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LOCAL ARTINIAN RINGS
AND THE FROBERG RELATION

ROBERT W. FITZGERALD

0. Introduction. R will denote a local Artinian ring, m the
unique maximal ideal and k the residue field. The Poincaré series
is Pr(t) = Y ;5 dim (Tor #(k,k))t' and the Hilbert series is Hg(t) =
oo dim (m'/m*T1)¢t. Pg(t) is a formal power series while Hg(t) is
a polynomial (but not the Hilbert polynomial) since R is Artinian.

We consider the Frdberg relation, first studied in [7]: Pgr(t) =
Hg(—t)~'. Ris a Fréberg ring if this relation holds. We are interested
in determining when R is Froberg, particularly in the critical case of
m? = 0 (cf., [2]). The Fréberg relation is a strong property; Pg(t)
need not even be rational [1]. Our main result is: If m® = 0 and
m -annz = m? for all x € m\m?, then R is a Froberg ring.

This work was motivated by the classification problem for Artinian
Witt rings (which are necessarily local) with the unique maximal ideal
being the ideal I of even dimensional forms. We briefly review the
problem. Let Wg be the class of Witt rings of nonsingular quadratic
forms over fields L such that |L/L?| is finite and —1 € 3 L%. The class
Wpg of Artinian Witt rings of elementary type is defined inductively.
Start with the fundamental Witt rings: Z/2Z, Z/4Z and those of local
type (Witt rings of certain P-adic fields, cf. [13, Chapter 3]). Wg
consists of the Witt rings built from the fundamental Witt rings by a
finite sequence of fiber products (over Z/2Z) and group ring extensions
(by finite groups of exponent 2.) Lastly, W4 is the class of Artinian
abstract Witt rings defined by Marshall [13]. Then Wg C Wr C Wy.
It is conjectured that W = W4, but neither inclusion is known to be
an equality.

We show that if R € Wg, that is, R is of elementary type, then R is
a Froberg ring. This motivated our search for sufficient conditions on
R to be Froberg that could easily be checked for abstract Witt rings.
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In the first section we gather together examples of Froberg rings that
have appeared at least implicitly in the literature. To these examples
we add Witt rings of elementary type. In the second section we again
gather necessary and sufficient conditions that R be Froberg that have
appeared elsewhere. The third section contains the main theorem while
the fourth discusses some partial converses.

1. Examples. We list examples of local Artinian rings which are
Froberg rings.

Example 1.1. If m?> = 0 then R is a Fréberg ring.

Proof. We use induction on p(m), the minimal number of generators
for m. If y(m) = 1, then a direct computation gives Pr(t) = (1—¢)~!
and Hgr(t) = 1+ ¢ If p(m) > 1, then choose a nonzero z € m
and set S = R/(z). Then Pr(t)"! = Ps(t)"! —t by [9, 3.4.4] and
Hg(t) = Hs(t) +t. By induction, Ps(t)™' = Hg(—t) and so the
Froberg formula also holds for R. o

Example 1.2. If R is a Gorenstein with socle degree o(R) = 2 and
p(m) > 1, then R is a Froberg ring.

Proof. Let S = R/(0: m). S is a Froberg ring by (1.1), Pr(t)™! =
Ps(t)"! +t2 by [11, Theorem 2] and Hg(t) = Hs(t) + t2. Hence, the
Froberg formula holds for R. o

Example 1.3. Suppose that g(m) < 2 and R is not a complete
intersection. Then R is a Fréberg ring if and only if m? = 0. In
particular, (1.2) fails if g(m) = 1.

Proof. If u(m) = 1, then a simple computation shows that Pg(t) =
(1 —t)~1. This equals Hg(—t)~! if and only if m? = 0. If u(m) = 2,
then by [14], Pr(t) = (1+t%)/(1—et?—(e—1)t*), where e = dim H; (K),
K the Koszul complex. If Pg(t) ! is a polynomial, then it has degree 1,
and so R a Froberg ring implies m? = 0. The converse is Example 1.1.
]
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Example 1.4. Suppose that p(m) =2 and R is a complete inter-
section. Then R is a Froberg ring if and only if m® =0 and dim (m?)=1.

