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ATOMIC DECOMPOSITION VIA
PROJECTIVE GROUP REPRESENTATIONS

OLE CHRISTENSEN

ABSTRACT. In the last few years, representations of func-
tions (or distributions) as sums of “building blocks” have
attracted much attention, e.g., time-frequency analysis and
wavelet analysis. From a more abstract point of view, the
Feichtinger /Grochenig theory discuss the same problem, with
an integrable group representation as the starting point. Here
we present a survey of the FG-theory combined with a gener-
alization to projective representations; this makes it directly
applicable to Gabor analysis. Furthermore we point out the
connections to the existing theory for frame decomposition.

1. Introduction. Consider an integrable representation (m, ) of a
locally compact group G. It is natural to settle the question of whether
there exists a discrete family {z;}icr C G and g € G such that any
f € H can be written as a superposition of the “building blocks”
{m(zi)g}tier-

The Feichtinger-Grochenig theorem [6, 7, 11] gives an answer to
this question, not only for elements f in H, but also for elements in
the so-called coorbit spaces. Thus, FG-theory can be considered as
generalized wavelet analysis, and as such it deserves to be known among
the wavelet experts. Here we present a survey of the theory, combined
with an extension to projective representations. This generalization
shows how the theory works and should give the reader more feeling
with it. And the generalization is not only of theoretical interest but
also important in applications. For example, in L?(R.) building blocks
arising by translating and modulating a fixed function are of great
importance, leading to the important time-frequency decomposition
(discussed, e.g., in [2, 5, 12]). Unfortunately, the two operations do
not compose to a representation (only to a projective representation).
Earlier this problem was solved by extending with a torus component to
get the Schrodinger representation, but with the present generalization
the theory is directly applicable.
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In Section 2 we give an introduction to the main ingredients in the
theory. Section 3 is devoted to an explanation of the usual FG-theory.

In Section 4 the basic facts about projective representations are
stated. In particular, we shall see that for each group G which has a
projective representation (p, ) it is possible to construct a new group
G which has a representation in the usual sense; this is the starting
point for our generalization. In Section 5 we study the connections
between the needed Banach spaces related to G and the corresponding
spaces on G.

Finally, in Section 6 we state our version of the atomic decomposition
theorem and show how to construct coherent Hilbert frames using the
abstract theory. Furthermore, we extend a result of Daubechies about
Weyl-Heisenberg coherent states to projective representations.

2. Basic facts. Throughout the paper G denotes a locally compact
o-compact Hausdorff group. All index sets I will be countable.

2.1. Let 7 be a unitary representation of G on a Hilbert space H;
we shall take the inner product (-,-) linear in the second entry. Fixing
g € H, we define the corresponding wavelet transform

Vo: H—C(G),  Vo(f)(z):=(n(2)g, f), feM, zeg.

Clearly Vj is linear and bounded.

An irreducible unitary continuous representation 7 is called (square)
integrable if there exists a g € H\{0} such that V;(g) is (square)
integrable with respect to the left Haar measure dz on G. Clearly,
an integrable representation is also square integrable.

2.2. On functions f : G — C the left translation L,, =z € G,
respectively right translation R,, acts by

L.f(y)=f(z™'y), yeG, (respectively Ryf(y) = f(yz)).

The involution “V” is defined by

My =rf™), wveq.
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If a Banach space Y of functions on G is left (right) invariant and
continuously embedded in Llloc, then each L,, respectively R, is
automatically bounded; the norm will be denoted by |||L.|||ly or

[l|ILz | Y]||- Sometimes we omit Y in the notation.

By a BF-space we mean a Banach space (Y,]|| - ||) of (equivalence
classes of) measurable functions on G such that

i) Y is continuously embedded into Lt (G).
loc
(i) If feY,ge Ll and |g(z)| < |f(z)| for almost every z, then

loc
g €Y and ||g|| <[[f]].
(iii) Y is left and right invariant, and the canonical weight func-
tion w(z) = max{|||Lalll, | Lo-1II, ||| Rolll, [l Ro-1 [[|A(z™1)} is mea-
surable. Here A(z) denotes the modular function

(v) YLy CY and||f xg | I <|If | Y][-llg" | Ll for f € Y,
g€ Ly .

