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A NATURAL EXTENSION OF A NONSINGULAR
ENDOMORPHISM OF A MEASURE SPACE

C. BENETEAU

0. Introduction. Let (M,X, m) be a measure space. An endomor-
phism of M is a surjective map S : M — M such that S™!'¥ C X. An
automorphism is a bijective map S such that S and S~! are endomor-
phisms.

Since automorphisms are simple kinds of endomorphisms, establish-
ing their properties can be easier than establishing those of general
endomorphisms. In certain cases, an endomorphism S has a related
automorphism 7" such that S and T have certain of the same proper-
ties. The sense in which 7 is related to S will be made more precise
later. Such an automorphism 7" will be called a natural extension of S.

An endomorphism S is called measure-preserving if m(S™'E) =
m(E) for every E in ¥. Rohlin [6, pp. 22-24] established that a
measure-preserving endomorphism of a Lebesgue space has a natu-
ral extension. Implicit in his proof is the use of some kind of theo-
rem on extension of measures. Cornfeld-Fomin-Sinai [1, pp. 239-240]
proved Rohlin’s result using the Daniell-Kolmogorov theorem, which
needs the measure m to have a compact approximation property. Silva
[7, pp. 8-11] extended Rohlin’s result by constructing a natural exten-
sion of a nonsingular endomorphism of a standard Borel space. An
endomorphism S is called nonsingular when m(S—'E) = 0 if and only
if m(E) = 0 for every F in X. Silva uses the skew-product construc-
tion to reduce to the measure-preserving case, and from that extension
builds a natural extension for the nonsingular endomorphism. Lambert
[3] claims to have a natural extension of an endomorphism of a general
measure space. However, he assumes in addition to nonsingularity that
m(E) = 0 implies m(SE) = 0. This condition is somewhat undesirable
since it does not hold even in the measure-preserving case, as shown in
the following example suggested by Choksi:
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Let (M, X, m) be the product of countable copies of the unit interval
together with the Borel sets and Lebesgue measure. Define a map S
on M by S(zg,z1,...) = (z1,22,...). If A = Ay X A; x ---, then
S=1A=10,1] x Ag x A; X ---, 80 S is easily seen to be measurable and
measure-preserving. On the other hand, let E = {0} x[0,1]x[0,1] x---.
Then m(E) =0, but SE =1[0,1] x [0,1] x --- and m(SE) =1.

Also, in [3, Theorem 5], to prove countable additivity of a certain set
function m, Lambert states that m(SA N S?B) = m(S(A N SB)) for
measurable sets A and B, which does not hold when S is not one-to-one.

I will give a proof of Silva’s result without using the skew-product
construction and without assuming Lambert’s extra hypothesis.

I begin with a description of factor spaces as developed in [6].

1. Factor spaces. Let (M,X,m) be a measure space and T an
automorphism of M. Let ¢ be a partition of M, i.e., ( is a collection
of disjoint sets in ¥ whose union is M. Note that 77 is another
partition of M. We write T~'¢ < ¢ to mean that ( is a finer partition
than T~1(. We say then that ¢ is invariant with respect to 7. In that
case, we have a sequence of partitions that are getting finer and finer:

(<T(ST <.

Define H::B T™( to be the least fine partition that is finer than 7™
for each n =0,1,2,... . Define { to be exhaustive with respect to T if

Z:) T™( is the decomposition of M into individual points. Given such
a partition ¢, we build another measure space (M|¢, ¥, ), the factor
space of M with respect to {: put M|{ = {. Define H, : M — M|(
as H¢(z) = [z] where [z] is the unique set in M|( containing z. Define
%' by putting A € ' if and only if H; 'A € ¥. Put u(A) = m(H; ' A)
for A € ¥'. Then (M|(,¥', ) is a measure space and H¢ is a measure-
preserving homomorphism.