Proof. In this case Pr(t) = (1 —t)~2. Thus, the Froberg formula
holds if and only if Hg(t) = 1 + 2t + 2. O

Example 1.5. If R is Gorenstein with x(m) = 3 and o(R) = 3, then
R is a Froberg ring.

Proof. This is Case 3a in [3]. O

Example 1.6. Suppose that R = k[z,y, z]/I where (z,y,2)% C I,
p(I) > 4 and I is generated by forms of degree 2. Then R is a Froberg
ring.

Proof. These rings are Cases 4a, 5a and 6a in [3]. Since the cases are
not explicitly defined in [3], we note that u(I) > 4 implies R is among
cases 4, 5 and 6. Only in the “a” case is R Artinian. O

The rest of this section is concerned with adding one more example
to the list, namely, (Artinian) Witt rings of elementary type.

Proposition 1.7. Let R = Ry M Ry be the fiber product (over k) of
Ry and Ry. If Ry and Ry are Fréberg rings, then so is R.

Proof. Pgr(t)™' = Pgr,(t)™' 4+ Pgr,(t)~* — 1, by [4], and clearly
Hp(t) = Hg,(t)+ Hg,(t) —1. O

Let C, denote the cyclic group of prime order p. R[C)]| denotes the
group ring. R[C,] is again a local ring if and only if chark = p by
[10, p. 153]. We will use the following only in the case p = 2, but the
general case is no more difficult to prove.

Proposition 1.8. Suppose chark = p > 0. Let S = R[C,]. Then
Ps(t) = (1 — )~ Pg(t).
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Proof. Let g denote a generator of Cp, set A = 1+g+---+gP~ ! and let
n denote the maximal ideal of S. Then n = Sm+ S(1 —g). Let (X, d)
be a minimal R-resolution of k, with augmentation map o : Xy — k.
Let (Y, d) be a minimal S-resolution of S/S(1 — g) with augmentation
map (. Here we may take ¥; = S for all ¢ and d;(1) =1 — g if 4 is odd,
d;(1) = X if ¢ is even.

Consider U = (X ®r S) ®s Y, with U, =[], ;_,,(X; ® §) ® ¥; and
d((z®s)®y) = (d(z) ®@s)@y+(~1)"** (2 ®s) ®d(y). Here a = degz,
b = degy and we define d(Xy) = 0 = d(Yp). Then U is a complex,
d(U) C nU and U has the projection v : (R® S) ® S — S/n as the
augmentation map.

We check that U is exact. Suppose z = >, ;i (357, air ® ") ®1;

is a cycle, where each a;; € X; and 1; denotes the unity in Y; = S.
Then

(*) d(air) + (—1)"(@i—1& — @i—1k-1) =0,

if n — ¢ is even, while if n — 7 is odd, then
P
d(a;x) + (—=1)" Zai_lk =0.
k=1

For each cycle z € U,, let m(z) be the largest index 7 such that some
air, # 0 (set w(0) = —1). We prove exactness by showing that if
m(z) > 0 then there is a boundary b with 7(z + b) < w(z). First
suppose that 7(z) = n. Summing the equations (%) for ¢ = n yields
>k d(ank) = 0. Choose f € X141 with d(8) = > ank. The boundary
of

(6®l)®10+(1)"<<§ank®(g’”+---+g+1)> ®11>

isb= () an ®g*) ® 1y +w, where w € II(X; ® S) ®Y; over (i, ) with
i+j=mnand j>0. Thus n(z — b) < n = 7(z).

Next suppose m(z) = i < n, z # 0; that is, a;41% = 0 for all k. If
n — i is odd, then a;; = -+ = a;p. Then a;p, ® A = Y ai ® ¢* and
b= d((aip®1)®Ln—it1) = (aip®@d)®Ln—_i+(—1)"*!(d(aip) ®1)®Ln_;11.
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Thus 7(z — b) < 7(z). Lastly, if n — i is even then ), a; = 0
and Y a; ® gF = Ei:‘l a;r ® (g* — 1). As before, the boundary of
(Choiaw®(g" " 4+ g+1) @ lnirr is b = (L an®g*) @Lnit+w,
where w € II(X;®S5)®Y; summed over (7, ) with i+j = n and j > n—i.
Thus, 7(z — b) < m(z) as desired.

