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A LATTICE PROOF OF A MODULAR IDENTITY
RICHARD BLECKSMITH, JOHN BRILLHART AND IRVING GERST

ABSTRACT. We give a lattice rearrangement proof of a
six-parameter identity whose terms have the form z*T(k1,11)

-T'(kz2,l2), where T'(k,l) = Ziooo zkn®+in A new balanced
Q? identity is then established through its use.

1. Introduction. In this paper we give a new proof (Theorem 1) of a
variant of a fundamental identity we published earlier in [5]. This proof
is accomplished by an adroit rearrangement of the indexing lattices in
the identity.

The formula in Theorem 1 is also shown (Theorem 3) to be equivalent
to the earlier formula and is employed here since its form is convenient
for carrying out the rearrangement. The formula is then used in
Theorem 4 to prove a new balanced trinomial Q? identity (see [5] for
the meaning of this terminology), where @ is the familiar single-variable
quintuple product. The proof itself consists of assigning sets of values
to the six parameters in the formula, thereby producing a small family
of identities, and then showing that the Q2 identity is equal to a certain
linear combination of these identities.

2. The fundamental identity. Throughout this paper we will use
the single-variable function T' (cf. [3, (2)]) defined by

T(k,1) def Z pkn’+in
— H(l _ kan)(l + x2kn—k+l)(1 + wzkn—k—l)_
n=1

We call an identity a “I'? identity” if each of its terms has the form
2T (ky1,11)T (ka,12). We also say that a T2 identity is “balanced” if the
first component pair (k1, k2) in each of its terms is the same.
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In working with T-functions, it is often important to re-index their
sums. This can be accomplished by simple transformation rules, which
are useful in putting T'(k,!) in “reduced form,” i.e., where 0 <1 < k
(cf. [3, p. 780]). These rules are: the negative rule [3, (13)],

(2.1) T(k—1)=T(k,1),
the single-step formula [3, (14)],
(2.2) T(k, 1) = "' (k, 2k — 1),

and the general transformation formula: If | = 2kq + r, where q € Z,
then

(2.3) T(k,1) =z T T(k,r).

The proof of (2.3) consists of observing that
T(k, l) — Zxkn2+(2kq+7‘)n
- Zxk(n—q)2+(2kq+r)(n—¢1)

=z Tk, 7).

Note that when we use (2.3) to put T'(k,[) into reduced form, we take
r so that —k < r < k and then use (2.1) if necessary. Throughout the
rest of this paper, we will give all T-functions with numerical arguments
in reduced form.

The following general identity is of importance in generating special
sets of identities from which proofs of other identities can be made, as
we will see in Theorem 4.

Theorem 1. Suppose that m,k,u,v € Z* are such that uv < 2m,
and let e, f € (1/2)Z. If the polynomials in n in (2.5) and (2.6) have
integer coefficients, then we have

(24) Y @ T(ky, lin)T (ke lon) = Y 2 T(ky, 1y,)T (k2, 13,,),
neM nemM’
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where
2utvk
(2.5) Qan = - n” + 2uen,
k1 = uk, ka = (2m — uv)vk,
i, = (2u?vk/m)n + ue + f
(2.6) 2u?vk/m)n + ue — f

(2uvk/m)n +e) —vf

(
15, =(
lan, = (2m — wv)
= ( (2uvk/m)n +e) + vf,

(
2m — ww)(
and M and M' are any complete residue systems (mod m).

Proof. We begin by showing that the two polynomials
L. (z,y) = Ln( [ZIJ} > = k2?4 koy? + lipz + lony + an
and
R,(z,y) = Rn< {z] ) = kyx? + koy? + U}, + 1y + an

are related by an affine map, viz.

en w([f]) == fi] )

where

_la b 1 Juw-m (2m—uv)v
(2.8) A_{c d]_a[ o m — uv }
and
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This is verified by routine calculation using (2.5), (2.6) and (2.8) as
follows:

e me( (2 ol [3]+ 1))

= ki(az + by + g)°
+ ka(cx + dy + h)? + 15, (az + by + g)
+ Uy (cx + dy + h) +
= (k1a2 + kgCZ)x2 + 2(k1ab + kaed)zy + (k1b2 + k2d2)y2
+ (2kyag + 2koch + 1,0 + Uy, )z
+ (2k1bg + 2kedh + 1L, b + 1, d)y + Rus (g, h)

