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ALMOST RECONSTRUCTION OF
THE 3-DIMENSIONAL BALL FROM K, x I

JOHN DONALD AND DAVID GILLMAN

ABSTRACT. Let Kpqrs denote the 2-complex obtained by
attaching two disks to the wedge of two circles by the words
aPb? and a"b®, with ps — qr = +1. The complex Kpqrs is
contractible. If the Zeeman conjecture is true, then Kpqrs x I
is collapsible. This paper proves that Kpqrs X I collapses to a
2-sphere S? plus its interior. The proof exhibits Kpgrs as the
spine of a 3-ball under a retraction map whose restriction to
the boundary S? lifts to an embedding into Kpgrs x 1.

1. Introduction. Let K, , denote the 2-complex obtained by
attaching two disks to the wedge of two circles by the words aPb?
and a"b®, with ps — qr = £1. The set K45 is contractible. Let I
denote a unit interval. In [3], Zeeman posed the question: Is K,qps X I
collapsible? Zeeman proved that the answer is affirmative for K112,
the “topological dunce hat.” In [2], Lickorish provided an affirmative
answer for K334, but observed that his methodology did not seem to
generalize to all K},;. In this paper, we display a structure on all Kpq,s
which seems to correspond to the initial phase of Lickorish’s collapse
of Kas34 x I, and which is valid for all Kpqs: The product Kpgps X I
collapses to a 2-sphere plus its interior.

Definition. Let S? denote a piecewise linear 2-sphere in a con-
tractible 3-complex K3. A point p of K3 — S? lies in the interior of
S? if 5% is nontrivial in Hy(K?® — p; Z3), the second homology group of
K3 — p with Zy-coefficients.

This definition is commonly used in the special case of a 2-sphere plus
its interior in Euclidean 3-space (the three-dimensional PL Schoenflies
theorem). In this paper we concern ourselves with constructing a 2-
sphere plus its interior in the set Kpgrs X 1.
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1336 J. DONALD AND D. GILLMAN

Theorem. The product Kpgs X I collapses to a 2-sphere S* plus its
interior.

Caution. This 2-sphere plus interior is in general not a 3-manifold.
It is only a 3-complex whose homological boundary, mod 2, is $2. This
phenomenon may be easily viewed in analogy one dimension lower: Let
K? be a book with four pages. Let X be all of page 1, the bottom 2/3
of page 2, the top 2/3 of page 3 and the middle 1/3 of page 4. Then
X is a 1-sphere plus interior which is not a 2-manifold.

Outline of proof. The key to our argument is the fact that K.,
is a spine of the 3-ball B®. Thus, B3 retracts to Kpgrs. Details will be
provided in Section 2. Consider the restriction r of this retraction map
to the 2-sphere bdB3. We show how r lifts to an embedding r x L of
bdB? into K,q.s x I. In particular, the map L from bdB® to I separates
points of bdB? with the same r image.

Kpgrs X I

v
bdB? ———— Kpgrs

The 2-sphere r x L(bdB?) turns out to be the desired S? in Kpg.s X I;
that is, Kpqs X I collapses to S? + Int S2.

The construction of the lifting map L is tricky. It is done in pieces, by
viewing a regular neighborhood of K., in the 3-ball as a handlebody
with one 0-handle, two 1-handles, and two 2-handles. This handle
structure corresponds to the single vertex, two loops and two disks of
Kpqrs. The lift L is constructed on the individual pieces provided by
this handle structure. Details will be provided in Sections 3—7. The
collapse is done in Section 8.

We believe that the set S? + Int S? produced by the above theorem
further collapses to a point. An ambitious approach to this problem is
the following:

Conjecture. Let K denote a contractible 2-complex. Let S denote a
2-sphere in K xI. If S+Int S is Q-trivial (trivial in rational homology),
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then S + Int S is collapsible.

This conjecture would not only prove that K,,.s x I collapses, but,
by using [1], it would prove the Poincaré conjecture as welll Note
that the conjecture does not imply the Zeeman conjecture. Indeed, we
believe that if the Zeeman conjecture is false, then the product of any
counterexample to the Zeeman conjecture with an interval does not
collapse to a 2-sphere plus its interior.

A less ambitious way to prove that Kp4s X I collapses to a point
would be to use our explicit description of S% + Int S? in Kpgrs X 1.
The goal would be to further collapse S? +1Int S? to a 3-ball. Of course,
the 3-ball would in turn collapse to a point. This plan, which we
call “reconstruction” of the 3-ball from K, x I, seems feasible but
involved.

