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THE EXTERIOR PROBLEM IN THE PLANE
FOR A NON-NEWTONIAN INCOMPRESSIBLE
BIPOLAR VISCOUS FLUID

HAMID BELLOUT AND JINDRICH NECAS

0. Introduction. The problem of steady flow of an incompressible
fluid past a fixed body €' in RZ?, as modeled by the Navier-Stokes
system, has been extensively studied but is still mostly unresolved.

Using the Navier-Stokes equations to model this flow gives rise to the
system:

(0.1) Av —vVv—-Vp=10

(0.2) V-v=0

(0.3) v=0 ondQ

(0.4) lim v(z) =ve
|z| =00

Léray has proved in 1933 (see [12]) the existence of a function which
satisfies in a weak sense (0.1), (0.2) and (0.3). However, it is not known
yet whether or not the weak solution constructed by Léray satisfies the
boundary condition (0.4) (see [9] for example). R. Finn and D. Smith in
[3] have resolved the situation under the additional condition that |v|
be small enough. However, to this day and in spite of much talent and
effort devoted to it, the question of existence of a solution to problem
(0.1)—(0.4) is still open. For a more complete bibliography as well as a
discussion of the different results, see the review paper by J. Heywood
[9] and the references therein.

The Navier-Stokes model of fluid flow is based on the Stokes-
hypothesis, which simplifies and restricts the relation between the stress
tensor and the velocity. By relaxing the constraints of the Stokes hy-
pothesis, the mathematical theory of multipolar viscous fluids gener-
alizes the usual Navier-Stokes model in three important respects: it
allows for nonlinear constitutive relations between the viscous part of
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the stress tensor and velocity gradients; it allows for a dependence of
the viscous stress on velocity gradients of order two or higher; and it in-
troduces constitutive relations for higher order stress tensors (moments
of stress), which must be present in the balance of energy equation as
soon as higher order velocity gradients are admitted into the theory.

This constitutive theory was shown to be compatible with all known
thermodynamical processes and the frame indifference principle (see [2,
5, 6, 11, 16, 20] and the references therein).

In [2] we considered the plane Poiseuille flow within the framework
of this model, and it was found that the velocity distribution profile
predicted by the model was in agreement with the experimental results,
see [18, p. 599]. One of the directions in which we are continuing the
work of [2] is to consider some of the classical flow problems within the
framework of the multipolar non-Newtonian theory.

Here we consider, within this framework, the classical problem of
stationary flow past a body in the plane. We show that this problem
has a solution. We also show that this model predicts the existence
of a drag on the immersed body and thus does not suffer from the
D’Alembert paradox.

We will, in subsequent work, study properties of this solution and
investigate the questions of wake and stream lines, etc.

Let Q' be a simply connected bounded domain of R? with smooth
boundary I'. Set 2 = R2\§/. We are interested in the flow of a fluid
around the body €2'. Within the framework of bipolar non-Newtonian
fluids, the motion is then described by the equations

_ 0 0 Ov; o op
(0.5) L(v) = 1 oz, Aeij — oz, (v(v)eij) +v; oz; " oz, in
(0.6) divv=0 inQ
(0.7) v=0 onTl
(0.8)

0
0.8 (6—d:keij>yjykn =0 onTl

(0.9) lim v(z) = va, = (3)

|z| =00

(0.10) lim D?*v(z) =0

|@] =00
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where v is the velocity vector field, p is the pressure, v is the interior
unit normal vector to €', 7 is the unit tangent vector to Q' and e;;
are the components of the rate of deformation tensor defined by

o 1 6%' 61)]'

Remark 1. We recall that the theory of bipolar fluid flows postulates
the existence of a new higher order stress tensor 7;j, = p1(0e;;/0zk),
which expresses a momentum of the fluid (for details, see [5, 6, 16]
and [2]). The classical stress tensor is, in our case,

Tij = —pij + v(V)eij — p1le;
and we get for 02, u, v smooth enough, satisfying the nonslip condition
(0.7) and the incompressibility condition (0.6):

87’,']'

eij(v) eij(u)
sdr = — AN U g
anju v ! a Oz Oz v

- /Qv(v)eij (V)eij(u) dz

8’11,1'

—l—/ Tiik(V)Viv, — dS.
a0 J ( )J 81/

The boundary condition (0.8) follows from the assumption that the
above surface integral vanishes for all u satisfying (0.6) and (0.7).