(v) There exists a nonempty open set U such that 1y € Y.

(v) excludes some pathological examples. It can be shown that (v)
implies the measurability of w if the translation operators are strongly
continuous on Y. Furthermore, (ii) and (v) imply that C.(G) C Y.

2.3. Let V be a relatively compact neighborhood of the neutral
element e in G. A countable family {z;};cs is said to be V-separated
if 2;VNa;V =0 for i # j. {x;}icr is relatively V-separated if it is a
finite union of V-separated sets. Very often the concrete neighborhood
V' is not relevant and we shall just talk about a relatively separated
set.

Given a compact set, U, {x;}icr is said to be U-dense if U;z;U = G.

2.4. To a BF-space Y we can assign a sequence space in the following
way: Let X := {x;};c; be relatively separated, W C G a relatively
compact Borel set with nonvoid interior and define

a0 = { Oudia| S lteaw €7 |

Y4(X) is a Banach space with respect to the natural norm. For a fixed
set X the definition is independent of W: different choices give the
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same space and equivalent norms.

Some of the most important properties of Y;(X) have been stated in
[6, Lemma 3.5]. We shall use the following two facts:

(i) If the bounded functions with compact support are dense in Y,
then the finite sequence is dense in Yy (X).

(ii) The sequence space corresponding to LP(G) is IP(I).

3. Standard FG-theory. In this section we give a survey of the
usual FG-theory. For the technical details, we refer to [6, 7, 8|.

3.1. Let (m, ) be an integrable representation of G, and let Y be a
BF-space such that

AL = {g € 1| Vylg) € Ly} # {0}
Fixing g € A7 \{0}, we define
Hy™ = {f € H|Vy(f) € Ly}

equipped with the norm ||f | HL7|| = [[Vy(£) | LY.

It is easy to see that HL™ is m-invariant, so each f in the antidual
HE™ of HL™ acts on m(x)g; we shall denote this action by the
usual bracket from the inner product and define the extended wavelet
transform by

Vo(£)(@) = (x@)g, /), fEHE™, €.
The coorbit space corresponding to Y is defined as
CoY = {f € HY™ | Vy(f) € LL}.
CoY is a Banach space with respect to the norm
£ | CoY [ = [Vg(f) [ VI

Furthermore, the definition is independent of g.

Y = L? is of special interest for us; in [7, Corollary 4.4] it is shown
that
CoL?=4H
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with equivalence of the norms.

3.2. Let k € C.(G) be a window function, i.e., a function with
Range k C [0,1] which is 1 on a compact neighborhood of e. Define

B {ocul L1V @)lwve) de < ).

Then B, C A, and, in fact, B, is a dense subspace of H. If G is
unimodular (or more general, an IN-group), then B,, = A,, [8, Lemma
7.2].

Remark. In fact, membership of g in B, means that the wavelet
transform V(g) is in the Wiener amalgam space W¥(Cp, L}). For
information on this and similar spaces introduced by Feichtinger, we
refer to [7].

In what follows, we write ||[R,k - V,(9)||co instead of ||(Ryk)Vy(9)]]oo-
3.3. The main result of [7, 11] is

Theorem 3.1. Let g € B,\{0}. There ezists a neighborhood
U € O(e) and two constants c1,ca > 0 such that the following is true:

(i) For every U-dense and relatively separated set X = {z;}icr in
G there is a bounded linear operator

A:CoY — Yy(X)
such that
Af [ Ya(X)|| < arf|f | CoYl,  VfeCoY

and
F=Y_A(H)n(zi)g, VfeCoY
il
with A;(f) := (Af)i. The convergence is unconditional and in the norm
of CoY if the finite sequences are dense in Yy(X); otherwise, it is in
w*-sense of HL,™™.
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(ii) If X ={z;}icr is relatively separated, then

{Aitier — Z i (zi)g

el

defines a bounded linear mapping of Yq(X) into CoY, with norm less
than or equal to co; the convergence is as above.