For example, the 2-sphere plus interior obtained from K223 X I is not
a 3-manifold. Does this 2-sphere plus interior collapse to a 3-ball? An
affirmative answer could well yield a general methodology which would
collapse all Kp4rs X I. On the other hand, a negative answer would also
be of interest, in that it would restrict the setting in which one could
generalize the PL Schoenflies theorem beyond 3-space.

2. Retraction of the 3-ball onto K,,.s. Regard S as the join

Stx St =8t x St x I/{(x,y,0) ~ (z,4,0), (z,y,1) ~ (z,y',1)}.

The torus 7' = S! x S! x 1/2 determines a Heegaard splitting of
53, and there is a standard pair a,b of curves bounding disks in the
respective halves of the splitting. There are simple closed curves Jy
and J in T representing aPb? and a"b°, respectively, and meeting
transversely in a single point zo. The image K., of (J1 U Ja) X [
in S becomes Kpgrs in the reduced join obtained by collapsing zo x 1

to a point.

Take a disk D in T — (J; U J2). The closure of the complement of
D x[e,1—¢] is a 3-ball regular neighborhood N of K,,4,s which naturally
retracts onto Kpqrs in this join structure.

We proceed to make this retraction explicit and to study the re-
striction r of this retraction to bd N = bdB2. This study begins locally
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around the vertex of Kp4-s and proceeds then to the 1- and 2-skeletons.
In particular, in the course of defining the retraction and the lift L, we
construct abstractly a manifold M homeomorphic to B3 that plays the
role of N above. We encourage the reader to view our construction in
terms of the explicit embedding just defined.

3. The link of the vertex of K, ;. The theorem is trivially true
if p = 0. Thus, we restrict the discussion to the nontrivial cases, where
p,q,r and s are all nonzero. Without loss of generality, we may assume
that they are all positive integers.

Regard Kpq4rs as a CW-complex with a single vertex v. The link of
v in Kpgrs, denoted lkv, is a graph (a 1-complex) with four vertices.
Abstractly we may construct Kpq,s from (kv in three steps. First, we
embed [kv in the cone over [kv. Second, we attach a book with p + r
pages correctly between two of the vertices of [kv and a book with g+ s
pages correctly between the other two vertices. The boundary of this
structure consists of two disjoint closed curves. To these we attach the
two open disks.

We now describe kv, not abstractly, but as a subset of the plane.
See Figure 1. This graph has two vertices of degree p + r, denoted as
aout and ai,, which we place in the left half-plane. Similarly, we place
the two vertices of degree q + s, denoted as byy,; and by, in the right
half-plane.

We add a point to the plane, so that [kv is now viewed as a subset
of a 2-sphere, which we denote as S(lkv). The cone over S(lkv) is a
three-dimensional ball. By regarding the cone point as v, this places
the star of the vertex v in K4, denoted star (v), in a natural way in
the 3-ball. This 3-ball is the 0-handle of our handlebody construction.

4. Construction of L on the link of the vertex of K.
The boundary of a regular neighborhood N(Ikv) of lkv in S(lkv) is a
collection J of simple closed curves in one-to-one correspondence with
the regions of S(lkv) defined by lkv. We fix such a neighborhood.
When we have finished construction of the manifold M with K4, s as
spine, then bdM NS(lkv) will be S(Ikv) —int (N (Ikv)). In what follows,
to avoid notational difficulties we view the unit interval I as identical
to the interval [0, MAX], for some sufficiently large MAX.
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r mod p+r L=s
P mod q+s q

p+r L = g+s

out

FIGURE 1. The link of the vertex of Kpgrs, showing the labelling pattern for
the lift L.

Consider a natural retraction p carrying N(lkv) to lkv. We begin
our construction of the lifting function L by defining L on the finite set
p *({aout » @in, bout , bin }) N J. This is done in Figure 1.

The set p~!(aous ) N J, denoted Ay, consists of p + r points, which
will be mapped by L onto the integers 0,1,2,... ,p +r — 1. The set
p~Y(ain)NJ, denoted Ay, consists of p+r points, which will be mapped
by L onto the integers 1,2,... ,p+r.