I now want to define an endomorphism T¢ : M|¢ — M|( such that
the following diagram is commutative:

M—L M

HJ Jag

MKTM\C
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Define T¢(C) = D if and only if T(C) C D. Since T ¢ < (, this
makes T a well-defined map such that Ty o H; = H¢ o T. This last
commutativity relation makes checking that T, is measurable easy.
Moreover, if T is measure-preserving, so is T¢. The automorphism
T is called the natural extension of T;. More generally, we have the
following definition:

Let S be an endomorphism of a measure space (X, B,v). S is said to
have a natural extension T if there exists a measure space (M, %, m),
an automorphism T of M, and an exhaustive decomposition ¢ of M
such that M|{ ~ X and T, ~ S. This last means that there exists a
measure-preserving isomorphism ¢ : M|¢ — X such that the following
diagram commutes:

M|¢ —— M|¢

This definition does not determine the natural extension or its proper-
ties and is therefore somewhat vague. In the nonsingular case one may
wish to add conditions on the Radon-Nikodym derivative, as is done
in Theorem 5.9 (ii) of [8]. Dajani and Hawkins discuss cohomologous
measures in [2]. These conditions make the choice more canonical.
They point out that equivalent but noncohomologous measures may
have different natural extensions. In this paper the Radon-Nikodym
derivative of the natural extension built will be obtained explicitly. We
come now to our main result.

2. A natural extension of a nonsingular endomorphism. We
have the following:

Theorem. Let (X,B) be a standard Borel space, v a finite continu-
ous measure on X with v(X) =1, and S a nonsingular endomorphism
of X. Then S admits a natural extension.

Note that it has been shown, for example in [4], that it is enough to
assume that S is onto almost everywhere.
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Proof. Let M = {(xo,z1,%2,...) : z; € X, Sp, = x50 =
0,1,2,...}. M is a subset of the product of a countable number of
copies of X. I want to define a measure m on the product space that
is concentrated on M. To do so, I must first make sure that M is a
measurable subset of the product space with the product o-algebra.

Lemma. M is a measurable subset of the product o-algebra.

Proof. Put YN = {(zg,z1,...,7Nn) € HnN:OX D Spy = Tyl =
0,...,N —1}. Let Z¥N = YN x [[7%,, X. Then M = n{>=,Z".
Therefore, to show that M is measurable, it is enough to show that
Y™ is a measurable subset of the finite product space. I will prove this
by induction on N.

Note that Y? = X, a measurable subset of X.

Y = {(zg,z1) € X x X : Szy = x¢}, i.e., Y = {(Sz,2) : 2 € X}.
That is, Y! is essentially the graph of a measurable function, and one
can show that Y'! is a measurable subset of X x X.

Now let N > 2. Note that

YN = {(SNCU,SN*ICU,... ,S:v,x) :xEX}
= {(SNflz,SNfzz,... ,z,w) :z,weX}
N{(y,8Nz,...,Sz,z): y,z € X}.

That is, YV = (YN 1 x X)N(X xYN~1). By the induction hypothesis,
YN~1 is a measurable subset of Hi::ol X, s0 YV is a measurable subset
of ngo X. Therefore M is a measurable subset of the infinite product
o-algebra, as required.

Now since S is nonsingular, v o S~! < v. Let h be the Radon-
Nikodym derivative. Then h is a measurable function on X, and
0 < h < +oo for almost every (v), since v < v o S7'. In [3], Lambert
proceeds in the following way. He defines a sequence of functions:

HoEl

1
(hoS)(z)---(hoS™)(x)

H,(z) =
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for n > 1. H, is defined almost everywhere since A > 0 almost
everywhere and is measurable since h and S are. Note that

H,oS

Hui1 = hoS

for all n. Lambert proves the following:

/HndI/:/ H, i dv
A S—*A

for A € B and for each n and each k =0,1,2,... .

Lemma.

Proof. By induction, it is enough to show the lemma for k = 1. We

have:
H,oS H
H, dl/:/ n dl/:/—nd voS~!
/s—lA o s-14 hoS ah ( )

A h A

as desired. Also, note that
/ H,dv=1
X

for every n. This is easy to show by induction:

/ Hoduz/ ldv =1.
b'e X
Furthermore,

/ Hn+1 dl/:/ Hn+1 dv
X S-1X

= / H, dv (by the lemma above)
b's

=1 (by the induction hypothesis).