Remarks 3.4. (i) By 2.4(i) the convergence in the theorem is in norm
if the set of bounded functions with compact support is dense in Y.

(ii) Weighted LP-spaces with 1 < p < oo are BF-spaces in which
C.(9) is dense. Thus, we just have to check that A, # {0} in order to
apply the FG-theory.

(iii) In [11, Theorem T], Grochenig has given an explicit condition
on U implying that the atomic decomposition works. With

Gl (@) := sup |G(uz) - G(a)),

it says that

[ W@ @@ do < 1.

4. Projective representations. Here we collect the needed basic
facts about projective representations. As before, let G be an l.c. group
and H a Hilbert space; the set of unitary operators on H will be denoted
by U(H).

Definition 4.1. A projective representation of G on H is a mapping
z +— p(z) of G into U(H) such that
(i) ple) = 1.
(ii) There exists a continuous function ¢ : G x G — C such that

p(z,y) = c(z,y)p(x)p(y), Vz,yeg.

(iii) The mapping = — (p(z)f1, f2) is a Borel function on G for all
fi, f2 € H.
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Note that we have taken unmitarity of each p(z) as part of the
definition. The reason for assuming the cocycle ¢ (clearly uniquely
determined by (ii)) to be continuous will become clear shortly. It is
well known (and easy to check) that ¢ has the following properties:

(i) Je(z,y)| =1 for all z,y.
(ii) c(z,y)e(zy, 2) = c(z,yz)c(y, 2) for all z,y, 2.
(iii) c(z,e) = c(e,z) =1 for all .
Irreducibility and cyclicity can be defined as usual: p is irreducible if

the only closed p-invariant subspaces are H# and {0}; p is cyclic if there
exists a cyclic vector, i.e., a ¢ € H such that

Span {p(z)g | x € G} = H.

Lemma 4.2. (i) If = — p(z)f is continuous at e, then it is
continuous at an arbitrary group element y.

(ii) Suppose that the mapping x — {(p(x)f, f) is continuous for all
f €M. Then z — p(x)f is continuous for all f € H, i.e., p is strongly
continuous.

(iii) p is irreducible if and only if each g € H\{0} is cyclic.

Proof. (i) For z € G, we have

() f — p(W) fIl = llp(yy ™ 2)f — p(y) £l
=lp()lc(y,y 'z)ply 'z)f — flI|
= lle(y, vy 2)p(y " z) f — f]]
<lle(y,y'z)p(y~'z)f — c(y,y ') f]]
+ ey, y ) f — £l
=llply 'z)f — fll +lely,y o) = 1] - |IfIl — 0
for z — y.
(i)
lp(x)f = p(e)fII* = |lp(z)f — fII?
= lp(x)fII* + 1117
—(fop@)f) = (p(@)f, f) — 0
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for x — e.

(iii) can be proved exactly in the same way as for the unitary
representations. ]

Note that the continuity of ¢ has been used in the proof of (i).

It is well known (and the starting point for all the following consider-
ations) that, for each projective representation (p, ) of G, it is possible
to construct a new group G which has a usual unitary representation
(m,H); we just have to define

Q =G x1II
(here II is the torus) with the composition

(z,8)(y,m) = (zy, Ene(z, y))
and
m(z,§) == &Ep(z).
G is called the Mackey obstruction group. It is a locally compact group
with respect to the product topology (a fact which depends on the

continuity of ¢). Also the Haar measure is the product measure from
G and II.