Clearly rank (U,) = Y., rank (X;), so that Ps(t) = (1 —t) ' Pg(t).
O

When S = R[C}] the relation between Hg and Hp is not as simple
as that for the Poincaré series. For example, if Ry = Z/27Z and
Ry = (Z/3Z)[C3), then Hg,(t) = 1+t +t* = Hg,(t). However, if
Si = Ri [03], then

Hg, (t) = Hp, (t)- (1 +t+t*)
Hg,(t) = Hg,(t) - (1 +t+t%).

But we do have the following result.

Proposition 1.9. Suppose that R is a Fréberg ring and chark =
p > 0. S = R[C,] is a Fréberg ring if and only if p = 2.

Proof. (—). We have Hg(t) = (1 + t)Pr(—t)"! = (1 + t)Hg(t) by
(1.8). Suppose that m?~! # 0 and m? = 0. The maximal ideal n
of S'is Sm+ S(1 — g), where g is a generator of C,. We must have
n?! =0, as degHg = 1 + deg Hg. But if p > 3 and z € m? 1\{0}
then z(1 — g)? € n971\{0}, a contradiction. So p = 2.

(+). Let 1 # g € C3. Note that (1 —g)? =2(1 —g) € m(1 — g), as
char k = 2. Again the maximal ideal of S is n = Sm+ S(1 — g). Then
n? = Sm?+ Sm(1 —g) and, in general, n? = Sm?+ Sm? (1 —g). We
thus have a k-space isomorphism (m?/m?*1) x (m?!/m?) — n?/n?*!.
Thus Hs(t) = (L +t)Hg(t) = (1 + t)Pr(—t) " = Ps(—t)"!, by (1.8).
]

Corollary 1.10. If R is an (Artinian) Witt ring of elementary type,
then R is a Froberg ring.

Proof. If R is Z/2Z or Z/4Z this follows from (1.1). If R is of local
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type, then R is Gorenstein of socle degree 2 (cf. [6]) and so R is a
Froberg ring by (1.2). Then (1.7) and (1.9) imply the result. o

2. Equivalent conditions. We gather conditions on R equivalent
to R being a Fréberg ring.

Notation. We let b; = dim Tor #(k,k) and h; = dim (m’/m‘*!).
Let c; be defined by Hr(—t)™! = 2is0 citt.

Lemma 2.1. (1) bg = ¢y = 1.
(2) b1 = hl =C1 = p(m)
(3) cny1 = E?:ﬁl(_l)i—i_lhicrwrlfi-

Proof. Elementary. O

Definition. Suppose (F, D) is a minimal resolution of k. Let:
A(i,j) = dim(m‘F; N Z;)/m*'Z;),  i>1
B(i,j) = dim(m'F; Nm*2Z;/m*'Z;), i>2.
Note that A(1,j) =0 and B(2,j) = A(2, 7).
Lemma 2.2. Let (F,d) be a minimal resolution of k. Then for
i>1,7>1:

p(mi=1Z;) = hibj — A(i,§) + B(i +1,5) — p(m'Z; 1),

Proof. Consider the sequence

mi_le - Il'lle7 e l’niZ]',1
m"Zj mi“Fj m”le_l’

where e is induced by d; and m by inclusion. Then e is surjective
and ker(e) = (m'F; N Z;)/m**1F;, since if dj(v) € m*™1Z;_; where
v € m'F}, then d;(v) = Y ard;j(wy) for some a € m**! and wy, € Fj.
Thus v = v — Y agwg, mod m 1 F; and d(v — Y apwy,) = 0.



LOCAL ARTINIAN RINGS 1357

A(i,j). And ker(r) = m'"1Z; Nm*"1F;/m‘Z; which has dimension
B(i+1,5). We obtain

We also have im (7) = m* 1Z;/m’™!F;. Thus dim (ker(e)/im (7)) =

p(m*~!Z;) = dim (im (7)) + dim (ker())
=B(i+1,j) — A(4,j) + dim (ker(e))
= B(i+1,5) — A(4,§) + hibj — u(m’Z;_y). O

Theorem 2.3. Let (F,d) be a minimal resolution of k. For n > 1,

n+1 n+1
b1 = > (1) hib_ipr + Y (—1)'B(i,n —i+2)
=1 =2

n

=) (-1)A(i,n —i+1).

