmetric matrix is doubly
nonnegative if it is positive semi-definite and entrywise non-
negative. It is easy to check that the collection of all n X n
doubly nonnegative matrices forms a closed convex cone. A
vector lying on an extreme ray of this cone is referred to as
an extreme DN matrix. In this note we obtain characteriza-
tions of extreme DN matrices and show that there exist n x n
extreme DN matrices with rank k if and only if k # 2 and

{ max{l,n — 3} ifn is even,
max{1l,n — 2} if nis odd.

Using these results, we obtain an algorithm for checking
whether a given DN matrix is extreme. Some other results
concerning extreme DN matrices are also proved.

1. Introduction. Let S,(R) be the linear space of n x n real
symmetric matrices. A positive semi-definite matrix A € S, (R) with
all A;; > 0 (entrywise nonnegative) is called a doubly nonnegative
matriz. A positive semi-definite matrix A = X X* € S,,(R) with X > 0
(entrywise) is called a completely positive matriz. Denote by DN and
CP the set of doubly nonnegative matrices and the set of completely
positive matrices, respectively. Evidently, CP C DN, and it is known
(e.g., see [7]) that the two sets are equal if and only if n < 4.

It is clear that both DN and C'P are closed convex cones. There
has been a great deal of interest in studying these two cones (e.g., see
1, 2, 3, 4, 5, 6, 7] and their references) motivated by the study of
various subjects such as M-matrices, graph theory, block designs in
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combinatorics, the theory of inequalities, statistics in the context of
association in random vectors, and quadratic differential equations.

Recall that (e.g., see [8, Section 18]) an element z in a convex cone
K is an extreme vector if it is not the midpoint of two other elements
in the cone K that are not multiples of x, or equivalently, if it lies on
an extreme ray of the cone. It is well known that every closed convex
cone is generated by its extreme vectors, i.e., every element in the cone
can be expressed as a convex combination of extreme vectors. Thus,
it is helpful in understanding the structure of the cone if we know its
extreme vectors. We shall denote the set of extreme vectors of a given
closed convex cone I by Ext (K).

Since C'P is a subset of the convex hull of § = {zz' : z € R",z >
0 (entrywise)}, it follows that Ext (CP) C S§. Moreover, if A € S, then
A # (B+C)/2 for any B,C € CP that are not multiples of A. Hence,
we conclude that Ext (CP) = S.

The structure of Ext (DN) seems more complicated. The purpose
of this paper is to study Ext (DN). We shall call A € Ext (DN) an
extreme DN matriz. In Section 2, we give several characteristics of
extreme DN matrices. The result is then used to design an algorithm
to check whether a given DN matrix is extreme. Some other results
on extreme DN matrices are also discussed. In Section 3 we show that
there exist n x n extreme DN matrices with rank k if and only if k& # 2
and

§ < {max{l,n —3} if nis even,
max{l,n — 2} if nis odd.

In particular, we provide constructions for extreme DN matrices of
different ranks. We also show that if n > 5 is odd and A € DN has
rank n — 2, then A € Ext (DN) if and only if the graph of A (see the
definition in Section 3) is a cycle of length n. From these results, one
easily deduces that CP = DN if n < 4 (see Corollary 3.3). Some
remarks and related problems are mentioned in Section 4. Some of
our results have also been obtained in [9] by different methods. Our
approach seems to be more elementary.

In our discussion, we use {ej,...,e,} to denote the standard basis
of R", and use {FE11,E12,...,FEn,} to denote the standard basis of
n X n real matrices. The usual inner product on S, (R) is defined and
denoted by (4, B) :=tr (AB).



EXTREME VECTORS 1373

2. Characteristics and an algorithm. Suppose A € DN is
nonzero. It is not hard to see that A € DN is not extreme if and
only if there exists a matrix P € S,(R) not equal to a multiple of A
such that A + P are DN matrices for sufficiently small ¢ > 0. In
fact, if A = (B + C)/2 with B,C € DN such that B and C are not
multiples of A, then P = (P — B)/2 is such a matrix; if P is a matrix
satisfying the said conditions, then A = (B + C)/2 with B = A +¢P,
C = A —¢P € DN for some sufficiently small € > 0. We shall call the
matrix P with the said properties a perturbation of A. In the following
theorem, we give a characterization of perturbations of a given A € DN
and use it to determine whether A € Ext (DN).

