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MOMENT PROBLEM FOR
RATIONAL ORTHOGONAL FUNCTIONS
ON THE UNIT CIRCLE

K. PAN

ABSTRACT. The Favard-type theorem for rational func-
tions orthogonal on the unit circle with prescribed poles lying
outside the unit circle are studied. We also consider the ex-
istence of sequences of orthogonal rational functions whose
zeros are everywhere dense in |z| < 1.

1. Introduction. Let du be a finite positive Borel measure with
an infinite set as its support on [0,27). We define LZM to be the
space of all functions f(z) on the unit circle T := {z € C : |z| = 1}
satisfying f027r f(e¥)|? du(f) < co. Then Liu is a Hilbert space with
inner product

o)== [ 1(6)9(@® duu(o).

:27T 0

Consider a sequence {z,} with |z,| < 1, and let

Zn — 2 z
bn(z) := 1"—_7]n and 7, := M, n=1,...,
—Zp2 Zn
where for z, = 0 we put |z,|/z, = —1. Next we define finite Blaschke

products recursively as
By(2) =1 and B,(z) =B,_1(2)b,(2), n=1,....

The fundamental polynomials wy,(z) are given by

n

wo(z) ;=1 and wy(z):= H(l —ziz), n=1,....
i=1
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The space of rational functions of our interest is defined as

p(2)

Rn:R[zl,...,zn]::{ :pEPn}, n=0,1,....

It is easy to verify that {By}}_, forms a basis of R, ie., R, =
span{By(z),k = 0,...,n}. Finally, for any r € R,, we define
r*(2) := Bn(z)r(1/z). Then it is easy to see that |r*(z)| = |r(z)|
for |z| = 1 and r*(z) € R,. For each n, we now define the rational
version of Szegd polynomials, orthonormal rational functions, ¢,(z) =
knBn(2) +bp_1Bp_1(2) + -+, forn =0,1,2,...,

¢n € Rny, Kn >0,
(pn,Br) =0, k=0,...,n—1,

The orthogonal rational functions are of constant interest to both
mathematicians and physicists. That is because of the significant rela-
tions between the studies in Hankel and Toeplitz operators, continued
fractions, moment problem, Carathéodory-Fejer interpolation, Schur’s
algorithm and function algebras, and solving electrical problems (cf.,
[8, 9, 10-13, 2-7]). One can get more information for the algebra as
well as the analysis properties of ¢,,(z) from some excellent papers (cf.,
[10-13, 2-7]). One of the properties is that the sequences {¢,(z)}
satisfy the following recurrence relation (cf. [7]):

_ Knp Z— Zp_1 1-z,12 ,,
¢n(z) - P Tn 1_ an ¢n71(z) + Sn 1_ EnZ ¢n—1(z) ’
forn=1,2,...,and 2y = 0, ¢o(2) = ko. The coefficients r,, and s,, are

given by
(1 = Zn—120) 95 (2n-1)
(L= len-1®)rn
(1 — anlzn)(z’n(znfl)
(1= |zn-1/*)kn
The goal of the paper is to study the reverse of the above argument, i.e.,

the Favard-type theorem. Given a system generated by the recurrence
relations above, can we find a measure du > 0 on [0,27) such that

Tn = —Tn

Spn =
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{¢n(z)} is orthonormal with respect to du? The proof of the Favard
theorem for orthogonal rational functions was given in [4]. We here
want to give a direct proof which uses the same ideas as in [14] for the
Szegb polynomial case.

In 1980, P. Turédn asked in [15] whether there is a system of orthogonal
polynomials on the unit circle such that the zeros of the polynomials
are everywhere dense in |z| < 1. In [1], the authors gave an affirmative
answer to this problem. In this paper we consider the same problem for
the orthogonal rational functions. We prove that there exist systems of
orthonormal rational functions such that the zeros of the orthonormal
rational functions are everywhere dense in |z| < 1.

The main results are given in Section 2, and their proofs are presented
in Section 4. Section 3 is used for citing as well as establishing some
auxiliary results that are needed in the proofs of our main results.