In general C; is not abelian even if G is. But, as a consequence of the

following lemma, Q is unimodular if and only if G is:

Lemma 4.3. Denote the modular function on G by A. Then
A(y,n) =A(y), Vyeg, nell

Proof. Let f € C.(G x 1), (y,n) € G x II. Then

//f z,&)(y,m dfdx—//fxy,fnc z,y)) ddz
:/g/nf(xy,f)dfdx
:/H/gf(xy,g)dgdw
1/g/nf(a:,§)d§dw. .
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Lemma 4.4. (i) p is irreducible if and only if 7 is irreducible.

(il) p is strongly continuous if and only if w is strongly continuous.

Proof. (i) Since

span {p(z)g | = € G} = span{{p(z)g | £ € I,z € G}
= span {ﬂ'(w,g) | (mag) € g~}7

(i) follows from Lemma 4.2.

(ii) Since G is equipped with the product topology, the continuity
of p follows directly from that of 7. Now suppose p to be continuous.
Then

|m(, ) f = fIl = l€p(2) f = [
< [ép(@)f — p() fI| + [lp(2) f — [l
=L =&-If1] +lle@) f = £,

from which the result follows. O

Given a projective representation p, we denote the wavelet transform
corresponding to g € H by

Ug: He— C%(G),  Ug(f)(z):= (p(x)g. f), feH z€G

An irreducible continuous projective representation is said to be
(square) integrable if there exists g € H\{0} such that Uy(g) € L'
(L?).

Corollary 4.5. p is (square) integrable if and only if m is (square)
integrable.

For the proof, just observe that |V,(g)(z, )| = |Uy(9)()].

Example 4.6. Let X = L?*(R). For xz,y € R we define the
translation and modulation operators on H by

(Lo f)(z) == f(z—=z), feH,z€R
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and .
(Myf)(z) =€¥*f(z), feH, zcR
Then p(z,y) := L, M, defines a projective representation of R? since
pla1 + za,y1 + y2) = V12 p(z1, y1)p(a2, y2)
VY (z1,1), (z2,52) € R*.

The corresponding Mackey obstruction group is R x R x II with the
composition

(@1,91,01) (22, Y2, t2) = (21 + T2, Y1 + Y2, trt2e172),
i.e., the Heisenberg group; our construction gives us the representation

(2, y,8) f1(2) = [to(z,y) f1(2)
= te¥(=2) (7 — 1), feH, zeR

i.e., the Schrodinger representation.

More generally, let G be a locally compact Abelian group with dual
group G. Then

[p(z, 1) F1(z) := [L2(vf)](=
:fy(z—x)f(z—l'), w,zeg,’yeg

defines a projective representation of G x G on L?(G). The Mackey
group is G X G x II with the composition

(@1, 71, t1) (22, 72, t2) = (21 + T2, 71 + 72, tatem (22),
and the corresponding representation is

[r(z, 7, )f(z) =ty(z — 2)f(z — ), z€G, feL*G)

5. Banach spaces corresponding to G. In light of Section
4, a natural way to obtain a theory for atomic decomposition using
projective representations is the following: take the corresponding
representation of the Mackey group and transfer all relevant conditions
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and results back to p. As we shall see in the next two section, this
principle works quite well and gives the desired results.

5.1. Let Y be a BF-space on a group G which has a projective
representation p. Define a space of functions on G by

7= {70 %M C | f measuabie, [ (¢ ane v},
II

This construction already appeared in [9].

Y is a Banach space with respect to the norm

1717l = |\/|f(-,n>|dn|Y||.