Theorem 2.1. Suppose A € DN has rank k > 1 and A = XX for
some X € Rk, Let

Wi ={XQX": Q€ Sk(R)},  Wo={Y:Y; =0if A =0},
and
B = {Ez] + Eji : Aij = 0}

Then a matriz P is a perturbation of A if and only if P € Wy N Wy
and P is not a multiple of A. Consequently, A € Ext (DN) if and only
if any one of the following conditions holds.

(a) WinWy,={\A:)XeR}.

(b) span{X'RX : R € B} = {I;}* in Sk(R).

(c) span{X*RX : R € B} has dimension k(k +1)2 — 1.

Proof. If P is a perturbation of A, then P is not a multiple of A.
Since A + €P is positive semi-definite for sufficiently small € > 0, the
range space of P is contained in that of A. Thus P € W;. Since A+eP
has nonnegative entries, P € Ws.

Conversely, suppose P = XQX* € W1 N W, is not a multiple of A.
Then, for sufficiently small € > 0, I £+ £Q are positive semi-definite
and A £ P has nonnegative entries. Thus, P is a perturbation of A.

Now if A € Ext(DN), then it has no perturbations. Thus, every
P € W1 N W3 is a multiple of A, and condition (a) holds.

Suppose that condition (a) holds. With the notation of the theorem,
one sees that B is a basis for Wi-. Since 0 = (A, R) = (I, X'RX)
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for all R € B, we see that I, € {X'*RX : R € B}*. Suppose
Q € {X'RX : R € B}*. Then 0 = (Q,X'RX) = (XQX*,R) for
all R € B. Thus, XQX! € (W;5)t = W,. Since XQX! € Wy,
it follows from condition (a) that XQX! = XA for some A € R.
Since X has full column rank, we conclude that @ = AIp. Thus,
{X'RX : R € B}* = {A\} : A € R} and condition (b) follows.

It is clear from the previous discussion that I}, € {X'RX : R € B}*.
One easily sees that conditions (b) and (c) are equivalent.

Finally, suppose that (b) holds. If A ¢ Ext (DN), then there exists
a perturbation P = XQX? # AA in W; N W,. Note that Q # A\ as
P # M\A. Since BC W4, 0= (XQX!, R) = (Q,X'RX) for all R € B.
Thus, Q@ € {X'RX : R € B} # span {I;}, which is a contradiction.
O

By Theorem 2.1, we have the following necessary condition for ex-
treme DN matrices.

Corollary 2.2. Let A € Ext (DN) have rank k > 1. Then there are
at least k(k +1)/2 — 1 entries in the upper triangular part of A equal
to zero.

Proof. Let X and B satisfy the hypotheses of Theorem 2.1. Since
A € Ext(DN), span{X'RX : R € B} = {I;}* has dimension
k(k +1)/2 — 1, and hence there are at least k(k + 1)2 — 1 elements
in B. ]

Before continuing our discussion, we make several observations that
are useful in our study.

(i) If A = XX as stated in Theorem 2.1, where X* has columns
v1,...,v, € R¥ and if A;; = 0, then X*(E;; + E;;)X is of the form
vV} + v;v}.

(ii) If A€ DN and P is a permutation matrix, then A € Ext (DN)
if and only if P*AP € Ext (DN).

(i) If A € CP, then A € Ext (DN) if and only if A has rank 1.

We are now ready to consider some other consequences of Theorem
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2.1. In particular, the following results show that one can determine
whether A € Ext (DN) by studying the principal submatrices of A.

Proposition 2.3. Suppose that Aisa principal submatriz of A such
that the rank (A) = rank (A) = k > 1. If A € Ext (DN) (in the lower
dimensional case), then A € Ext (DN).