In the left half-plane, we begin by lifting a single point of A,y
to 0, and a single point of A;, to p + r, as indicated in Figure 1.
Specifically, the point of A,y which is lifted by the function L to 0
may be described in Cartesian coordinates by adding a small positive
number to the z-coordinate of the point aoy, and the point of Aj,
which is lifted by L to p + r is described by adding a small positive
number to the z-coordinate of the point a;,. These points belong
to the finite regions bounded by the arc pairs joining aou; to bin,
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and boyt to ajn. The numbers 1,2,...,p + 7 — 1 are then added
to Figure 1 by enumerating, modulo p + r, around either vertex in
the left half-plane. The enumeration proceeds counterclockwise in the
pattern {0,p,2p,...,(p + 7 — 1)p} modp + r, around ey, . Observe
that (p +r — 1)p reduces, modp + r, to the integer r. Similarly, this
enumeration, mod p + r, is performed clockwise in the same pattern
around ai,. Because p is relatively prime to p + r, this enumeration
uses each of the integers 1,2,...,p + r — 1 exactly once around each
vertex.

Analogously in the right half-plane, the lift L is constructed by first
lifting a single point of Bout = p~ ! (bout )NJ to g+s and a single point of
Bin = p~1(bin)NJ to 0. The numbers 1,2,...,q+s— 1 are then added
by enumerating, modulo g+ s, as shown in Figure 1. This enumeration
proceeds in the pattern {q,2q,3gq,...,s} mod g + s, counterclockwise
around byt , and clockwise in the same pattern around by,.

The lifting function L is now extended to the simple closed curves
comprising J. The lift L may be defined to be constant on components
of J, except for a neighborhood N of the y-axis. On N, we extend L
linearly, in order to yield continuity between the left and right halves
of this construction.

This yields an embedding of J in the product 2-complex (kv X I: two
points of J map to the same point of kv only if they belong to different
member curves, but such points will have distinct lifts, even near the
y-axis, as long as p,q,” and s are all greater than 0.

Figure 2 illustrates this structure for the 1112-complex (the dunce
hat) and for the 2334-complex.

The set [kv separates K45 into two complementary domains, so our
problem of extending this lift L is divided into two subproblems. We
begin with the complementary domain containing the vertex v.

5. Extending the lift L over the cone point v. The set J
consists of p+ g+ r + s — 2 simple closed curves. Select a point w;
in the interior of each curve J; of J, i.e., in the open region defined
by J; which excludes lkv. Since we have made no assumptions about
p, we now assume that p maps each curve J; of J radially from the
interior point w; to lkv. Extend the retraction p to the retraction map
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FIGURE 2. The link of the vertex of K1112 and K2334, showing the boundary
J of a neighborhood of the link, and the labelling for the lift L.
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of the 3-ball given by the cone over the sphere S onto star (v) such that
p~L(v) N S consists of the p + g +r + s — 2 points w;, with p extended
linearly between the w; and the surrounding simple closed curve J; of
J. We will define L on the w;, then extend linearly to S — N(lkv) using
the existing definition on the J;. Unfortunately, we cannot simply map
each w; to some value of L corresponding to the surrounding curve of
J, because there are pairs of curves with the same L-value.

To circumvent this difficulty, we may choose any total ordering
Ji,J2, ... s Jptgtr+s—2 of the simple closed curves comprising J and
then define L(w;) = ¢. The linear extension of such an L over S—N (lkv)
need not yield a one-to-one map p X L on S — N(lkv). We now show
how to pick an ordering for which it will.

The lifting map L already specifies four partial orders on the .J;, one
for each of the four vertices of lkv, as follows. Fixing one of these
vertices, say z, we define a partial order on J by J; < J; if p~*(z)
meets J; and Jj, say at y; and y;, and if L(y;) < L(y;). We call a
total ordering extending all of these partial orderings compatible. Any
compatible ordering will serve our purpose.

We address the issue of compatible orderings by considering a directed
graph G related to the labelings and associated partial orders defined
around the four vertices of [kv. The p+q+r+s—2 points of G are the
member curves of J (equivalently, the regions of S(lkv) — lkv). An arc
of G extends from J; to J; if and only if J; and Jj lie in adjacent regions
of S(lkv) — lkv and J; < J; in one of the four partial orderings. It is
standard that a compatible ordering exists if and only if the directed
graph G contains no cycles. In our case G has an obvious structure as
the nondisjoint union of two directed paths. Referring to Figure 1, the
first path, P, arises from the p + 7 + 1 regions in the left half-plane,
labelled in directed order 0 through p + r. The second path, P5, arises
from the g + s 4+ 1 regions in the right half-plane, labelled 0 through
q + s. Py and P, share endpoints. They intersect in one other point
if p=17r =1 and otherwise in two other points, labelled p and r along
Py, and labelled ¢ and s along P». In the first case there is clearly no
cycle. In the second case a cycle arises if and only if p < r and ¢ > s
or p > r and ¢ < s. However, the K45 condition that ps — gr = 1
guarantees p < r if and only if ¢ < s.