Lemma 5.1. Y is left invariant and |||Ly¢ | Y||| = ||| Lz | Y]||, for
all (z,€) € G x 11,

Proof. Let (z,€) € G x IL If f € Y, then g := [ |f(-,n)|dn € Y and

/ \La e f(ym)] dy = / LG &) )]l dn

:/|f(w_1y,HC(x,$_1)§C($‘1ay))|d"
_ / £z y, )| dn = Lag(y)-

Therefore, L, ¢ f € Y and

ILaef | Y] =|Lag | Y]]
< Le Yl Mlg 1Y
= L [ Yl -7 TYI-

Thus |||Lzelll < ||/Lg]||- Let us now prove the opposite inequality.
First, observe that for each g € Y we can define a function f € Y by

f(y,n) = g(y), (y,m €G.
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Then ||f | Y| = ||g | Y||. Furthermore, a calculation similar to the one
given at the beginning of the proof applies to f,g and gives that

|Laef [ VIl =[1Log | Y1

Therefore,

Lo | Y|l = sup{||L.g | Y| | [lg | Y| = 1}
<sup{||Laef | YI[|IIf | Y]l =1}
=||Lee | YVl

as desired. 0

A similar calculation shows that Y is right invariant and that
1B lll = I Rel]-

In particular, our calculations (together with Lemma 4.3) show that
the canonical weight function @ corresponding to Y is

(a2, ) = w(x).

We have now checked that Y satisfies the third condition in the
definition of a BF-space (see Section 2.2); in fact, the same type of
argument enables us to prove that Y satisfies all of them. We shall not
go into the details here.

5.2. A BF-space Y is said to have absolutely continuous norm [13,
Chapter 15] if

{fnknzy, Va:|fa(@)| N0, forn— oo
= ||fn|Y]| — 0 forn — oo.

As we shall see now, our construction assures that Y inherits this
property from Y:

_Proposition 5.2. IfY has absolutely continuous norm, then so does
Y.
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Proof. Let {fn,} C Y be a set such that |f,(z,7)| N\, 0, for all
(z,n) € G. By assumption [ |fi(-,n)[dn € Y, so [[fi(z,n)ldn < oo
for almost every x € G, say for x € G — N. This means that
n — fi(z,n)] € L'(TI) for z € G — N. Since |fi| > |f2| > --- and
lim f,, = 0, the Lebesgue dominated convergence theorem implies that
J | fn(z,m)|dn 0 for all z € G — N. But [ |fn(-,n)|dn €Y for all n,
so our assumptions on Y imply that ||f, | V|| = || [ [f.(,n)| dnl] \ 0
for n — co. O

Corollary 5.3. If Y has absolutely continuous norm, then Cc(g~) 18
dense in Y.

Proof. By [4, Proposition 1.4], C.(G) is dense in every BF-space with
absolutely continuous norm. ]

Remark. In general (L?)(G) # LP(G) so in the case of an LP-space on
G our construction of a space on Q is not the ‘natural.” In fact, all the
following also works perfectly for LP-spaces with the natural definition;
nevertheless, our definition has been chosen since it gives us a more
general recipe to get a BF-space on G from an arbitrary BF-space on

G.

5.3. Let X = {z;}icr C G be relatively separated and W C G a
relatively compact Borel set with nonvoid interior. As we have seen in
Section 2, to each BF-space Y on G we can assign a sequence space

Z |)\i|1ziW € Y}

Ya({z:)) = {{Ai}i

If {y;}7_; C Il is finite, then {(z;,y;)}i; C G is relatively separated;
W xII C G is relatively compact, so the sequence space corresponding
toY is

ZlAi,ﬂl(zi,yi)Wxn € f’}

i,J

Ya({(zi,y;)}) = {{Ai,j}i,j

with the natural norm.
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Lemma 5.4. In the situation above,
Pasdig € Tal{(aig)) {Z xil| € il
Furthermore,

I{ij}ig

Tal{(oy) 1) = H{ > A}

Val(a)|.

Proof. First, observe that

1($i7yj)W><H(x’£) 7é 0= (miayj)il(xag) eW xIl
=z lreW
= 1lz,w(z) #0.