Proof. By observation (ii), we may assume that A € S,,(R) is the
leading principal submatrix of A. Suppose that A = X X?, where X is
an n X k matrix and X* has columns vq,...,v,. Then 4 = YY?,
where Y* has columns vi,...,v,. Since A € Ext(DN), we have
{Ix}*+ = span {v;v} + v;v! : A;j = 0} C span {viv} + v} Aij =0} Tt
follows that A € Ext (DN). O

Proposition 2.4. Suppose that A € DN is nonzero and is permu-
tationally similar to A; & As. Then A € Ext (DN) if and only if Ay
or As = 0 and the nonzero A; is an extreme DN matriz (in the lower
dimension case).

Proof. By observation (ii), we may assume that A = A; & A,.

Suppose A € Ext(DN). If none of A; and A, are zero, then
B =2A;®0and C = 0p2A5 are DN matrices not equal to multiples of
A such that A = (B+C')/2, which is a contradiction. So we may assume
that A = A; & 0 with A; € S;,(R) such that rank A = rank A; = k.
Suppose that A = X X! as in Theorem 2.1, and X* has columns
Vlyert sUm,0,...,0. Then {I;}+ = span {v;vi + vjv}f : Ay = 0} =
span {v;v} + v;vf : (A1)i; = 0}. Tt follows that A; € Ext (DN).

The converse follows easily from Proposition 2.3. O

Corollary 2.5. If there exists a rank k extreme DN matriz in

Srn(R), then for any m > n there exist rank k extreme DN matrices in
S (R).

Proof. If A € Ext(DN) is n x n and has rank k, then A ® 0,,_,, €
Ext (DN) for any m > n. o
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We shall give complete information about the rank restrictions on
extreme DN matrices in the next section. We conclude this section
with the following algorithm for checking whether a matrix A € DN is
extreme.

Algorithm for checking extreme DN matrices. Suppose A €
DN 1is nonzero.

Step 1. Determine the rank of A.

Step 2. Write A as XX for an n x k matriz X, where k is the rank
of A.

Step 3. Determine the dimension d of span{X'(E;; + Ej;)X : i <
JhAij = 0}.
Then d =k(k+1)/2—1 if and only if A € Ext (DN).

To determine the value d in Step 3, let {X*(E;; + E;;)X : i <
J,Aij = 0} = {C4,...,Cp}. For instance, one can use Observation
(i) to construct C1, ... ,Cy,. Next, construct the m x k(k+1)/2 matrix
C such that the jth row of C is the coordinate vector of the matrix C;
with respect to the basis

{Em €Sk(R):1<r<k}U{E,s+Es; € Sp(R):1<r<s<k}

for Si(R), i.e., the jth row of C contains the entries of C; in its upper
triangular part. Then d is just the rank of the matrix C.

3. Rank restrictions on extreme DN matrices. To study the
rank restrictions on extreme DN matrices, we need the concept of the
graph of a matrix. For a given A € S,,(R), let G(A) denote the graph
with n vertices, {1,... ,n} such that there exists an edge between two
different vertices ¢ and j if and only if A;; = Aj; # 0.

The following additional observations are needed in our discussion.

(iv) If A € S,(R) is positive semi-definite and if A;; = 0, then the
ith row (and also the ith column) is zero.

(v) A matrix A € S,(R) is reducible, i.e., A is permutationally
similar to the direct sum of matrices of lower orders, if and only if
G(A) is not connected.
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(vi) If A € DN and G(A) is a bipartite graph, then A € CP. In
particular, if such an A has rank larger than one, then A is the sum of
more than one rank one C'P matrix, and hence A ¢ Ext (EN).

One may see [1] for the proof of observation (vi). The main results
of this section are the following theorems.

Theorem 3.1. There exists an n X n extreme DN matriz with rank
k> 1 if and only if k # 2 and

) < max{1l,n — 3} ifn is even
~ | max{l,n — 2} ifn is odd.