We conclude that compatible orderings exist, so consider one such,
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and define L(w;) = i. Extend L over S(lkv) — N(lkv) linearly, using
the existing definition on J.

We now claim that p x L is a one-to-one map on S(lkv) —int (N (lkv)).
Suppose that p x L(z) = px L(y). If  # y, then x and y lie in distinct
components of S — kv whose boundaries share an edge, corresponding,
say, to J; and Jj;, with ¢ < j. Therefore, p(z) = p(y) implies there
exist f in [0,1] and z; and z; on J; and Jj, respectively, such that
p(z) = p(25), ¢ = (1 = flw; + fz; and y = (1 — f)w; + fz;. Thus,
L(z) = (1= f)i+ fL(z;) = L(y) = (1 — f)j + fL(2;). But by the
ordering of the curves of J, and the definition of L on J, we must have
L(z;) < L(z;), a contradiction.

6. Attaching the 1-handles. Consider a disk neighborhood D of
the point aoyy in the 2-sphere S(lkv). See Figure 3. We assume that
D is contained in N(lkv) and that bdD meets J in a short interval
surrounding each point of J N p~(aeut ).

This disk neighborhood is now abstractly viewed as the bottom disk
D x 0 of the product D x I, where I = [0, 1], a 1-handle, here casually
ignoring our previous extension of I to [0, MAX]. Abstractly, again, we
may view the 1-handle as retracting to a book B,,, on p + r pages,
such that bdB,,, N D = DNlkv; i.e., each page attaches along one arc
of lkv incident at aoy;. Our problem is to decide how to attach D x 1
to a neighborhood of aj,.

The answer is provided for us by extending the lifting function L,
already defined on (bdD N J) x 0, to (bdD N J) x I as follows. We
continuously increase all values of the lifting function L by ¢, 0 <t < 1,
as we move up the 1-handle, so that on D x 1, all values of the lift L have
been increased by 1. Thus, we may attach D x 1 to a disk neighborhood
D’ of ai, such that the L values on (bdD N J) x 1 match the L values
on bdD'! See Figure 3. We use the same procedure to attach a second
1-handle to a neighborhood of b;;, and by, at disk neighborhoods D,
and Dj.

Adding two 1-handles to a 0-handle yields a solid torus with two
handles, denoted 7. Assuming, as we may, that all relevant retractions
are compatible, we may combine the retractions to the books Bp,
and Bgis with the retraction of the 3-ball to star(v), yielding a
retraction p of 7" onto a two-dimensional spine Y. Does Y have the
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Near agyt in S(lkv)

L undefined here

midhandle

L undefined
here

FIGURE 3. Disk neighborhoods of a;, and aout, and a cross-section of the
connecting 1-handle, with values of the lift L. L is undefined on the interior
of the hatched regions.
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desired structure? We now verify that our attaching procedure actually
produces a spine Y which is a subset of the complex Kj4s in T3, a
“twice punctured Kpgs,” that is to say, a neighborhood of the two
loops “a” and “b” in Kpqps.

The boundary bdry Y of Y consists of two parts: the part of [kv not
inside the disk neighborhoods around its four vertices, and the bound-
aries of the books B, 1, and By, not inside those disk neighborhoods.
The resulting one complex bdry Y is a disjoint union of closed cycles.
For convenience, we now suppose that [kv N'Y inherits an orientation
from counterclockwise orientations of the loops a and b, so that edges
are directed from a;, towards a.y; and from b;, towards by . Also di-
rect the edges from a;, towards by, and from by, towards aeyt . Finally
direct the book edges in the opposite ways: from aoy.t towards ai,, and
from by towards by,. It now suffices to show two things about bdry Y:
(1) there is a directed cycle using p book edges from B,1,, p — 1 edges
from a;, towards aoyt in lkv MY, one edge from a;, towards by, in
lkvNY, q book edges from By, p — 1 edges from b;, towards boy; in
lkvNY, and one edge from by, towards aoys in lkv NY; (2) there is a
directed cycle disjoint from that of (1) using r book edges from By,
and s book edges from B, ;.