Therefore,

Val{(en)}) = {{A A

@8 X Pusltaw ()]eff}

{{)‘ i Yi w|1zW€Y}
~ {0 {Zw} € Yal(ar))
with the corresponding norm estimate. O

Remark. As a special case of the lemma, we obtain that
(ki € Ya({(2s, D)) == {Aidi € Ya({z)),

i.e., that

Ya({(zi, 1)}i) = Ya({zi})-

Corollary 5.5. If the finite sequences are dense in Yg({z:}), then
the same holds for Yq{(z:,y;)}).
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Proof. Let {As;} € Ya({(z,55)}). Then {327, [Ailhi € Ya({w:}):
Given € > 0, there is a finite set K C I such that

K Z_j |Ai,j|}i€I\KYd<{wi}>H <

which means that

it apersqzny — igtapnerxqznpYa{(@iy) Dl <e. o

5.3. We shall now assume (p,H) to be a projective integrable
representation of G. As before, the corresponding representation of
the Mackey group will be denoted by (7, H). Given a BF-space Y with
canonical weight w, we define

Al = {g € H | Uy(g) € Ly, }-

As we have seen in Section 5.1, the weight function w corresponding to
Y is w(z,£) = w(z), and Y can be used in the atomic decomposition
with respect to 7 if and only if

Az, # {0},

Now

- {ge%‘ [ [ 1@, g. alate. € do e < oo}
~{se H\/g|<p<w>g,g>|w<w>dm <oof AL,

Thus, the two spaces of admissible vectors coincide. Fix now g €
Ar\{0}. Exactly the same argument shows that (with the obvious
definitions)

Myl =Hg"

Also the natural definition of a coorbit space with respect to p and Y’
gives the same as the old one with respect to 7 and Y'; denoting the
wavelet transform corresponding to m by V,, we have

Cor(Y)={f € Hg" |Va(f) € Y}

_ {feﬂin”h [wH/ |<£p(w)g,f>d£] ey}
I
— {f e ML | U,(f) € Y} = Co, Y,
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again with the same norm. O

From now on, we just write CoY for both of them.

Our definition of B, from Section 3.2 also makes sense for a projective
representation p; in fact, as we shall show in the lemma below, we get
the same space as for the corresponding representation 7:

Lemma 5.6. B, = Bj.

Proof. Let k € C.(G) be a window function; then
Be — {g e 7—[‘/ 1Rk - U, (9)]sow(z) do < oo}.
g

As the window function on G, needed for the description of B, it is

appropriate to take l;(x,f) = k(z), (z,£) € G; with this choice we
obtain

|Re ek Vy(9)lloo = e |k [(y,m) (2, €)1V (9) (w5 m))|

= sup _[|k(yz)(no(y)g,9)|
(y,m€G

= 1Rk - Ug(9)lloo-

Therefore,
sy ={ac [ ek Vit ) de s < o)
~{sen| [ IRk V,@)lwuto) do < o0} = B,
From now on, we denote both of them just by B,,.

6. The atomic decomposition theorem. We are now able
to state and prove the main theorem. We keep the situation as in
Section 5, i.e., (p, H) is a projective representation of G and Y is a BF-
space such that A, # 0. As we have seen, in this case B,, is a dense
subspace of H.
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Theorem 6.1. Let g € B,\{0}. There ezists a neighborhood
U € O(e) and two constants c1,ca > 0 such that

(i) For every U-dense and relatively separated family X = {x;}icr C
G there is a bounded linear operator
A:CoY — Yy({z:})
such that
[Af | Ya({z:i )l < erllf | CoY],  VfeCoY

and

=Y A(f)ele)g,  VfeCoY
iel
with )\z(f) = (Af)l
The convergence is in the norm of CoY if the finite sequences are

dense in Yy({z;}), otherwise it is in w*-sense; in both cases, the
convergence s unconditional.

(ii) Conversely, if X = {z;}ier C G is relatively separated, then
{Aitier — Z Aip(zi)g
iel

defines a bounded linear mapping of Ya({x;}) into CoY, with norm less
than or equal to cq; the convergence is as above.