Theorem 3.2. Suppose that n < 5 is odd and A € DN has rank
n—2. Then A € Ext (DN) if and only if G(A) is a cycle of length n.

Since two closed convex cones are equal if and only if they have the
same extreme vectors, one easily deduces the following corollary from
Theorem 3.1.

Corollary 3.3. If n <4, DN =CP.

The proof of Theorems 3.1 and 3.2 are divided into several lemmas.
In particular, we exhibit a construction of rank k extreme DN matrices
for those k satisfying the conditions in Theorem 3.1.

Lemma 3.4. If A € Ext (DN) has rank k, then k < max{1l,n — 2}.

Proof. Suppose that A € Ext (DN) has rank n > 1. By Corollary 2.2,
A has at least n(n + 1)/2 — 1 zero entries in the upper triangular part.
Since A # 0, there must be at least one nonzero entry. Since A is
positive semi-definite, the nonzero entry must be on the diagonal. It
follows that A has rank 1 < n, which is a contradiction.

Suppose that A € Ext (DN) has rank n — 1 > 1. By Corollary 2.2,
A has at least n(n — 1)/2 — 1 zero entries, or equivalently, there are at
most n + 1 nonzero entries in the upper triangular part. Note that all
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diagonal entries of A are nonzero; otherwise, by observation (iv), A is
permutationally similar to A; @ [0]. By Proposition 2.4, A; € S,_1(R)
is a rank n — 1 extreme matrix, which contradicts the result established
in the preceding paragraph. As a result, there is at most one nonzero
entry in the strictly upper triangular part of A. Since n > 3, A is
permutationally similar to A; @ Ao for some A; € So(R) with both A,
and As nonzero. This contradicts Proposition 2.4. a

We remark that in the second part of the proof in the above lemma,
once we see that there can only be one nonzero entry in the strict upper
triangular part of A, we can conclude that G(A) is bipartite, and hence
A € Ext (DN) by observation (vi).

Lemma 3.5. Suppose that n > 4 and A € DN has rankn — 2. If
n is even, then A ¢ Ext (DN). Ifn is odd and A € Ext (DN), then
G(A) is a cycle of length n.

Proof. Suppose that n and A satisfy the hypotheses of the lemma.
If A € Ext(DN), then Corollary 2.2 implies that there are at least
(n—1)(n—2)/2 — 1 zero entries in the upper triangular part of A, i.e.,
there are at most 2n nonzero entries. Similar to the proof of Lemma 3.4,
we can show that all diagonal entries of A are nonzero. Thus, there are
at most n edges in G(A). Furthermore, G(A) is connected; otherwise,
A is permutationally similar to A; @ Ay by observation (v), and one of
the A; is zero by Proposition 2.4, which is a contradiction. Thus, G(A)
has at least n — 1 edges.

If G(A) has exactly n — 1 edges, then G(A) is a tree and hence a
bipartite graph. By observation (vi), A ¢ Ext (DN). Finally, suppose
that G(A) has n edges. We claim that every vertex of G(A) has
degree two, and hence G(A) is a cycle. If it is note true, then G(A)
has a vertex of degree one. In the matrix A, it means that there is
a row with exactly one nonzero off-diagonal entry. By observation
(ii), we may assume that it is the first row, and A;5 # 0. Suppose
that A = XX and B are defined as in Theorem 2.1. Let X have
columns vi,...,v, € R"7?. Then 0 = Ay; = v1vf for j = 3,...,n.
Since span {vy, ... ,v,} has dimension n — 2 and vs, ... ,v, € {v1}* in
R 2 it follows that {vs,...,v,} is linearly dependent. Note that if
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Yimg aivi = 0, then Y77 s a;(v1vf + vof) = 0. Thus, {v10} 4 vj0] :
j=3,...,n} C{X'RX : R € B} is linearly independent, and hence
span {X'RX : X € B} has dimension strictly less than the number
of elements in B, which equals (n — 1)(n — 2)/2 — 1. By Theorem 2.1
(c), A cannot be a rank n — 2 extreme DN matrix. Thus, our claim is
proved, and G(A) must be a cycle of length n. If n is even, then G(A)
is a bipartite graph, and hence A ¢ Ext (DN) by observation (vi). The
conclusions follow. O

We are now ready to give the

Proof of Theorem 3.2. (=) by Lemma 3.5.