=2

Proof. byy1 = u(Z,) so it suffices to prove

n+1
wm"PZ) = Y ()P T b, g

i=n—p+1

n+1

+ > ()"PTB(i,n—i+2)
i=n—p+2

- > (=1)"PTA(Ln — i+ 1).

i=n—p+1

This follows from (2.2) by induction on p. O

Corollary 2.4. R is Fréberg ring if and only if for alln > 1,

n+1 n

> (-1)'B(i,n—i+2) =Y (-1)'A(i,n —i+1).

=2 =2
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Proof. The Froberg relation is b, = ¢, for all n > 1. If the relation
holds, then b1 = > (=1)" **1h;b, 11 ; by (2.1) and so (2.3) implies
the result. Conversely, if the two sums in the statement are equal,
then b, 11 = > (=1)"" 1 h;b, ;1. As bg = cg and by = ¢y, a simple
induction argument shows that b,,41 = ¢,4+1 for all n. O

Tate [15] constructed an R-algebra, that is, a graded skew commu-
tative differential algebra, U resolution of k£ which can be assumed
minimal [8]. Léfwall [12] calls U an S-R-algebra if du € m?U implies
u € mU or u € Uy.

Proposition 2.5. Suppose that m® = 0. The following are equiva-
lent:

(1) Pgr(t) = Hg(—t)~%

(2) If (F,d) is a minimal resolution of k, then m?F C mZ.

(3) There is one (every) minimal R-algebra resolution f k that is an
S-R-algebra.

(4) The Yoneda algebra Extg(k, k) is generated by Exty(k, k).

Proof. (1) is equivalent to B(2,1) = 0 and, for n > 1, B(2,n) =
A(2,n —1) by (2.4). Since B(2,n —1) = A(2,n — 1), (1) is equivalent
to B(2,n) = 0 for all n > 1. That is, (1) holds if and only if
m?FNZCmZ.

(2) — (3). If d(z) € m%F, then d(z) € mZ and so d(z) = d(}_ a;y;)
for some a; € m and y; € F. Then x — Y a;y; € Z C mF and so
x € mF. Thus F is an S-R-algebra.

(3) — (2). Let x € m?F. Then m® = 0 implies that z € Z
and so * = d(y) € m?F for some y € F. Thus, y € mF and so
z=d(y) € mZ.

(4) <> (1) is [12, Theorem 2.3]. o

3. The case m®> = 0. Throughout this section we assume
that m® = 0 and set ¢ = dim (m/m?) and h = dim (m?). For a
finitely generated R-module M we abuse notation and write dim M for
dim (M /mM), the cardinality of a minimal generating set for M.
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Lemma 3.1. Let A and B be R-modules with A finitely generated
and free. Let f: A — B be an R-module map. If

(i) f(A) CmB,
(ii) ker(f) C mA and
(iii) m%A4 = mker(f),
then dim (ker(f)) + dim (f(mA)) = gdim (A4).

Proof. The following is exact:

ker(f) mA

0— m ker(f) T m2A

— f(mA) — 0. O

For any ideal I ¢ m? let (F(I),d(I)) be a minimal resolution of R/I.
We note that F'(I)g = R and d(I)o(r) =7+ I. If dimI = p, then we
may take F'(I); = RP and d(I)(r1,... ,7p) = > 7iz;, where z1,... ,zp
is a minimal generating set for I.

Lemma 3.2. Let I ¢ m? be an ideal with dimI = 1. Let J = ann .
Then

(a) forp>0:F(I)py1 =F(J)p and
(b) forp>1:d(Dpis = d(I)y.

Proof. Let * € m/m? generate I. Then F(I); = R and kerd(I);, =
ann (z) = J. Now F(J)o = R and kerd(J)o, = J also. Hence, we may
assume that the resolutions are the same. |

Definition. For an ideal I ¢ m? we define inductively:

(1)
52(1) gdim (I) — dim (mJ)
(I) = gBi+1(I) — hB:i(I), fori> 1.

Lemma 3.3. Forg>2 and all 1 <17 < q— 1, suppose we have
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(i) m-ker(d(I);) = m2F(I); and

(i) dim (ker(d(1):)) = Bi+1(I)-
Suppose further that a set B generates kerd(I), and |B| = Bq+1(I).
Then

(a) B is a minimal generating set for kerd(I), and
(b) mkerd(I), = m*F(I),.