2. Main theorems. In this section we only state our main theorems,
and the proofs will be given in Section 4.

Theorem 2.1. Assume {a,,} € C and |a,| < 1. We define ®,(z) in
the following way:

n=0, 20 =0, Dy(z) =1, D5(2) =1.

1/”n(z): 1—z2 (I)n—l(z)"'an 1—22 n—1(z)a
®,(z) =
&)= Gaten)
Also let
1
€n = w;(zn), Ko = ]-a
and

1 — |z ?
Kn = — .
I —1lem[* (1 = |am[?)
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Then {¢i(z) = ki®;(2)}1 is orthonormal with respect to

P(z,z,) df
d n = 7L 7 N2
o g 2

i.e.,
2

o ¢k(z)¢](z) dpn, = 5k,j;

0<k, j<n, z=¢",

where P(2,2,) = (1 — |2,|*) /]2 — 2a|?.

Remark. We will prove that 9% (z) # 0 in |z| < 1 later (Lemma 3.1),
so e, is well-defined and &,, > 0.

Theorem 2.2. Let Y . (1 —|z,|) = 00 and {¢,(2)} be constructed
from |a,| <1 by Theorem 2.1. Then there is a unique measure du > 0
on [0,27) and f027r du =1 so that {¢n(2)} is orthonormal with respect
to du.

Theorem 2.3. Let >~ (1 — |2,|) = co. There exist measures du
on [0,27) such that the zeros of the orthonormal rational functions with
respect to du are everywhere dense in |z| < 1.

3. Lemmas.

Lemma 3.1. Suppose that {a,} C C and |a,| < 1. Let ¢,(2) be
constructed from Theorem 2.1, then

(i) all zeros of ¢, (2) are in |z| <1,

1- |2n‘2 "‘972171 2 2
_~ T lenl Pe-1 1_
Tt = e (1= o),

A CY) - _& 1—|zp1f?

n — mnH
Kn 1—Z,2n-1
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ndals) = p L o1 Gl )

1= zp1l? ke (1= Z.2)

an€n
- ——¢n(2).
n

Proof. (i) We only need to prove (i) holds for 1, (z). We use induction
to prove that all zeros of ¥ (z) are in |z| > 1.

Case n = 1. Notice that zg = 0 and 9;1(z) = (2 + a1)/(1 — Z12). So
the zero of ¥1(z) is in |z| < 1, hence the zero of ¥ (z) is in |z| > 1.

Suppose (i) holds for n = k, then |®4(2)/®;(2)| < 1 for |z| < 1 since
Yi(z) #0on |z| <1 and |®k(2)/®f(2)| =1 for |2| = 1. Hence,

ey o ma o) s e a)
¢k+1(z) = { (1 —5k+1z) (I)k( ) k+1 (1 — Zk+1Z) )}
- B
{1an 20508 20 k<

since |ag4+1] < 1.
(ii) The formula follows from the definition of k.

(iii) Notice that

- +an -
1—Zz,z2 EKn_1 1—Zz,2 Kn_1

$n(2) _ —Wnén{ 1—Z, 1205 1(2) 2= 21 ¢n-1(2) }

Letting z = z,,_1, then

Oh(zn-1) _ 1 |zpa|* dnoi(zn-1)
= nlin —
Kn 1- Znin—1 Kn-1
N _ 1-— |Zn,1|2
— _ennn

1-— ZnZn—1 '
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(iv) Since
Bpn 2 — Zn—1
¢n(z) = nli L 172 ¢n71(z)
En 1—2Zp_12
+enannn71 1—z,2 ¢n—1(z)
and

eliminating ¢* _,(z), we have

Kn Z2— Zn_1

Mn€ndn(2) + anendy,(2) = mlen $n-1(2)(1 = |an]*).

Kn—1 1—2Zpz

Then, from (ii), we obtain

nnén¢n(z) + anen¢;(z)
Kn—1 1 —|za* 2 —2zn-1

=Tn ¢n_1(z). O

En 1—|zn_1]? 1— 2,2

Lemma 3.2. There is a Q,_2(2) € R,_2 such that

1 — Zn-1% Zn — Zn—1

B,(z) =

Z— Zn kn(1 = |2,]?)

n(2)

_ Zn(l - anlzn)qs:;(znfl)
|2n|fin (L = [20]?)