(«<). Suppose that A € DN has rank n — 2 and that G(A) is a
cycle of length n. By observation (ii), we may assume that A;; # 0
if and only if |i — j] < 1 or {4,7} = {1,n}. We show that A has no
perturbations, and hence is an extreme DN matrix. To achieve this
end, let A = XX¢, Wy, W, and B be defined as in Theorem 2.1. Denote
the columns of Xt by vy,...,v, € R*72. Suppose P = XQXt c W, is
a perturbation of A. We first show that Qu; = Ajv; for some \; € R.
Consider the zero pattern of the n X (n — 2) matrix A obtained from
A by removing its second and last columns. One easily sees that A
has rank n — 2. Since A = XX where X! is obtained from X* by
removing its second and last columns, it follows that X has rank n— 2,
and thus span{v; : 1 < j < n—1,j # 2} = R"?. By the fact
that 0 = Ay; = v{vj for all j with 3 < j7 < n — 1, we conclude that
W =span{v; : 3 < j <n—1} = {v;}+. Now, since 0 = P;; = v{Qu;
for 7 =3,...,n—1, we see that Q'v; = Qu; € W+. Thus, Qu; = \jv;
for some A; € R as asserted. One can use similar arguments to show
that Quj = Ajv; for some A\; € R for j =2,... ,n.

To finish the proof, we show that all \; are equal, and hence Q) = A\{I.
Thus, P = XQX!' = )\ A, which contradicts the fact that P is a
perturbation of A. To show that A\; = Ay, recall that {v; : 1 < j <
n— 1,7 # 2} is a basis of R"72. Thus, v2 = ajv; + Z;L:_?} a;v; for
some «; € R. Since 0 # A3 = viv,, we conclude that vy ¢ {v;}+, and
hence a; # 0. Now we also have A\yvs = Qua = a1 A\jv; + Z?;; Qi V;.
It follows that a; A1 = a3, and thus A; = A3. One can use similar
arguments to show that A\; = Aj;q for j =2,... ,n—1, and the desired
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conclusion follows. O
We need two more lemmas to complete the proof of Theorem 3.1.
Lemma 3.6. If A € Ext (DN) has rank k, then k # 2.

Proof. Notice that by Lemmas 3.4 and 3.5, there is no rank two
extreme DN matrix of size less than 5. Suppose that A is a rank two
n X n extreme DN matrix, where n > 5. Let A = XX? and let B be
defined as in Theorem 2.1. Suppose X* has columns v1,...,v, € R
By Theorem 2.1, there exist Ry = Epq+ Eqp, Ry = Ers + Es, € B such
that span {X'R; X, X'Ry X} = {I,}. Let Y be the submatrix of X
consisting of the rows in {v},v},v,v!}. Then YY" is a submatrix of A
of size less than or equal to 4. By our construction, Y'Y is an extreme
DN matrix, which is a contradiction. ]

To complete the proof of Theorem 3.1, we give a construction of
rank k extreme DN matrices for those k satisfying the conditions in
Theorem 3.1 in the following lemma.

Lemma 3.7. Suppose that k satisfies the conditions in Theorem 3.1.
There exist rank k extreme DN matrices.

Proof. If k = 1, then, clearly, E; is a rank 1 extreme DN matrix.

