SOME ISOMORPHIC PREDUALS OF ℓ_1 WHICH ARE ISOMORPHIC TO c_0

HELMUT KNAUST

ABSTRACT. We introduce property (FS), which asserts that a Banach space has many c_0 -"sub-decompositions," and show that if X is a Banach space with property (FS) and X^* is isomorphic to ℓ_1 , then X itself is isomorphic to c_0 .

1. Introduction. For quite some time it has been of interest to find out under what circumstances a separable \mathcal{L}_{∞} -space is isomorphic to the simplest example of an \mathcal{L}_{∞} -space, namely c_0 .

Ghoussoub and Johnson [3] showed that a separable \mathcal{L}_{∞} -space, which embeds into an order continuous Banach lattice, is isomorphic to c_0 . (This result is based on earlier results by Johnson and Zippin [6] and Rosenthal [9].)

Using isometric methods, Godenfroy and Li [5] showed that a separable \mathcal{L}_{∞} -space, which can be renormed into an M-ideal in its bidual, is also isomorphic to c_0 .

Godefroy, Kalton and Saphar [4, Proposition 7.8] showed that c_0 is the only isometric predual of ℓ_1 , which is a *u*-ideal.

In [5] the authors pose the question whether an isometric predual of ℓ_1 , which has property (u), is isomorphic to c_0 . We give a partial result in this direction:

Definition 1. A separable Banach space X has property (FS), if every shrinking finite-dimensional decomposition (F_n) of X has the following property: Every increasing sequence (m_n) of positive integers has a further subsequence (k_n) , so that (F_{k_n}) is a c_0 -decomposition for its closed linear span $[F_{k_n}]$.

We call a sequence (F_n) of subspaces of a Banach space X a c_0 -decomposition for its closed linear span, if it satisfies the following:

Received by the editors on June 10, 1994. 1991 AMS Subject Classification. Primary 46B03, 46B25.

Copyright ©1997 Rocky Mountain Mathematics Consortium

There is a constant C so that for all $N \in \mathbf{N}$, for all $(x_n)_{n=1}^N$ with $||x_n|| \le 1$ and $x_n \in F_n$ for all $n = 1, 2, \ldots, N$,

$$\left\| \sum_{n=1}^{N} x_n \right\| \le C.$$

Our main result is

Theorem 2. A Banach space X with property (FS), whose dual X^* is isomorphic to ℓ_1 , is isomorphic to c_0 .

Property (FS) is an FDD-version of property (S), which was introduced by Knaust and Odell [7]. A Banach space X has property (S), if every normalized weakly null sequence in X contains a c_0 -subsequence. It was shown in [7] that property (S) is equivalent to the following: Every weak Cauchy sequence of elements $(x_n) \in Ba(X)$ has a subsequence (x_{m_i}) , so that for some constant C,

(1)
$$\sum_{i=1}^{\infty} |x^*(x_{m_i+1}) - x^*(x_{m_i})| \le C \quad \text{for all } x^* \in Ba(X^*).$$

Thus property (S) implies property (u), where (1) holds for far out convex combinations of the sequence (x_n) instead of for a subsequence.

Let us remark that Bourgain and Delbaen [1] constructed an example of a separable \mathcal{L}_{∞} -space which satisfies the Schur property and thus properties (u), (S) and (FS). Therefore, it is necessary to restrict the investigation from separable \mathcal{L}_{∞} -spaces to isomorphic preduals of ℓ_1 .

Our notation is standard and can be found, e.g., in [8].

2. Proof of the main result. It suffices to show

Proposition 3. Let X be a separable Banach space with a shrinking finite dimensional decomposition. Then if X has property (FS), X has a finite-dimensional decomposition, which is a c_0 -decomposition (for the whole space).

We obtain Theorem 2 as follows.

Proof of Theorem 2. Let X be an isomorphic predual of ℓ_1 with property (FS). Since ℓ_1 's standard basis is boundedly complete, it follows that X itself has a shrinking basis (x_n) (see [8, pp. 8–10]). Trivially, (x_n) is a shrinking FDD; thus, X possesses a c_0 -decomposition (G_n) by Proposition 3. Consequently, X is isomorphic to the c_0 -sum of the spaces (G_n) . An \mathcal{L}_{∞} -space of this form is isomorphic to c_0 (see [9, pp. 102–103]).

Proof of Proposition 3. Let (F_n) be a shrinking FDD for X. We will show that an appropriately chosen blocking of the given FDD is a c_0 -decomposition for X.