Proof. We consider d(I), : mF(I),/m?F(I), — m?>F(I),—1. By (i)
this is surjective. So dim (ker d( )q) = gdim (F(I)q)—hdim (F(I)q— 1)

984(1) By (1) = By (1) by (ii). The map ker (1), /m-ker (1), —
kerd(I), is surjective. Hence,

B 2 dim (ke d(I),) > dim (ker (1)) = By (D),

giving equality throughout. Equality in the first place gives (b), while
equality in the second gives (a). O

Lemma 3.4. Suppose that x1,... ,z, € m\m?, p > 2, is a minimal
generating set for an ideal I. Set J = (x1,...,xp-1) and K = (zp).
Let L=L°, L',L? ... be a sequence of ideals such that

(i) dim L = dim (mJ N mK) and
(i) dimL¢ = dim (mLi~1), i > 1.
Then, for q > 1,

IB‘Z(I):IBQ( +/8q +Z/Bq i— 1

Proof. The first two cases must be done separately.

p1(I) = dim (1)
=dim (J) + dim (K) = 81(J) + B1(K)
B2(I) = gdim (I) — dim (mJ)
= g(dim (J) + dim (K))
— (dim (mJ) + dim (mK) — dim (mJ N mkK))
= B2(J) + B2(K) + B1(L°).
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For ¢ > 3, we have
Ba(I) = gBg—1(I) — hBy—a(I)
= g(ﬁqfl(‘]) + /qul(K) + quz(LO) 4+ -+ 51(Lq—3))
— h(Bg—2(J) + Bg—2(K) + qu'g,(LO) 4+t ,Bl(Lq_4))
= 6q(=]) + 6Q(K) + 6(1_1(_[,0) + .+ ﬂS(LQ*‘I) + gﬂ1(Lq73),

Since gf (L9~%) = gdim (LI~2) = f5(L9%)+dim (mL9) = f(L3~%)+
B1(L7~%), the result holds. O

Construction. Let Ji,...,Js be ideals of R with no J; C m?.
Let M = [[J; C R®. We write F(M), for [[F(J;); and d(M), for
H d(Ji)q-

Let yi1,... ,Yia(s) be a minimal generating set for J;. Let T;; C my;;
be such that the image of T;; is a basis for my;; /((my;;+- - -+my;; _1)N
my;;) or simply my;; if j = 1. Let S;; C m be a set with y;;S;; = T;;.
Let J;; be the ideal generated on S;;. Define

J=1]% M =][7
j i
We will also write M for M, M? for (M!)!, M3 for (M?), etc.

Lemma 3.5. With the notation above,
(a) dim(M')=dim (mM).
(b) F(M')o = F(M):.
(¢) d(M)1(V) is a minimal generating set for d(M);(mF(M);),
where
Vi ={zje; | 2ij € Sij, 1< j <a(i)} C Jj

and

V=Avie; |vi €V;, 1<i<s} CmF(M),.

Proof. (a) U;T;; is a minimal generating set for mJ;. Hence,
dim (mJ}) = 37 |S| = 3 |Ti;| = dim (m.J;).
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(b) F(M?')y has rank Y a(i) = dim M = rank F(M);. Hence, we
may assume that F(M?'), = F(M);.

(c) d(Ji)1(mF(J;)1) = my;;+- - -+my; oy = mJ;. And d(J;)1 (Vi) =
Uy;;Si; = UT;; which is a minimal generating set for mJ;. a

The following is our main theorem. It is equivalent to: If m3 = 0
and m? = m - annz for all z € m\m?, then R — R/p is a Golod map
(cf. [10]) for all p € m?. We have not worked with Golod maps since a
direct proof is no more difficult.

Theorem 3.6. Suppose that m® = 0. If m - annz = m? for all
r € m\m?, then R is a Fréberg ring.

Proof. Let I be an ideal not contained in m?. We will inductively

construct a minimal resolution of R/I, (F(I),d(I)), such that

(3.7) m?F(I), = m - kerd(I),,
and
(3.8) dim (kerd(I)q) = Bg+1(I).

Condition (3.7) applied to I = m shows that R is Froberg by (2.5).
Let p = dim (I).