Lambert defines a set function m on certain cylindrical sets in M and
tries to show directly that m extends to a measure on M. I choose to
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define m on the whole product space in the following way: define a
measure my on the finite product space HnN:0 X by putting

my(Ag x A1 x -+ x Ax) =mp ((Ag x Ay x -+ x Ay)NYY)

:/ Xs-N A4gnS—(N-1) Aynnay HN AV
X

for Ag, Ay,..., Ay in B. I want to show that my is a measure on
Hivzo X. To do so, it is enough to show that my is countably additive
on rectangles. Suppose that
“+ o0
Ag x Ay x - x Ay = [ (Af + 4] x -+ x AY)
i=1
is a disjoint union. Then

—+o00
(Ag x Ay x --- x AN)NYN = U (A x AL x - x AY) nYN.
i=1
This union is also disjoint. Note that
(SNZN,SN_I.I'N,... ,xN) €Agx Ay x -+ X An

if and only if
ey €S NANS VA NN Ay,
We therefore have that
S™NAy NS~ W=A N NAy

—+oo
-U (S—NAg NS~ (N-D4gin...n A§V)
i=1
and this union is disjoint. Therefore, by the monotone convergence
theorem,

mN(A() X A X - - X AN) :/ XS*NAOOS*(N*UAlﬂ---ﬂANHN dv
X

—+o00
:/ ZXS*NAgﬁ---ﬁAgvHNdV
X =1

+oo
:Z/ XS—NAim_,,mAi HNdl/
0 N
i=1YX

+oo
= my (A) x Al x -+ x Ay).

i=1
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Therefore, my is countable additive on rectangles and thus extends to
a measure on H,]Lo X.

Moreover, note that the mpy form a compatible sequence of measures,
that is,

my+1(Ao X -+ X Ay X X) =mp(Ag X -+ X An).

This is because

my41(Ag X -+ x Ay x X) = / X5—(N+1) ggn---nS-1Axnx HN41 AV
X

= / XS—l(S—NAoﬁ---ﬂAN)HN—i-l dv
X

= / Xs-NAgn.-nay Hn dv
X

(by the lemma, since S is measurable)

:mN(on---XAN)

Therefore, by the Daniell-Kolmogorov theorem [5, Theorem 5.1], since
a product of standard Borel spaces is standard Borel, the my extend
to a unique measure m on the infinite product space.

From the way m is constructed, we see that m is zero outside of M.
We have, moreover, that m(M) = 1, since:

m(ZN)_m<YN>< ﬁo X>_mN(YN)
n=N+1
=my (X x---x X)nY")

:/ XstXm...mXHNdVZ/ Hydv=1.
X X

Therefore m(M) = limy_, 0o m(ZV) = 1. Let ¥ be the o-algebra of
measurable sets of the product space intersected with M. Then I have
a measure space (M, 3, m).

Now I need to define T" on M so that T is an automorphism extending

S. Put
T(.Z‘o,xl,ZQ,...) = (Smo,.l'o,.l'l,...).
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Then T is easily seen to be bijective. Note that

T_l(y07y17y27"') = (ylayZa"') for (y07ylay2a"') € M.

I claim that 7' is an automorphism. To show this, begin by noting that
3 is generated by sets of the form

(A)p=(Xx xXxAxXx---)NM
={z = (xg,21,...) € M : z, € A},

where A € Band n = 0,1,2,.... Therefore, to show that T is an
automorphism, it is enough to show that 7! and T send sets of this
form to measurable sets. We have, for n > 1,

T71(4), = {Tﬁlx P Ty, € A} ={(z1,22,...) : zp, € A}
={y= (Yo, y1,--.) 1 Yn—1 € A} = (A)p—1.

For n =0,
T YA), ={(z1,...): 20 =Sz, € A} = (SilA)O.
Also, for any n,

T(A)p ={Tz: z, € A} = {(Sxg, zo, z1,...) : Tn € A}
={reM:z,1 €A} =(A)ny1.

This shows that T~! and T are measurable. Moreover, T is actually
nonsingular, since for n > 1,

m (T~* =m((A)p_1) = 1 dv.
(T4 (A)) = m((A)n1) /A Hoovd

On the other hand,

m((A),) = /A Hoy dv.

Since the H,, are strictly positive almost everywhere, either of the above
integrals is zero if and only if v(A) is zero which in turn forces the
other integral to be zero. Since S is nonsingular, the same argument
holds for n = 0. This shows that T is nonsingular when restricted to
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(M,%,,), where %, is the o-algebra %, = {(A), : A € B}. To show
nonsingularity for any measurable set, proceed as follows. Fix n > 1
and consider the measures mo7'~! and m restricted to X,,. We already
know that

m (T A),) = m((A)n 1) = [ s dult)
(by the lemma). On the other hand,

m((A),) = /AHn(t) dv(t).
Now think of v as a measure on (M, X,,); that is, put v,((4),) = v(4),

and for ¢ = (z9,21,...) € M put H,(z) = H,(z). Then v, is a
measure on (M, 3,,), and it is easy to see that

m (T1(4),) = /AHn,l(xn)dy(xn)

:/ ﬁn,l(m) dv,(z),
(A)n
where x = (zg,z1,...) € M. Also,

m((A)n) = /( @) a).