Bn1(2) + Qn—2(2).

Proof. For z, = z,_1 the formula is immediately verified (note that
% (2n—1) = ¢%(2n) = kn). So we assume that z, # z,_1. We first
observe that we may write

1-— Zn_1% Zn — Zn—1
- cnl*p —Zn " fnl
zZ— zn n(2) 1— |z, |2

Bn(z)

1- Zn—1%n
LN SPAE

(3.1)
Bn—l (Z)



MOMENT PROBLEM 263

On the other hand,

(3.2) ¢n(2) = knBn(2) + cn1Bn-1+ -+ coBo
= knBn(z) + cn-1Bn-1(2) + Ln_2(2),
where L, 2 € R,,_2, and

Or(2) = K + Cre1bn(2) + b (2)bn—1(2) L), _o(2).
Note that b,_1(zn—1) = 0, therefore

¢:L(Zn71) = Kp + Enflbn(znfl)-

Hence,
(33) Guct = (63 (ur) — Rl L
. Cn-1 = [0}, (zn-1) — Bp)ln———.
! ! K Zn — Zn-—1
From (3.1) and (3.2), we have
1-— Zn_1% Zn — Zn—1
S oy - ) WO e o
PN )

[$n(2) = cn—1Bn-1 — Ly—2(2)]

1- Zn—1%n
- UnWBn—l(z)a

and by substitution for ¢,_; from (3.3), this gives

1-— Zn_1% Zn — Zn—1
—Bn = 7 o\Pn
Z—2n (=) fin (1 — |Zn\2)(ZS (=)
(1 — anlzn)@;(znfl)
—n, B, _
w1 = |2 ?) 1(2)
n  Znl Ln,z(z). ]

- Kn (1 — |2n]?)
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4. Proofs.

Proof of Theorem 2.1. We first prove
2m .
(4.1) or(z )¢J( z) dpn =0, J#Fk, z= e’
0

We use the backward induction for k =n,n—1,...,1,0.

Case k=mn. For 0 < j<n-1,

Crrerme % |28 e

L e (9Bae)
Sy B e)
o G,
Py Z( ) +1(2)bp—1(2)P(z, 2,,) db

¢W)
¢1.(2)
because of (i) in Lemma 3.1, ¢;,(z) # 0 for |z| < 1 and so (¢} (2)/¢},(2))
bj+1(2)bn(z) is analytic when |z| < 1.

bJ+1( )00 (2)| 2=z, =0,

Now assume that the lemma holds for some k£ < n, i.e.,

2
¢k(2)6;(2)dpn =0,  0<j<k, z=¢€"

0

We are to prove (4.1) for kK — 1. For 0 < j < k — 1. We have, from (iv)
in Lemma 1,

1-— ‘Zk|2 Kk_1

" 11(2)85 () dun

l — |Zk,_1|2 KE

2 _ =
:en/o 2T G (2)65(2) diin

Z— 2r_1

27 >
2 [T LA 05502 .
0

Nk %= Zk—1
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For the first term above we get

2T _ =
én/o ﬂ(ﬁk(z)(lb]’(z) dpin

Z = Zk—-1
2m

=en | 9k(2)95(2)

0 1—2z,

S dpn, =0,

since the induction for k and (z — zx)/(1 — Zx—12)9j(2) € Ri—1. For
the second term we have

21 —
@k /g L=k e ()65(2) dan

n 2= Zk-1

27 =
ape 1—2Zpz _
= Bi(z 2)0i(z)duy,
L [ ()30 ()

27 _ 3
_ ke / 1— %z bj1(2) b (2)dr(2)65(2) dpin
0

n 2= Zk—-1
2w
akek Rk — %
_ b e b = (2) dy,
" /0 J+1(Z) k z(Z)Uk 177k:1 — Zk_lz¢k(z)¢7(z) K
= O7

since bj11(2) -+ br—2(2)((2k — 2) /(1 = Zx—12))#} (2) € Ri—1. According
to induction, we prove (4.1).