We begin with the case ¢ = 1. F(I); = RP and d(I)1(r1,...,7p) =
>.rx;, where z1,... ,zp is a minimal generating set for I. We will
use induction on p. If p = 1, then kerd(I); = annz; and (3.7) holds
by assumption. And S2(I) = gp — dim (mx;) = dim (annx;) by (3.1)
applied to multiplication by z1, u: R — R.

Now suppose that p > 1. Write J = (z1,... ,zp_1) and K = (zp).
Then F(I); = F(J); x F(K); and d(I)y(r,s) = d(J)1(r) + d(K)1(s).
We construct (as in Section 2) a minimal generating set for ker d(I);.
Let S; be a minimal generating set for ker d(J); and S the same for
kerd(K):. Set By = {(2,0) | z € S1} and By = {(0,2) | z € Sa}.
Let wi,...,w; be a minimal generating set for mJ N mK. Choose
21,... ,2 € m\m? such that zixp = w;. Set L = Rz + -+ + Rz
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We note that dim L = ¢ = dim (mJ NmK), namely, that {z1,...,2}
is a minimal generating set for L. For, suppose that 2, = Y.+, 7:%.
Then multiplying by z, gives wy = Y-, riw;, which contradicts the
minimality of the w,s. For each z; choose 7(z;) € mF(J); such that
d(J)1(m(z;)) = —w; = —z;xp. Finally, set By = {(m(2;),2;) | 1 <i <
t}.

Now B; U By U Bj generates kerd(I);. Namely, if d(I);
for r € F(J); and s € F(K)y, then set « = —d(J)1(r) =
Now a € mJ N mK so we may write a« = Y r;w; for so r; € R.
Then r — > r;w(z;) € kerd(J); and s — > riz; € kerd( Thus
(r,s) — > ri(m(z;), z;) is in the span of By U By and (r,s) is in the
span of By U By U Bs. Further, |B; U By U B3| = dim (kerd(J);) +
dim (ker d(K);)+dim L = B2(I) by (3.3). Hence, by (3.2), ByUB;UBs;
is a minimal generating set for ker d(I); and m - kerd(I); = m?F(I);.
This shows both (3.7) and (3.8) for ¢ = 1.

Now suppose that ¢ > 1. We again verify (3.7) and (3.8) by induction
on p. If p =1, then we are done by induction on ¢ and (3.2). So assume
that p > 1. Write J, K and L as before.

(r,s) =
d( )()
)1

Claim. For1 <s<gq,

s+1
F(I)s = F(J)s x F(K)s x f[ F(L'7™3)s ite
=3
d(J)s 0 * *
d(K), 0 *
d(L%)s—1 0
d(I)s = .
0 0 *
i d(L*7%)y  d(L*7?);

where each * maps to m times the appropriate value space. (The
meaning of the claim is: these F(I)s,d(I)s form the first q terms of
a minimal resolution of R/I).

When s = 1, the claim is true as F(I); = F(J); x F(K); and
d(I); = d(J); x d(K);. We will also verify the claim for s = 2 to
help the reader understand the general case. We use the notation
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set in the proof of the ¢ = 1, p > 1 case. We have kerd(I); =
kerd(J); x kerd(K); + > R(w(z;),2;). Hence we may take F(I); =
F(J)2 X F(K)2 X F(L)l and

. d(J)g 0 *
d(I)2—< 0 d(K) d(L)1>

where * maps a basis element e; of F(L); = R" to 7(z;) and, as usual,
d(L); maps e; to z;. Then imd(I)y = kerd(I); C mF(I);.

To prove the claim in general, we fix s, 1 < s < ¢, where the
claim holds and prove the claim for s + 1. The heart of the proof
is constructing a minimal generating set for ker d(I)s.

Letej, 1 <j < s+1,map F(J)s, F(K)s, F(LI~3)s_j 12, respectively,
into F(I);. Let S;, 1 < j < s+ 1, be a minimal generating set for
ker d(J)s, ker d(K)s, ker d(L773),_;o, respectively.