The function 7 is taken to be
(0.12) Y(v) = poles(v) - ei5(v))
sand g, 41, A are positive constants and a € (0,1).

It should be noted that if we set & = 3 = 0 in (0.5) and po = 2 in
(0.12), then (0.5) reduces to the usual Navier-Stokes equations (0.1).

We will use the notations

0%u; 2
2 2 — (3
D u|L2_Z//(8mjaxk) da

(0.13) ok

||Du|zsz§//\

dr.

3ui
81‘]'
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Elementary algebraic estimates yield that there exists a constant ¢ such
that for all u

d o 2u; \°
. —e;:(u) - —e;i(u) >
01) e axke”(“)—c;f G )
(0'15) ’7( )elj( ez_] > CP/OZ|GU |2 .

Next we introduce some functional spaces
Hy()={u:u=0onT,divu=0,Vue L* %(Q)}
V ={u;u € H,; D*u e L*(Q)}
Vs = {u € V; such that supp u is bounded}.

We will need the following Korn inequality.

Lemma 1.1. There exists ¢ > 0 such that for allu € V,

(0.16) //Z|e” )2~ dz > c||Dul[332,.

For a proof see [10], for example.

We wish to transform the problem (0.5)—(0.10) into an equivalent
problem with homogeneous boundary conditions. For this purpose we
recall (see [8], for example) that there exists a function w(z) defined
in Q and such that

(0.17) w(z) = <_0A> for |z] < M,
(0.18) w(z) =0 for |z| > My,
(0.19) divw =0 inQ

and w € C®°(Q).

Furthermore (see [13, p. 103], for example), for all £ > 0 we can
choose w such that for allu e V

(0.20) Z//ﬂ (wj, ui)* dz < ¢||Dul[Z2(q,, )
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where Qpr, = QN B(0, My).

Setting u = v — v, — w we then have that u satisfies:

(0.21) Llu+ve +w)=-Vp inQ
(0.22) u=0 onT
(023) (%eij>ujukn =0 onTl
(0.24) lim u=0
|z|—o00

(0.25) lim D?u=0

|@|—o00
(0.26) divu = 0.

The precise meaning of the equalities above will be given later.

Definition 1.1. A function u is said to be a weak solution of
(0.21)—(0.25) if u € V, u satisfies (0.23)—(0.25) and for all v € V

021 [[ 2t wesswt wheiy(v) de

0 0
+/,L1 \//s:2 a—mkeij(u—}-w) . 6—wkeij(V) dxr

—l—//(u—i—voo—l—w)jm-vidw:O
Q 6£Ej

In order to prove the existence of a solution, we will first show the
existence of a solution u?V in a truncated domain Qx = QN B(0, N),
then let IV go to infinity and prove that the limiting function u is a
weak solution.

1. Solution in the truncated domain. Let B(0,N) = {z €
R%|z| < N}. We will assume that N is large enough so that
N > M; > M, > diameter ('), and set Qny = QN B(0,N). We
intend to show the existence of a function u’¥ which satisfies

(1.1) uV e WH2(Qn) N W, (y); divae =0

(12) (a%eij(uN)> VijVEpT; = 0 on 6QN
k
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and such that for all v € W22(Qy) N W,y () divv = 0;
(1.3) // YN + w4 v )eij (U + W+ Voo )eij(v) d
Qn
0 N 0
+ —eii(u” +wWHvy) 7—e;i(v)de
i [ gareat ) a-ei(¥)

N
// ul +W+Ve)j 6( +W) -v;dz = 0.