2u?vk

= ukz® + (2m — uwv)vky® + [ n+ ue + f} x

+ [(2muv)<27:;kn+e> vf]y

2ulvk

+ n? 4 2uen

= k12 + koy? + linz + lony + an

=)

We next specialize (2.7) to a sub-lattice by setting

MR IR R

(2.10)
filemmalem ([ gD
e
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Thus, (2.7) becomes

e ([ gl [7)
n( [ G )

(2.12)  L,(vs+mt+n'—n,s) = Ry (vs+(uv—m)t+n—n', s+ut).

or, in its nonmatrix form,

In what follows, the symbol . means > > We also take M =

1=—00"
= {0,1,...,m — 1}. Note that the affine maps that are used
(designated in the parentheses at the right) are one-to-one between
the respective sublattices in Z2.

We can now prove (2.4) by transforming the sums on the left into the
sums on the right.

> 2T (ky, lyn) T (K2, lon)
SR
n=0 ¢ ki

e (NN TEIMER)

— Z Z Z :IIL n(vs+mt+n'—n,s) (7‘ = mt + nl)

n'=0 s

m—1 m—1
— Z Z Z mRn/(vs+(uv7m)t+nfn',s+ut) by (212)

n'=0 s t n=0

= v mt—n j j 1
-ErE e ([ ] [1)

m—1
= Z Z ZmR"’(”jfrfnl’j) (r=mt—n)

'=0 j T

3
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e (-l

7

m—

m—1
> @ Tke, 1 )T (ka, layy)-
n’/=0

In order to show that the indexing sets M and M’ can be taken to be
any complete residue system (mod m), we prove that each term of the
identity actually remains invariant when index values are increased by
m.

de

On the lefthand side set S(n) Tof 2 T(ky, l1n)T (k2,1l2,). To prove
the invariance on this side, it suffices to show that

(2.13) S(n+m) = S(n), VneZ.
To do this, we have

2ulvk

S(n+m) — w(2u2uk/m)(n+m)2+2ue(n+m)T(kl’ (n+m) +ue + f>

2uvk

-T<k2,(2m—uv)< - (n+m)+e> —vf)

a,n+4uzvkn+2u2vkm+2uemT(k1 2u2vk—|—l1 )
) n

=z
- T(kg, 2(2m — uv)uvk + lay,)

= gonHauwvknt2utokmt duemp ok a4 1)
- T(kg, 2kou + I2,,)

= zPS(n),

where the final term is reduced using (2.3). The final exponent,
B = duvkn + 2u®vkm + 2uem — (uv)?k; — wvly, — u?ky — ulay,
is readily shown to be 0, using (2.5) and (2.6).

On the righthand side, set S’(n) f T (kq,13,,)T (k2,15,). That

this remains invariant for n € M’ follows from the fact that S'(n) is
obtained from S(n) by merely changing the sign of f in (2.6), so

(2.14) S'(n+m)=S5"(n), VneZ. o
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Remarks. 1. To see the combinatorial nature of the proof of
Theorem 1, note that each of the 72 terms in equation (2.4) can be
written as a doubly-indexed sum of the form

Z ki tkai® Hhitag+o

(i,)€22?

Because all the coeflicients in such a sum are 1, equation (2.4) asserts
that the powers of = on the two sides are the same, so the right side
is merely a rearrangement of the left. Equation (2.11) shows just how
the powers of x in the m sums on the left are rearranged and collected
together to form the m sums on the right. In particular, the terms of,
say, the nth sum on the right are generated on the left by letting the
index point (i, 7) range over certain lattices in the indexing planes of
the m sums on the left. Specifically, the lattices

o [l 5
S R R e B i

associated with sum mn on the left and n’ on the right, respectively,

and

satisfy
) 7’
te([3]) =2 ([7])
For each n, the m lattices L,1, ..., Ly, form a partition of the nth
indexing plane on the left and for each n', the m lattices £],,,,... , L., .,

form a partition of the n'th indexing plane on the right.

2. When u is even or v is odd, it is worth mentioning that (2.4) is

still a correct formula when each T is replaced by T3, where T (k, 1) def

oo n ’(L2 n (o ) n n— ke
% (1)rgn e = T2 (1 — a2kr) (1 — g2kn k(1 = g2hnokol),

—o0 n=1

It is interesting to compare Theorem 1 with the following theorem,
which was proved in a very different way in [5, Theorem 1].