Proof. By Corollary 4.5, the representation (m,H) corresponding
to (p,H) is integrable; furthermore, ¥ can be used in the atomic
decomposition with respect to 7 since

o = Al # {0}
Now, let g € B, \{0}. Take the neighborhood U € O(e,1) in G and the
two constants cq, ¢y as in Theorem 3.1.

G is equipped with the product topology, so we can choose neighbor-
hoods U € O(e) in G and V € O(1) in II such that U x V C U.

Now let {z;} C G be U-dense and relatively separated. Choose a
finite V-dense set {y;}7_; C IL
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It is easy to show that {(z;,3:)} C G is U-dense and relatively
separated. Thus, by Theorem 3.1 there is a bounded linear operator

A :CoY — f’d({(m“ yj)})
with norm less than ¢; and with the property that each f € CoY can

be written as
f= Z Aij(F)m(zi,y5)9

where \; ;(f) == (Af)i ;-

The series converges unconditionally, so

f= ZA i,j pr
= [ZAi,j(f)yj]ﬂ(xi)g, VfeCoY.
i Lj=1

The coefficient sequence {Z?zl i(Hy;tiis in Yg({x;}); the reason is

that [ 357, i (fy;| < 2552, |>\w( )| =t si, where {s;} € Ya({z:}) by
Lemma 5.4.

Therefore, we can define a linear mapping

¢+ Ya({(2i,y;)}) — Ya({zi}),
d({Aij}i) {Z)‘Jyj} .

¢ is bounded with norm < 1:

(Do) | = {ZA y}

@)

,5Yj

]

i

ZZP\@jHuW‘YH
i

- {Zw} (tas)|
[0 | Va({(ei ) D

IN
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for all {)\; ;} € Ya({(zi,y;)}); we have again used Lemma 5.4. Thus,
(i) is satisfied with 5

A:=¢oA.
The type of convergence follows from Theorem 3.1 and Corollary 5.5.

(ii) Let {z;} C G. By Lemma 5.4, Y;({z;}) = Ya({(zi,1)}), so by
Theorem 3.1 each {\;}; € Yy({z;}) defines an element

Z Aim(z,1)g = Z Aip(zi)g
in CoY. Furthermore, the mapping
{Niti — Z)\m(ﬂvi)g
is bounded with norm less than or equal to cs. ]

Corollary 6.2. Take U € O(e) as in Theorem 6.1. Then, given a
U-dense and relatively separated set {x;}; € G, we have

CoY = { > )\ip(xi)g‘{/\i}i c Yd({mi})}.

Remarks. (i) As we have seen, the theorem can be formulated
exactly as the original, and the constants c;, cz can be taken from the
decomposition theorem applied to m, Y.

(ii) Part (ii) generalizes Proposition 2 in [10]. Furthermore, our
proof is different since we are working with another definition of Y.

(iii) Our generalization of the FG-theory does not augment the class
of spaces which can be decomposed; the point is that it is now possible
to work more straightforwardly than before.

(iv) Using Remark (iii) after Theorem 3.1, we can state a sufficient
condition on U from the proof, namely that

IVy (@)} | LIl = / Va(9)} (2,€) | w(z) dadé < 1
g
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where

Gi(w,6) = sup | Gl(y,n)(x,8)]  G(z,8)l.

(ym) el

6.2. A countable set {f;}icr of elements in a Hilbert space H is called
a frame (see [3] or the survey paper [12]) if there exist two constants
A, B > 0 such that

AlIFIP <D KA P < BIFIP, Ve

i€l
It can be shown that if {f;};cs is a frame then

S:H+—MH,  Sf=> (fu /)i

i€l

defines a bounded invertible operator, the series being unconditionally
convergent; therefore, any frame gives us an atomic decomposition of
H:
F=881f=> (fi S i  fEH
il

In [11], Grochenig has introduced a generalization of the frame con-
cept to the setting of Banach spaces. Also, he has shown that the
assumptions in Theorem 3.1 imply that {m(z;)g}ier is a Banach frame
for CoY.