Next we show

2w
(4.2) / lp;j(2)|Pdun =1, j=0,...,n.

0

We will use the backward induction for k =n,n —1,...,1,0 again.

Case k = n. It is easy to see, since

27 ) 1 27
/WWW%=%AP@mwﬂ.

0

Now, assume that (4.2) holds for some k < n, i.e.,

2
(43) | i =1
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We are to prove (4.2) for £ — 1. One can say that, for j =0,1,... ,n,
2

2
(4.4) I3 ll7. !=/0 6;(2) | dpn = K; ; ¢;(2)B;(2) dpin.-

Multiplying (iv) in Lemma 3.1 for n = k by Bj(z) and taking the
integral, we have
2m

& | ok(2)Bi(z) dun

0
1— |2)* kg1 /%z—zkl -
1 —|z_1]? sk Jo —— ¢—1(2) B (2) dpn

1—2zz
2w
_ k€ / ¢5(2) Br(2) dpn.
n 0

n
Notice from (4.3) and (4.4), we have
o == [l 1
z)By(2)dp, = ——= = —,
| ¢r(2)Bi(2) dp o o
and
27 2T
Or(2)Br(2)dpn = | ¢k(2) dpn =0
0 0
because of (4.1). Then we get
€k 1-— |Zk|2 Kk—1 /27r Z— Zp—1 —_—
- = — B d ny
KLk 1-— |Zk_1‘2 KE 0 1— 2,2 Z 1(Z) k(Z) H
ie.,
_ 1-— |Zk:|2 2 1—2,_ 12
45 = R e ()= B () du,.
(4.5) €k 1*|Zk_1‘2ﬁk 1 o Pr-1(2) Z— 2% k(2) dp
From Lemma 3.2, we obtain
27 =
1—2,_12
11 (2) ————B(2) dun
0 2= ZK

e 27 -
o ke / br-1(2)68(2) dpn

k(1 — |zk]?)
27

+ Pr—1(2)Qn—2(2) dpn
0

(1 -z 12k)P5(2k—1)
k(1 — |zk]?)

2m
¢r—1(2)Br—1(z) dpn.
0

— Nk
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From (4.1) and (4.4), then

27

1—2Zp 12
r—1(2) ———= By (2) dprn
0 Z — Zk
S (1 — zp_121) 0% (2k—1) lOr—1llZ,
k(1 — |2x[?) Kk—1
Combining with (4.5), we get
_ 1— |z 1— zp_12k) ¢ (2p—1
€ = | | 77k( ) k( )||¢k—1||2"-

1 zea? rk (1 — |2x?)

Together with (iii) for n = k in Lemma 3.1, we obtain |[¢x_1[/,, = 1.
We prove (4.2). This completes the proof of the theorem. u]

Proof of Theorem 2.2. The existence. Since

ot = [

is increasing and uniformly bounded, by Helly’s selection theorem and
convergence theorem, there is a subsequence {n;} and an increasing
function g on [0, 27) such that

lim 1, (6) = u(6)

k— o0
and
27 27
i [ dun @) = [ 1) dulo)
% Jo 0
for f € C(T"). Hence
27 27
LT ()85 dun(8) = tim — [ 6u(2)85(2) dian, = b1

2 0 k—oo 27 0

The uniqueness comes from the unique representation of bounded linear
functions on C(T). o

Proof of Theorem 2.3. Let {v,}52,; be a sequence of complex in
|z] <1 and dense in |z| < 1. We now define {a,}32; and {®,(2)}3,
as follows

Bo(z) =1, 2 =0,



268 K. PAN

for n > 1, define
Zn—1— Un Qn—l(vn)

I T Zavm % (vn)
and .
— 4n—1
n =——%,_
Un() = T2 (2)
].—Zn,12' *
T n-1(2),

B, () = Ln2)

Then it is easy to see that |a,| < 1 and @, (v,) = 0. From Lemma 3.1,
Theorems 2.1 and 2.2, we can find a measure du > 0 such that
{dn(2)}52, is a sequence of orthonormal rational functions with respect
to dyp and ¢, (vy,) = 0. O
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