Construction for the case when k > 3 is odd. If k > 3 is odd, then
n > k+2. By Proposition 2.4, it suffices to construct a (k+2) x (k+2)
extreme DN matrix A. Then A ® 0,,_r_2 will be an n X n extreme
DN matrix. To this end, let A = X X? be such that X! has columns
V1,...,0p2 € RF, where v; = € + ey for j = 1,...,k—1,
v = Z?;i(—l)fej, Upt1 = Uk — €k, and vgyo = v + (K — ey,
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i.e.,

1 0 0
1 1 0
0 --- 0
1 -1
1 -1
1 -1

— e

-1
1

k columns

One can check that A has rank k and is of the form

o2 1 0
1
0 L2
. . )
0

Lk—1 0

0
1
k-1 k-1
k-1 k
0 1

k2 — 3k + 3]

k-1
0

0
1

1381

Clearly G(A) is a cycle of length k+2. By Theorem 3.2, A € Ext (DN).

Construction for the case when k > 4 is even. If k > 4 is even,
then n > k + 3. Similar to the previous case, it suffices to construct a
(k+3) x (k+ 3) extreme DN matrix A. To this end, let A = XX* be

such that X* has columns vy,...

k-2

k
,Uk+3 € R, where v; = e; +ej41

for _] = 1,... ,k - 2, Vg—1 — ijl(—l)Jej, Vg — Ug—1 — €k—1,
Vg1 = vg + (kK — 2)e1, vpro = vk + eg, and Vg3 = Vk41 — €, 1€,

[ 1
0

1 0 0
1 1 0
0 0
1 -1
1 -1
1 -1
1 -1
1 -1

007

0:0

O e e e

1
—_

k columns
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Note that the leading (k + 1) x (k + 1) principal submatrix of A is of
the form Y'Y, where the columns of Y are vy,... ,vp11. If we ignore
the last zero entry of each vy,...,vgy1, they are constructed as in the
odd rank case in the preceding paragraph. One easily checks that Y'Y
is an extreme DN matrix of rank k— 1. Direct computation shows that
the last two rows of A, i.e., the (k+ 2)nd and (k + 3)rd rows, are

0,...,0,k —2,k—1,1,k,0),
N——
k—2
(k —2,0,...,0,1,k* — 5k + 4,0, k% — 5k +5).
N—_——

k—2

Let B be defined as in Theorem 2.1. We claim that {X*RX : R € B}
spans {Ix}*, and hence A € Ext (DN).

First we consider those R = E;; + Ej; € Bwith 1 <4,j <k 4+ 1. As
mentioned before, the leading principal (k+1) x (k+1) submatrix of A
is a rank k — 1 extreme DN matrix. By our construction, such X!RX
will generate all matrices in {I;}* whose last row and last column
contain only zeros.

Next we show that there exist Zi,...,Zx € {Ix}* (in Sg(R)) of the
form X'RX, where R = E;; + Ej; € Band i > k+2or j > k+ 2,
such that the last columns z; of Z;, 1 < i < k, form a basis of
RF. Our assertion will then follow. Now, for i = 1,... ,k — 2, let
Zi = Xt(EiJH_z + Ek+27i)X. Then zi = e; + €i41- Next, let Zk—l =
XY (Ep—1,k—3 + Ertsr—1)X and Z; = X' (Eri2k+3 + Ertsrie)X.
Then zr_1 = Zi:f(fl)”lei and 2, = (k — 2)e; — 2ex. One easily
checks that {z1,..., 2} is a basis for R*, and our result follows. ]

4. Remarks and related problems. We remark that our
techniques can be used to study extreme vectors of other convex sets
or convex cones. In fact, we have proved some results of similar types
on the convex sets obtained by intersecting DN or C'P with the convex
set of correlation matrices, i.e., positive semi-definite matrices in S, (R)
with all diagonal entries equal to one.

Dr. B.S. Tam pointed out that our techniques can be extended to a
more general cone theoretic scheme of relating the perturbation space,
i.e., the linear space formed by perturbations and the zero vector, to a
face of a convex cone.
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Several problems related to our results are of interest. First, it would
be nice to have a complete description or an algorithm to generate all
extreme DN matrices. Also, it would be interesting to study other
facial structures of the cones DN and C'P. Another problem is to
study the facial structures of the dual cones of DN and CP.

Acknowledgments. Thanks are due to Dr. B.S. Tam for some
helpful discussions, and to Dr. J. Drew for providing some preprints.
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