Theorem 2. Suppose that m,k,u,v € Z* are such that uv < 2m,
and let e, f € (1/2)Z. If the polynomials in n in (2.16) and (2.17) have



1282 R. BLECKSMITH, J. BRILLHART AND I. GERST

integer coefficients, then we have

(2.15) > @ T(ky, )T ke, lon) = Y @ T(ky,1,)T (K2, l,,),

neM neM/’
where
20k 5
(2.16) a, = Wn + 2en,
k1 = uk, ka = (2m — uv)vk,
2uvk
lin = e n+ uef
m
2uvk
Iln = 1::: n+ue — f
(2.17)

2uk
lon, = (2m — uv)(Ln—i—e) —of
m
2uk
Iy, = (2m — uv) (Ln + e> +vf,
m
and M and M' are any complete residue systems (mod m).

The relationship between these two theorems is expressed in the next
theorem.

Theorem 3. Theorem 1 is equivalent to Theorem 2.

Proof. Let Theorem 1* and Theorem 2*, respectively, be Theorem 1
and Theorem 2 with the additional hypothesis that (m,u) = 1. We
will show that

Theorem 1 <= Theorem 1* <= Theorem 2* <= Theorem 2.

It is easy to see that Theorem 1* <= Theorem 2*, for if v and m
are relatively prime, then un runs through a complete residue system
mod m as n does. Replacing n by un in (2.16) and (2.17) yields the
values in (2.5) and (2.6). Conversely, we can absorb the u and u? into
n and n? in (2.5) and (2.6) to obtain (2.16) and (2.17). It is also clear
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that Theorem 1 = Theorem 1* and Theorem 2 = Theorem 2*, since
a starred theorem is the original theorem with the (m,u) = 1 condition
added. Thus, it remains to prove that Theorem 1* = Theorem 1 and
Theorem 2* =—> Theorem 2.

We begin the proof of the first implication by assuming that m, k, u, v, e
and f are numbers that satisfy the hypothesis of Theorem 1, with
Qn,y k1, k2, lin, lon, 11, and 15, being defined as in (2.5) and (2.6). Let
d = ged (m,u), and set

m

m=—, k= dk, a=—, 7 =v,
(2.18) d d
e=dk and f=F,
with @y, k1,...,l,, being defined in terms of the m, ..., f as in (2.5)

and (2.6). Since (m,%) = 1 and we have assumed that Theorem 1*
is true, Theorem 1 holds in the barred letters. A straightforward
calculation shows that a,, = (2uvk/m)n®+ ue+ f = a,,, using (2.18).
Similarly, k; = ki,...,l, = l,. Consequently, equation (2.4) also
holds in unbarred letters as n runs through a complete residue system
(mod 7). To see that this implies that (2.4) holds as n runs over the
full residue system modulo m, simply observe that a complete residue
system (mod m) can be partitioned into d complete residue systems
(mod m). Thus (2.4), for the full modulus m, is just the sum of d
copies of (2.4) with modulus m.

To show that Theorem 2* implies Theorem 2, assume that Theorem 2
holds when (m,u) = 1 and let d = gcd (m,w). Unlike the previous
case with Theorem 1, it is not necessarily true that an application of
Theorem 2 is a sum of d copies of the same equation using Theorem 2*.
It is true, however, that any equation obtained using Theorem 2 can be
obtained by adding d applications of Theorem 2* for correctly chosen
parameters. To do this, assume that r lies in the interval 0 <r < d—1
and consider the parameters

m:ﬁ, k = dk, a:g,
(2.19) d d
. 2 _
U=, e-d(e—l— :}:T> and f=Ff.

Since (m, %) = 1, Theorem 2* holds for the six parameters in (2.19)
where the variables in (2.16) and (2.17) are all barred as before. We
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find that ];51 = k‘l, ];32 = kg,

2ukr?

m

ll,dnJrr - l_l'ru l2,dn+r = l_2n7 Adn+tr = an + + 26T7
and similarly for 0} ;... and l; 4, .., since these are obtained from
l1,dn+r and I3 gnyr by sending f to —f. The equation obtained in
(2.15), as n runs through a complete residue system mod m, is a sum
of d equations of the form

m—1
Z a4t T (ks U aneyr ) T (K2 L2 yanetr)
n=0
m—1
= Z xadn+rT(k17 lll,dn+T)T(k2’ ll?vd"'i‘r)'
n=0

For each r, this equation is just g(2vkr®/m)+2er times the equation
obtained by using Theorem 2* with the parameters in (2.19). This
completes the proof. O

3. A balanced Q? identity. In this section we prove a new identity
using Theorem 1. In this proof a small family of identities is derived
from (2.4) by giving sets of values to its parameters. The identity in
question is then verified by showing it is a certain linear combination
of these identities.