Therefore, we have three equivalent measures mo7 !, m, v, on (M, %,,)
and

d (m o T_l)
dm

(@)= W) ) oy
ﬁn,l(m) _ H, 1(zp)
1/(h(@n—1) - - h(z1))
1/(h(zn-1) - - h(z1)h(20))
(by definition of H,,—; and H,)

dvn

= h(zo)
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For n = 0, we have
m (IT71(A)g) =m ((S7'4),)
= /SflAHO(wO)dV(xO) =/ h(zo) dv(zo)-

A

On the other hand,

m((A)O):AHo(wo)dV(xo):Aldy(xo).

Therefore we have
d(moT™ 1
%(ﬂf) = h(zo)

on (M, %) as well. This shows that, for any n,
o) () = [ | b)) dma)

(mo : M — X is the projection onto the first coordinate). Since the
(A),, generate ¥ and h(m(z)) > 0, by approximation we get that, for
any E € X%,

(moT(E) = [ him(e) dm(z).

Therefore, m o T™! < m, and (d(m o T~1)/dm)(xz) = h(m(x)).
Similarly, for fixed n,

m(T(A),) = /A Hy1 (0n) do ()

1
-/, R(on )~ h(zo)h(Sag) © ")

Also,
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Therefore,

d(moT) 1 1

dm (=) = h(Szo)  (hoS)(mo(z))

The above Radon-Nikodym derivative is independent of n and so again
by approximation, for any E € X,

m(T(E)):/EWl(m(x))dm(x).

That is, m o T < m, or m < m o T~!. Therefore, T' is nonsingular.
Note that if S is measure-preserving, the H,, are all equal to 1. In that
case, T' is also measure-preserving, by the above.

What is the desired decomposition (? Define an equivalence relation
on M by putting z ~ ' if and only if zy = x{,. This relation gives rise
to a partition ¢. Then

MI¢ = {[(zo,...)] : zo € X }.

I claim that ¢ is exhaustive with respect to 7. One way of proving
this is to show that any point of M can be obtained as an intersection
N1 C,, where C,, € (. Let z = (20,21,...) € M. Let Cyp =
[(z0,--.)]- Then z € Cy. Let Cy = [(21,...)]. Then

TCy ={y = (yo,y1,---) : Yo = 20,y1 = 21}

Note that Cy D T'C; and that z € T'Cy. In general, put C,, = [(2n,.-.)].
Then T"C, = {y € M : yo = 20,.-. ,Yn = 2n}. This gives that
T"C,, € ¢ and NFXT"C,, = {2} as desired.

Now define ¢ : M|¢ — X as @[(zo,...)] = @o. ¢ is clearly bijective.
Note that
M

I

M|¢ —5— X

where my(zo, 21,...) = 2g. @ is indeed an isomorphism. Given A € B,
we have that =1 A is measurable if and only if H 3 1o=1 A is measurable
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in M. But H: "o ' A =m; 1A = (A) € E. Also,

ule 1 4) = m (Ho Yo 1 A) = m((A)o)
= / Hydv =v(A).
A

On the other hand, let A be measurable in M|(, that is, HC_IA is
measurable in M. We have m (HC_IA) = @A. Since m is concentrated
on M, p(A) x X x X x --- differs from the measurable set (p(A4) x X x
X x---)NM = H; ' A by a set of measure zero and hence is measurable
in the product space. Therefore, ¢(A) is measurable in X and

v(p(4)) = m((pA)o) = m (e A) = u(A).

So ¢ is a measure-preserving isomorphism. That is, M|¢ ~ X. Finally,
note that
T[(zo,...)] C [(Sxzg,...)].

Therefore, T¢[(xo,...)] = [(Szo,...)], making the following diagram

commutative: T
M| ——— M|¢

That is, Ty ~ S. Therefore, 1" is a natural extension of S, and the
theorem is proved. ]

It is to be noted that the original measures and the choice of the H,,
play an important role in the nature of the extension, although once
the choice is made, the extension measure is unique. As we discussed
earlier, Dajani and Hawkins [2] point out that even equivalent but
noncohomologous measures can give rise to different natural extensions.
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