It is not difficult to show that the same is true for {p(z;)g}icr under
the assumptions in Theorem 6.1. Nevertheless we shall restrict our
attention to the Hilbert space H corresponding to p and give a direct
proof.

The next result will be stated without proof; it is a part of Theo-
rem 8.1 in [8].

Lemma 6.3. Let g € By,. If {(xi,y5)}.j)erxq1,... n} C G is relatively
separated, then

{Va(9) (@i yj) }ij € Ya{(zi, 7)}), VfeCoY
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and

e > 02 [[{Vy(9) (@i 95) i | Yal{(@isyp) DI < ellf | CoYl],
VfeCoY.

Let us look at the special case Y = L?(G); as we have seen in Sections
2.4 and 3.1, CoL? = H and LZ({zi}ics) = 1*(I). Now, if {z;}ics is

relatively separated in G, then {(x;,1)}ics is relatively separated in G,
and from the remark after Lemmas 5.4 and 6.3, we get that

{Vy(£) (@i, 1 }ier € Ya({wi})

and

I{Ve(F) (@i D}ier | Ya{zi}) || < el f [ CoY;

thus, there exists a constant B > 0 with

S oz, £I? < BIfI?,  Yfen.

iel
i.e., the upper frame condition is satisfied.
Corollary 6.4. Let g € B,\{0}. WithU € O(e) as in Theorem 6.1,

{p(zi)g}ticr is a frame for H for all relatively separated and U-dense
sets {x;}icr in G.

Proof. By Theorem 6.1 any f € H can be written as f =
Y icr Ailf)p(xi)g, with coefficient functionals satisfying

KA} DI < KIS

for some constant k£ independent of f. Therefore,

1Al = [in(fxp(xi)g,ﬁr

iel

<D NP Helig, £

i€l i€l
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and
E2NFI2 <3 Wolai)g, H)I?, YV fer
i€l
The upper estimate was established after Lemma 6.3. u]

Let us end this section by a remark about the connections between
frames and projective representations. Let H = {h;}; be a subgroup
of G and {ej}é-:l a finite set of elements in the Hilbert space H
corresponding to the projective representation p. Consider the set

B={p(h)e; | h e H, 1< <1},
If

ST N U pepP < oo, VFEH,

1<j<lheH

then the corresponding frame operator

S:H—H, Sf= Z hi)e;, f)o(hi)e;

4,J

converges unconditionally for all f € #.
Lemma 6.5. Sp(h) = p(h)S for all h € H.
Proof. Let h € H. Then
h)Sf = Z iJes, Fp(h)p(hie;
= Z i)ej, p(h) £)p(h)p(hs)e;
= Z i)ej, p(h) f)p(hhi)e;
= Z i)ej, p(h) f)p(hi)e;

= Sp(h)f- o
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Theorem 6.6. If E is a frame, then
(i) =23 ;(p(hi)S e, fo(hi)e;,.
(i) f= Ei,j<p(hi)ejaf>p(hi)5_1ej,'

Proof. If E is a frame, then S has a bounded inverse defined on all
of H. As a consequence of Lemma 6.5,

S~p(h) = p(R)S™, VheH.

(i) now follows from

F=85"1f=Y (p(hi)e;, S ' f)p(hi)e;

2

- Z<5*1p(hi)ej, fip(hi)e;

= (p(hi)S tej, )p(hi)e;.
'7]'
Similarly, (ii) is a consequence of f = S™1Sf. O

Theorem 6.6 generalizes a result of I. Daubechies about Weil-
Heisenberg coherent states [2]. Daubechies also explains why the result
is important for applications. The main point is that S~ p(hi)e; =
p(hi)S™'e;. Thus, in order to make frame decompositions using
{p(hi)e;} it is not necessary to compute the whole family

{S~'p(hi)ej}iy s

we only need to calculate the finite family {S'e; }2-21 and then apply
the projective representation. For a further discussion of the result (in
the context of Gabor expansions), we refer to [1].
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