We start by establishing an apriori estimate.

Theorem 1.2. There exists a constant C independent of N such
that any solution u® of (1.3) satisfies:

(1.4) //QN(D2uN)2d$+/QN(DuN)2_°‘ dx < C.

Proof. Setting v = u® in (1.3), it follows that
(1.5) //'y(uN +w)ej(u +w) - e(u +w)dr
0 0
b [ e 4 w) g (e (0 o+ w)) da
// u +w)eij(u +w) - e (w)dzx
/ —e uV +w)- 0 —e;j(w)dz
k 6$k 17

//u va +w); 20 I;er)’ u¥ dx ‘

+

Since (while the summation convention over repeated indices is used
throughout the paper, it is not used in the next expression)

0

) 5/ 0 2
9 N 9 <00 9 o (uN
\ e+ w) axkew<w>\_2(6xkeu<u +w>)

+i i ( ) ’
265\ 9z 9\ )
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‘ //V(HN +weij(u +w)-ei;(w) do

<Y (erdlles; (uN + w252, + 107 Y|ei; (w)]1232)

ij

we deduce from (1.5), (0.14), (0.15) and Lemma 1.1 that, for some
positive constants c¢; and cs,

cz/QN(Dz(uN +w))?dz + ¢y //QN(D(uN +w))> *dzx
< be) [[ A+ wies (@ wes ¥ + w)do

0
+u1<1——>//8 eij (0¥ +w) - o —e;j(ul +w)dz

2

) +615a 1Z||€’LJ Lz a
L2

+ b(u + W + Voo, u¥ +w,ul)

b(f, g, h //fjag’hd

Integration by parts yields that b(u® +w + v, u’¥,u’¥) = 0, hence

§N1—

Fagco

where

b(uV + w + v, uy +w,ul)
= b(W + Voo, w,u™) + b(u”, w,u’)
Since Ow; /Ox; has a fixed support (independent of N) we have that:

(1.6) |b(W+ Voo, W, uN)|

1 ow; ||?
< S0 |y + 5119 + Vool B 52|
illL
1 8’11),' 2
S036||D2UN‘|2L2(QM2)+g||w+voo|\%oo ol I
J L

where c3 depends on I', Ms but not on V.
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From (0.20), we deduce that
(17) |b(uN,W, uN)| < EHDuNHiz(QMZ) < EC7||D2uNHiz(QM2)

where c7 is independent of N. Choosing ¢ and ¢ small enough, it then
follows from (1.5) that there exists C(¢, d, u10, f11), independent of N, u’v
such that

1D*u™ |22 (qy) + 1D [[72% o) S O

We will use the Galerkin method to prove the existence of a solution
u?. In order to introduce the needed basis we define the space

(1.8) H={u:uecW>(Qy)NW,?Qy);divu = 0}.
In H the scalar product is taken to be

() = | a%eij(m D) da

L

We will denote by (w,1) the usual L? scalar product.

Lemma 1.3. The eigenvalue problem

(1.9) (w, ) = Mw, %), VpeH

has a sequence of solutions W' € H N C>®(Qx) corresponding to a
sequence of positive eigenvalues X\;. Furthermore,

1. ((0/0zk)ei;(W")) vk =0 for alll on 0Qy;

2. The sequence W' is a basis for the closure of H under the L>
norm;

3. The sequence W' is a basis of H;
4. (Wl,Wk) = Jlk-

Proof. This is a standard consequence of the estimate (0.14). o
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Now, for K fixed, let uV'X € Ex = Span {W! ... WK}

K(z) = ZAlWl(x)
1=1

be the solution of
(1.10) // YN E 4w 4 v e (0N +w v e (v) da
Qn
// B Ci (0 W A Vo) - 2 (v)da
QN 6

N,K
// NK—i-w—i—voo) 8( p. +w)i ~v;dz =0
QN 7

for all w € Fk.
Lemma 1.4. The problem (1.10) has a solution u’-%.