For i = 1,2, set B; = {e;(z) | z € S;}. Note that, by induction on
D, (3.8) gives |B1| = Bs41(J) and |Bz| = Bs4+1(K). Next suppose that
3<i<s+1andzeS;. Then

d(I)s(ei(2)) = (%, %,... ,%,0,d(L*3)s_i_2(2),0,0,...,0)
= (%,%,...,%,0,0,...,0),

with the second zero in the ith coordinate and a * in the jth coordinate
representing an element of m? times the jth summand of F(I)s_;.
Now, by (3.7) and induction on p for d(J)s, d(K)s and induction on s
for d(LV~3)s_j42, d(J)s, d(K)s and each d(L"3);_; 1> map onto m?
times the jth summand of F(I)s_;. In particular, d(I)s(e;(2)) is in the
image of the submatrix of d(I)s consisting of the first ¢ — 2 rows and
columns. Hence, there is a vector v(z) of the form

(#,%,...,%,0,2,0,...,0)
in kerd(I)s, where z is in the ith coordinate. Set B; = {v(z) | z € S;}.
Note that by induction |B;| = dim (ker d(L*~3),_i12) = Bs_ir3(L3).

We construct a final set Bsi2. As in (3.5), choose W C mF (L*~?);
such that d(L*~2);(W) is a minimal generating set for the image of
mF (L5 2),. Forw € W,

d(I)s(est1(w)) = (%, %, d(L"7%)1(w))
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which is in m?F(I);_;. Again, we may find a vector v(w) =
(%,...,%,w) that is in kerd(I)s. Set Bsi2 = {v(w) | w € W}. Note
that |Bsiz| = |W| = dim (d(L*~2); (mF(L*~?);)).

The set B = By U ---U B,y generates kerd(I), as can be easily (if
not quickly) checked. Further,

|Bl = |Bi| + dim (ker d(L*~?);)
i=1

+ dim (d(L*~2)1 (mF(L{ %))

= |Bi| + gdim F(L*~?),,

i=1

by (3.1). Hence,

B = bor1(J) + Bes1(K) + D B iva(L'™?)
=3
+ B2(L°?) + dim (mL°*?)
s+2

= Bs11(J) + Bsr1 (K) + Zﬁs—Ha(Li*s)
i=3
= /BSJrl(I)a

by (3.4). Hence, B is a minimal generating set for ker d(I)q.

We now complete the proof of the claim. By induction on p, d(J)st1
maps F(J)sy1 onto the span of By and d(K)sy; maps F(K)s11 onto
the span of By (by induction on p). For 3 <i < s+1, F(L™3),_; 43 is
mapped onto the span of S;. Hence, d(L*~3),_;,3 combined with maps
on F(J)st1, f(K)st1 and F(LI73)s_j43, 3 <j <i—2, will map onto
the span of B;. Lastly, W generates L*~! by (3.5) so that F(L*~!),
maps onto the span of W. Thus, we may take F'(I)sy1 and d(I)sy1 as
in the claim.

We may now quickly prove (3.7) and (3.8) for ¢ > 1 and p > 1.
The preceding argument applied to the case s = ¢ gives a minimal
generating set B for ker d(I), such that |B| = B4+1(I). This gives (3.8)
and then (3.3) implies (3.7). o
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Corollary 3.9. Let R be an abstract Witt ring with m the funda-
mental ideal. If m® = 0, then R is a Fréberg ring.

Proof. By (3.6) we need to check that
m? Nann (1, —a) = m-ann (1, —a)

for any a € G(R). This is proven for Witt rings of fields in [5, 2.14]. The
proof uses only AP(2) and ann (1, —a) being a 1-Pfister ideal. These
both hold for abstract Witt rings, the first by definition (see [13, p. 63])
and the second by [13, 4.23]. u]

We remark that it is not known if every Witt ring with m3 = 0 is of
elementary type. Thus, (3.9) cannot be deduced from (1.10).

4. Partial converses to the main theorem. The converse to (3.6)
does not hold. Consider R = (Z/2Z)[X1, X2, X3]/(X3, X1 X2, X1 X3,
X? — X2, X? — X2). Let m = (X}, X2, X3) and write z; = X; + m.
Then m® = 0 and R is a Froberg ring [3]. Yet annzy = Rxy + m? so
that m - annxy = Rx? # m? (as xaz3 ¢ Ra?).

However, we do have:

Proposition 4.1. Suppose that m® = 0 and p(m?) = 1. The
following are equivalent.

(1) R is a Fréberg ring.
(2) m-annz =m? for all * € m\m?.