Given an increasing sequence $M = (m_n)$ of positive integers, we let $(G_n^M)_{n=1}^{\infty}$ be the shrinking FDD obtained by setting

$$G_n^M = \operatorname{span} \{ F_{m_{n-1}+1}, F_{m_{n-1}+2}, \dots, F_{m_n} \}.$$

(Here we let $m_0 = 0$.)

We define

$$\mathcal{A} = \{ M = (m_n)_{n=1}^{\infty} \mid (G_{2n-1}^M)_{n=1}^{\infty} \text{ is a c_0-decomposition} \}.$$

The set

$$\mathcal{A}(C,N) := \left\{ M = (m_n)_{n=1}^{\infty} \mid \left\| \sum_{n=1}^{N} x_{2n-1} \right\| \le C$$
 for all $x_{2n-1} \in Ba(G_{2n-1}^M) \right\}$

is a closed (and open) set for all $C, N \in \mathbb{N}$, when the infinite subsets of \mathbb{N} are endowed with the relative topology, induced by the product topology on $2^{\mathbb{N}}$. Since $\mathcal{A} = \bigcup_{C \in \mathbb{N}} \cap_{N \in \mathbb{N}} \mathcal{A}(C, N)$, \mathcal{A} is a Ramsey set [2, 10].

Consequently, there is a subsequence $L=(l_n)\subset \mathbf{N}$ so that either $M\in\mathcal{A}$ for all subsequences $M\subset L$ or $M\notin\mathcal{A}$ for all subsequences $M\subset L$.

By property (FS), the second Ramsey alternative must fail; indeed, applying property (FS) to the FDD (G_n^L) , we find a subsequence (n_k) so

that $(G_{n_k}^L)$ is a c_0 -decomposition. We may assume that $n_{k+1} > n_k + 1$. We let

$$M = \{l_{n_1}, l_{n_2-1}, l_{n_2}, l_{n_3-1}, \dots\},\$$

and observe that $M \subset L$ and $(G_n^M) \in \mathcal{A}$.

So the first Ramsey alternative holds. Let $L' = \{l_2, l_3, \dots\}$. Both L and L' are in A. This means that there are constants C_1 and C_2 so that, for all $N \in \mathbb{N}$,

$$\left\| \sum_{n=1}^{N} x_{2n-1} \right\| \le C_1 \quad \text{for all } x_{2n-1} \in Ba(G_{2n-1}^L),$$

and

$$\left\| \sum_{n=1}^{N} x_{2n-1} \right\| \leq C_2 \quad \text{for all } x_{2n-1} \in Ba(G_{2n-1}^{L'}).$$

Since $G_{2n-1}^{L'}=G_{2n}^{L}$ for all $n\geq 2$, (G_{n}^{L}) is a c_{0} -decomposition for the whole space X. \square

3. Remarks.

- 1. Naturally the questions arise, whether ℓ_1 -preduals with property (S) have property (FS), and whether property (u) implies property (S) among ℓ_1 -preduals.
 - 2. It is easy to check that c_0 has property (FS).
- 3. Not every separable Banach space with property (S) has property (FS); indeed, we have the following example.

Example 4. There is a Banach space with a shrinking unconditional basis, which satisfies property (S), but fails property (FS).

Proof. We use a tree-space example constructed by Talagrand [11]. Let $\mathcal{D} = \bigcup_{n=0}^{\infty} \{0,1\}^n$ denote a binary tree. An element $\varphi \in \mathcal{D}$ is called a node. If $\varphi = (\varepsilon_i)_{i=1}^n$ with $\varepsilon_i \in \{0,1\}$, we say φ has length $|\varphi| = n$. As usual, we define a partial order on \mathcal{D} as follows: $\varphi \leq \psi$ if, writing

 $\varphi = (\varepsilon_i)_{i=1}^n$ and $\psi = (\delta_i)_{i=1}^m$, $n \leq m$ and $\varepsilon_i = \delta_i$ for all $i = 1, \ldots, n$. If φ and ψ are incomparable, we write $\varphi \| \psi$.

For $x \in c_{00}$, let

$$\|x\| = \sup_{n \in \mathbf{N}} \left\{ \left(\sum_{|\omega|=n} \sup_{\psi \succeq \varphi} |x(\psi)|^2 \right)^{1/2} \right\}.$$

The Banach space T is the completion of c_{00} under this norm.