Proof. The existence of the solution u’V'¥ can be established using

Lemma 1.4, page 164 of [19], which we recall here for convenience:

Lemma 1.5 (see [19]). Let X be a finite dimensional Hilbert space
with scalar product [-,-] and norm [-], and let P be a continuous mapping
from X into itself such that

(1.11) [P(£),E] >0 for€]=A>0.

Then there exists £ € X, [€] < A, such that P(§) = 0.

We set X = Ei and define P by

PV = [[ 5ot w) ey (v) de
// (u+w)e;j(u+ w)e(v) de

+bo(u+w+ve,u+w,v)
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for all u,v € Ex. The continuity of P is clear; also, proceeding as in
the proof of the a priori estimate, it can be shown that there exists ¢
(independent of K and N) such that if [P(u),u] < 0, then ||u|| < c.
Therefore, if A > ¢, condition (1.11) of the lemma is satisfied. Hence,
there exists a solution u™ X to the problem (1.10). o

Since (1.10) holds for v = u™¥ the solution u™ ¥ satisfies the apriori
estimate of Theorem 1.2. In particular, there exists ¢ independent of
K such that

HDZUN’KHLZ(QN) S C.
Hence for fixed N the sequence u™'¥ is weakly compact in W22(Qy) N
Wy (2w), from which the following existence theorem can be deduced
by letting K — oo in (1.10) and the use of standard arguments.

Proposition 1.1. The problem (1.3) has a weak solution u¥ € H.

Next we state and prove a regularity result for the solution u’v.

Proposition 1.2. Let u¥ € H be a weak solution of (1.3). Then
uV € W3%(Qn) and satisfies the boundary condition

(6/6$k)6ij(uN)le/kTi = 0.
Moreover, there exists pN € L*(Qx) such that uy satisfies

(1.12) LuN + v +w) = -VpY  inQy.

Proof. That u" satisfies (1.12) is an immediate consequence of (1.3)
and the De Rham theorem (see [4, 17], for example).

Since ul¥ € Wy *(Qn)NW22(Qy) and is divergence free, there exists
a unique function ¥V (z,y) € W32(Qy) such that

u = (—u), vl

(1.13) \I/N‘ =V, oV ~0
r |z|=N
\I/N
(1.14) ot
on o0
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Substituting (—¥J', ¥XY) for u" in the partial differential equation and
taking the curl, we find that

— i AN = (’y(uN +W+Voo)€2j(uN + W+ vy))

amlawj

2

B 8I28Ij

(v + W+ vao)er; (U + W+ Vo))

o(uN +w)s
Oz )
o(uN +w);
Oz )
92 92

+ H 8$18$j Aer (W) B 81,‘2(9$j

9 (N
(1.15) —|—a—$1<(u + W+ Vo)

0

Aelj (W)

From the regularity of u”, w the righthand side is in W~22(Qy),
whence A3UN € W=23(Qy).

Using that (U, A3TN) € W32(Qy) x W 23(Qn) we deduce
via duality, in the usual fashion, that we can define 9*¥" /gv? €
W~1/22(0Qy). Therefore, the traces of all third order derivatives of

UV are defined, and the traces of all second order derivatives of u” are
defined. From (1.12) and (1.3), it then follows that

0
/ e"j(“N)Vijez’j(V) do=0, VveH.
00N Oy,

By Theorem 3.2 of [7] it follows that the tangential component of the
vector (9/0xy)e;;j(u” )vjvy is 0, which yields the boundary condition

0
(116) a—mkeij(uN)VjI/kTi b =0.
It follows now that ¥ satisfies
QA\IIN =0.
ov 20N

Now from the regularity theory of elliptic partial differential equations
(see [14, 15], for example), we have that ¥V € W*2(Qy), which then
yields that u™ € W32(Qy) and pV € L2(Qy). O
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2. Existence of a solution for the unbounded domain case.