Within the set of balanced T2 identities there is a special and
interesting subset—the balanced Q? identities. Here @ stands for the
usual quintuple product

oo

Q(m, k) def H (1-2") = me(3n2+n)/2(m—3kn — gBhnthy),

nes —o0

where S = {n € Z* :n=0,+k,+(m — 2k), £(m — k), m (mod 2m)}.

The Q? identity presented here was first discovered by a computer
search and was then proved by a computer-assisted, theoretical argu-
ment. In [5, Theorems 3 and 4], we proved two other balanced trinomial
Q? identities. Compared with the abundance of balanced 7" identities,
such identities seem to be rare.
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Theorem 4.

(3.1)  Q(7,3)Q(35,5) + z°Q(7,2)Q(35,15) = Q(7,1)Q(35, 10).

Proof. Since (3.1) is a @? identity (balanced at (7, 35)), we can
routinely rewrite it as a 72 identity (balanced at (21/2,105/2)) by first
transforming each @ into T terms by the following formula [3, (24)]:

_p3m m Skp(3m ™
(3.2) Q(m,k)_T<2 . 3k:> T<2 2+3k>

We then have, after reducing, that
21 11 21 25
ars=1(5.5) =1(5.5)
(21 11> (21 17>

105 5 105 65
=7(=2,2) -7 =2, = ).
Q(35.5) (2,2> z (2,2>

(This second equation could also be obtained by writing Q(7,1) as a
difference of T7s and then sending z — x°.) Thus, the first term in
(3.1) becomes

21 11 105 5
Q(7,3)Q(35,5) = T(g, ?>T(7, 5)
ST 21 11 T %’@
272 272
(BT (105 5
272 2 72
21 17 105 65
o T<2 2>T(7’7>-

In what follows it will be convenient to work with integer components,
so we replace z by z2 throughout. For brevity, we write

and

S(Oé, ll, lg) = ZQT(21, ll)T(105, lz)
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Then (3.3) becomes

Q(14,6)Q(70, 10) = S(0,11,5) — S(10, 11, 65)
— 5(2,17,5) + S(12,17,65).

Similarly, the second and third terms in (3.1) (with z — 2?) become

2%Q(14,4)Q(70,30) = S(6,5,55) — S(16, 5, 85)
— 5(10,19,55) + S(20, 19, 85)

and

Q(14,2)Q(70,20) = S(0,1,25) — S(20, 1,95)
— 5(2,13,25) + S(22,13,95).

(Note that multiplying an S by =™ increases its first argument by n.)
Thus (3.1) holds if and only if

(3.4) 5(0,11,5) + S(2,13,25) + S(6,5,55) + 5(12, 17, 65)
+ 5(20,1,95) + S(20, 19, 85)
= 5(0,1,25) + 5(2,17,5) + S(10, 11, 65) + S(10, 19, 55)
+ 5(16,5,85) + S(22,13,95).

If we next set m = 3, k = 21 and v = v = 1 in Theorem 1, we obtain
the special formula

1
(35) ) S(14n® 4 2en,14n + e + f,70n + 5e — f)

n=-—1
1
= Z S(14n% + 2en, 14n + e — f,70n + 5e + f).

n=-—1

Substituting (e, f) = (1,10), (4,5) and (-2, 15) into (3.5), respectively,
gives the three identities:

(3.6) S(0,11,5) + S(12,3,75) + S(12, 17, 65)
= 5(0,9,15) + 5(10,19,55) + S(16, 5, 85),
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(3.7) 5(0,9,15) + S(6,5,55) + S(20, 19, 85)
= 5(0,1,25) + 5(6,15,45) + S(22, 13, 95),

and

(3.8) S(0,13,25) + S(4,15,45) + S(18,1,95)
= 5(0,17,5) + 5(8,11,65) + S(10,3,75)

Then the linear combination of these equations, (3.6) + (3.7) +z2x
(3.8), produces (3.4) when the common sum S(0,9,15) +.5(12,3,75) +
5(6,15,45) is cancelled from its two sides. O
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