Let (e_{φ}) denote the standard basis in its lexicographical order, defined by $e_{\varphi}(\psi) = 1$, if $\varphi = \psi$ and $e_{\varphi}(\psi) = 0$ otherwise. Obviously, (e_{φ}) is a 1-unconditional basis. Since ℓ_1 does not embed into T [11], it follows that the basis is shrinking. Talagrand showed that T has property (S).

We claim that T fails property (FS). Consider the finite-dimensional decomposition (F_n) , defined by

$$F_n = [e_{\varphi}]_{|\varphi|=n}$$
 for all $n \in \mathbf{N}$.

Clearly (F_n) is a shrinking decomposition for T. We show that (F_n) has no c_0 -sub-decomposition.

Let (m_n) be a subsequence of **N**. We choose inductively a sequence of nodes $\varphi_n \in F_{m_n}$. Let φ_1 be such that $|\varphi_1| = m_1$.

Once the φ_n 's have been chosen for $n=2^{k-1},\ldots,2^k-1$, we proceed as follows: Let α_n and β_n denote the two distinct successor nodes of φ_n , i.e., $\alpha_n \neq \beta_n$, $\alpha_n \succeq \varphi_n$, $\beta_n \succeq \varphi_n$ and $|\alpha_n| = |\beta_n| = m_n + 1$. Then choose φ_ℓ , $\ell = 2^k, \ldots, 2^{k+1} - 1$ so that $|\varphi_\ell| = m_\ell$ for all $\ell = 2^k, \ldots, 2^{k+1} - 1$, and so that $\varphi_{2n} \succeq \alpha_n$, $\varphi_{2n+1} \succeq \beta_n$ for $n = 2^{k-1}, \ldots, 2^k - 1$. The construction ensures that $\varphi_{2n} \| \varphi_{2n+1}$ for $n = 2^{k-1}, \ldots, 2^k - 1$, and that $\varphi_n = \min(\varphi_{2n}, \varphi_{2n+1})$ for $n = 2^{k-1}, \ldots, 2^k - 1$, i.e., whenever a node $\psi \in \mathcal{D}$ satisfies $\varphi_{2n} \succeq \psi$ and $\varphi_{2n+1} \succeq \psi$, then $\varphi_n \succeq \psi$.

Clearly, $e_{\varphi_n} \in F_{m_n}$ and $||e_{\varphi_n}|| = 1$ for all $n \in \mathbb{N}$; on the other hand, it is easy to see that

$$\left\| \sum_{n=2^k}^{2^{k+1}-1} e_{\varphi_n} \right\| \ge 2^{k/2} \quad \text{for all } k \in \mathbf{N}.$$

Thus (F_{m_n}) fails to be a c_0 -decomposition.

REFERENCES

- 1. J. Bourgain and F. Delbaen, A class of special \mathcal{L}^{∞} -spaces, Acta Math. 145 (1980), 155–176.
- 2. E.E. Ellentuck, A new proof that analytic sets are Ramsey, J. Symbolic Logic 39 (1974), 163-165.
- **3.** N. Ghoussoub and W.B. Johnson, Factoring operators through Banach lattices not containing C(0,1), Math. Z. **194** (1987), 153–171.
- 4. G. Godefroy, N.J. Kalton and D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13–59.
- $\bf 5.~$ G. Godefroy and D. Li, Some natural families of M-ideals, Math. Scand. $\bf 66$ (1990), 249–263.
- **6.** W.B. Johnson and M. Zippin, On subspaces of quotients of $(\Sigma G_n)_{\ell_p}$ and $(\Sigma G_n)_{c_0}$, Israel J. Math. **13** (1972), 311–316.
- 7. H. Knaust and E. Odell, On c_0 sequences in Banach spaces, Israel J. Math. 67 (1989), 153–169.
- 8. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Springer-Verlag, New York, 1977.
- **9.** H.P. Rosenthal, A characterization of c_0 and some remarks concerning the Grothendieck property, in Longhorn Notes 1982–83, The University of Texas, Austin, 95–108.
 - 10. J. Silver, Every analytic set is Ramsey, J. Symbolic Logic 35 (1970), 60-64.
- 11. M. Talagrand, La propriété de Dunford-Pettis dans C(K,E) et $L^1(E)$, Israel J. Math. 44 (1983), 317–321.

Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX 79968-0514, USA

 $E\text{-}mail\ address: \texttt{helmut@math.utep.edu}$