Proposition 1.3. There ezists a constant ¢ > 0 independent of N
such that

(21) ||uN||L4/a72(QN) S C.

Proof. This is a direct consequence of estimate (1.4) and the estimate

l[allza(e) < cl|Vul|Lr(a)
with 1/p—1/2=1/q. (See [19, p. 158], for example.) o
From (2.1) it follows that the sequence u” has a subsequence, denoted
also by u?, which is weakly convergent in L*/* 2(Q) to a function
u. Using the estimate (1.4) and a diagonal process, there exists
a subsequence, which will again be denoted by u”, such that u®

converges strongly to u in W,2?7%(Q) and weakly in W>2(Q). From
(1.4), it follows that

(2.2) //Q(Dzu)2dw+//ﬂ\Du|2’a do < c

and, from (2.1), that

(2.3) // lu|*"2dz < c.
Q

Going to the limit in (1.3), we then find that

(2.4) //Q Y(u+w+ve)ej(u+w+ve) - e5(v)de

8 661']'

+//(u+w+voo)j(8(u+w+voo)i ~vidr =0
Q an
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for all v € V4. It now follows from (2.4) that u satisfies

0 0
(2.5) w1 %Aeij(u—l—w—l—voo) — — (Y(u+W+Ve) - e (U+W+Vs))

J Oz;
0 _ Op .
+ (u+w+ve); - 6—%(u+w+voo)l = o, in Q,

where p € W~12(Q).

Since the righthand side of (1.15) is uniformly bounded in W=22(2),
it follows from local regularity results for elliptic equations that ¥~ —c™

is uniformly bounded in W;>?(Q), hence u¥ converges to u in W22(1Q).

It then follows from (1.16) that u satisfies

0
—eij(u) - vjuer| =0.
6k J J r

Lemma 1.6. 1. u e L>(Q).

2. lim, ,ou(z) =0.
Proof.

Part 1. Since u = 0 on T, it follows from (2.2) that u € L2, (Q).

loc

Assume that u ¢ L*°(). Then there exists an z, — oo such that
|u(zy)| — oo. But, since

||D2UHL2(B(zn,1)) <c ||u||L4/°‘*2(B(wm1)) <6

(c independent of n) it follows from the estimate

(2.6)  [[ullz=(B@n1)) < c(ID?ullL2(B(a,,1)) + [0l Lara-2(Bn 1))
that
[ul| L (B(an,1)) < €

where c is independent of n. a

Part 2. From (2.2) and (2.3) we have that the righthand side of (2.6)
goes to 0 as n — oo. ]
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We have thus proved the following existence theorem.

Theorem 1.7. The problem (0.21)—(0.25) has a weak solution in the
sense of Definition 1.1.

Remark 2. Condition (0.24) is satisfied in the sense of pointwise limit,
while condition (0.25) is satisfied in the sense that D?u € L*(Q2).

3. Properties of the solution. We will show that the force exerted
on the immersed body actually produces a drag. We denote by F(vo)
the force due to the motion on the body with

f(voo):/ Tijn; do
a9

where n is the unit normal vector to Q' and 7;; is the stress tensor
which in the framework of bipolar fluids is given by

Tij = —poij + v(V)eij — 2p1Aei;.

Theorem 1.8. The solution exhibits a drag force in the direction of
Voo, 4-€.,
F(Voo) " Voo > 0.

Proof.

f(voo)-voo :)\/ T17j(V)’njd0'.
oY

Set vV = uN+w+v.,. Multiplying the equation (1.12) by (VN —v),

integrating by parts, and using that ’UJN(VN — V)i = 0 on 9y, we find
that

3 st mgde = [ A6esv e do

0w d
+ — € —€;; dx > 0.
u// e (V) e (V) do
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Letting N — oo yields

)\/m’ m1,;(v)n;jdo = //Ql y(v)es; (V)es; (v)
// I 38kem( )dz >0. O
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