To illustrate our general procedure, the part of the punctured disk
boundary corresponding to a?b? and lying in [kv N'Y appears in bold
in Figure 4 for the special cases of K112 and Ko334. The other partial
edges in Figure 4 represent the punctured disk a"b°. The general
procedure requires some notation. Each edge in Figure 1 is notated as
two distinct half-edges. A half-edge can be notated by the vertex from
which it emanates and the two values of L which surround the half-edge.
We use the same labels for the partial half edges in (kv N'Y. We may
now describe the cycle in bdry Y corresponding to the punctured disk
aPb? in a way which may be tracked in Figure 1. Begin with half-edge
{a@out,0,7}. Proceed around the l-handle to {ain,1,r + 1}. Return
along lkv to half-edge {aout,l,” + 1}. Proceed around the 1-handle
to {ain,2,7 + 2}, and so one. This procedure ends with the half-edge
{@in,p,p + r}. It requires exactly p trips around the 1-handle denoted
“a.” We now proceed along lkv to {bout,q, ¢ + s} and work our way
down through the other 1-handle, denoted “b.” After ¢ such reducing
procedures, we have returned to the starting half-edge and completed
the loop corresponding to the punctured disk aPb9.
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An identical argument, starting with half edge {aout , 0, p} yields the
loop corresponding to the punctured disk a"b°. Thus, we do have
the desired 2-complex, a “twice punctured K, s,” as the spine of our
handlebody 7°.

When we finish the embedding of K. in the 3-manifold M, bdM N
T3 will be just the subset of bdT® on which L is now defined.

7. Attaching the 2-handles. The solid 2-handled torus 7° may
be viewed as a subset of Euclidean 3-space. The spine Y constructed
above intersects bdT? in two simple closed curves. Do these curves
bound disjoint disks in the exterior of T3?

The answer is yes, if care is used in how the 1-handles are placed in
3-space. We choose to avoid this difficulty entirely. Instead, observe
that the curves are bicollared in the orientable 2-manifold bd7?. In
fact, we may take for their bicollars the union of bd7™® N N(lkv) and
of bdD N N(lkv) x I and bdD; N N(lkv) x I, i.e., precisely the closure
of the part of bd7® on which L is undefined. See Figure 3. We may
now complete the construction by abstractly attaching two 2-handles to
these two bicollars. This yields a 3-manifold M? whose spine is Kpq.s
via the obvious extension of the retraction p.

Denote by X and Y the boundaries of the top and bottom 1-cells
of one of the 2-handles. The lifting function L is already defined
on X and Y. We must show that L extends over those 1-cells so
that p x L is an embedding there. For points ¢ of X and y of Y
corresponding under p, we have L(z) # L(y), whence by continuity,
we may assume that L(z) > L(y) for all corresponding pairs. We now
extend L over the 1-cells by picking any points z; inside X and 25 inside
Y corresponding under p, selecting arbitrary values L(z1) > L(z2),
and extending linearly between the selected points and the boundaries.
Repeating this extension for the other 2-handle, we now have p x L, an
embedding on all of bdM?3.

The 3-manifold M3 is in fact homeomorphic to the 3-ball, but we
do not need to prove this. All we need is that bdM? is a 2-sphere,
which follows from the fact that M3 is contractible, because its spine
is Kpgrs. This completes the construction of the desired 2-sphere
S = p x L(bdM?) in the product Kpgs x I.
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FIGURE 4. lkvNY for Kj112 and K2334. The cycle of bdry Y corresponding

to aPb? meets kv N'Y in the bold partial edges; the other cycle contains the
other partial edges.
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8. Collapsing Kpgrs x I to S +1IntS. Consider the vertical hull V
of S'in Kp4rs x I, that is, the convex hull of S taken on each vertical
line p x I individually. We assert that V = S + Int S. To see this,
first observe that S + Int S is contained in V. This holds in general
for every 2-sphere in a contractible product K? x I. The fact that V'
is contained in S + Int S, however, is not true for any 2-sphere, and
must be argued based on our specific construction of S. Let U denote
the open 2-skeleton of K., consisting of the two open disks a”b? and
a"b®. Then V- (UxI) = (S+1IntS)- (U x I), since for any point p in U,
the interval p x I intersects S in exactly two points. Furthermore, the
closure of V- (U x I) is V. This is verified by examination. Therefore,
V is contained in S + Int S.

The collapse of Kp4rs % I to the set V' =54 Int S is done vertically,
up from the bottom and down from the top on each vertical line p x I.
This proves the theorem.

9. Conclusion. We believe that the above theorem can be extended
to read:

Theorem. Let K denote any acyclic 2-dimensional complex without
separating points. If K 1is the spine of a punctured 3-manifold, then
K x I collapses to a 2-sphere plus its interior.

Note that without the “acyclic” hypothesis, projective 2-space as
a spine of punctured projective 3-space provides a counterexample.
Without the “no separating points” hypothesis, one constructs a coun-
terexample by first letting K™* be a spine of a punctured dodecahedral
homology sphere.

Then the wedge of two copies of K*, considered as a spine of the
boundary connected sum of two copies of the punctured dodecahedral
homology sphere, provides a counterexample K.
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