(3) R~ Ry MRy where (Ry1,n1,k) is Gorenstein of socle of degree 2
and p(ny) > 1 and (Ra,na, k) satisfies n3 = 0.

Proof. (2) — (1) is (3.6) while (3) — (1) is the combination of (1.1),
(1.2) and (1.7). We first check (1) — (2). Suppose that m-annz # m?
for some € m\m?. Then m-annz = 0. Note that mz = m? (else
mz = 0 and annz = m) and p(m) > 1 by (1.3). Set e = p(m). Then
dim (annz/m?) = e — 1 and we may choose ¥1,... ,Y._1 € annx such
that modulo m?. These form a basis for annz/m?. Now my; = 0,
1<i<e—1land z ¢ annz, as mz # 0 and m - annz = 0. Hence,
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Y1,--+ »Ye_1, T is a minimal generating set form. R = R/(y1,... ,Ye_1)
is a Froberg ring by [9, 3.4.4]. But u(m) = 1 and 2 # 0, contradicting
(1.3). Hence, (2) holds.

To prove (1) — (3), we note that for any local ring R with m® = 0
and pu(m?) = 1, we have R ~ R; N Ry with R; Gorenstein and
n3 = 0. Namely, let my = annm. If my = m?, then R is Gorenstein.

Otherwise, choose 41, ...,y € mo\m? such that the images form a
basis for mg/m?. Extend by x1,...,Z. ; to a minimal generating
set for m. Set my = (y1,...,y:) and my = (21,...,2_¢). Then

m=m; ®my and R = R/m; N R/my with Ry = R/m; Gorenstein
and Ry = R/my; satisfying (m/m2)? = 0. Finally, (1) implies R/m; is
Froberg and hence p(m/my;) > 1 by (1.3). o

When m3 = 0 and p(m?) = 2 we get only a partial converse to (3.6).

Proposition 4.2. Suppose that m® = 0 and p(m?) = 2. If R is a
Froberg ring, then

(1) For all z € m\m? either m - annz = m? or mz = m?.

(2) There exists an ideal I ¢ m? such that m - annz = m? for all
z € I\m? and p(I) = p(m) — 2.

Proof. (1) Suppose that mz # m? and m - annz # m? for some
m\m?. If mz = 0, then annz = m and m - annz = m?. We may
thus assume that dim (mz) = 1 and so dim (annz/m?) = g — 1 where
g = dim (m/m?). First consider the case where m-annz = 0. We may
then choose a basis of m/m?: y; + m?,...,y,_1 + m? z + m? with
each y; € annz and z € m. Then m is generated by y1,... ,yg—1,2
and as my; C m-annz = 0, we get m? = Rz2. This contradicts the
assumption that pu(m?) = 2.

We may thus assume that m - annz = Rs for some s € m?. Let
H = ((s) : m). Then m? C annz C H and H # m (else m? = Rs).
Thus ¢ — 1 = dim(annz/m?) < dim (H/m?) < g — 1. Hence,
H = annz. As before m may be generated by yi,...,yg—1,2 with
each y; €anne = H and z ¢ H.

Now dy : RY — R is di(ro,71,...,7g-1) = 1oz + y_riy;. If
(ro,71,.-.,rg-1) € Zi, then 1oz = =) ry; € Rs and so ry €
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((s) + (2)). Clearly, m*> C H C ((s) : (2)) and ((s) : (2)) # m
(else mz C Rs and z € H). Hence, H = ((s) : (z)). Thus, if
(7‘0,7“1,... Tg—1) € Zi, then ro € H. Hence, if t € m*\Rs, then
(¢,0 ,0) € m?F;\mZ;. But R Fréberg implies that mZ; = m?F
(2. ) yleldlng a contradiction.

(2) Suppose that m - annz # m? for some z. Then for all
z € ann 2\m? we have m - annz = m? by (1). Also, by (1), mz = m?
so that dim (annm?) = g — 2. Take [ =annz. O

In the example at the start of this section, m® = 0, m? = (2%, zox3)
and m - annx; = m? only for i = 1. Thus the ideal of (4.2) is Rx;.
This shows that we cannot find an ideal I with p(I) > p(m) — 2 and
m -annz = m? for all x € I'\m?.

We know of no case where m® = 0, u(m?) = 2 and (4.2) (1) holds,
and yet R is not a Froberg ring.
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