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ON THE EIGENVALUES OF
BOUNDARY VALUE PROBLEMS FOR
HIGHER ORDER DIFFERENCE EQUATIONS

PATRICIA J.Y. WONG AND RAVI P. AGARWAL

ABSTRACT. We consider the boundary value problem

A"y +AQ(k,y, Ay, ... ,A"2y) = AP(k,y, Ay,... , A" y),
n>2 0<k<N,
Aly(0) =0, 0<i<n-—3,
aA" 2y (0) — BA™"1y(0) = 0,
YATT2Y(N 4+ 1) + A" 1y(N 4+ 1) =0
where A > 0, o, 3,7 and ¢ are constants satisfying ay(N +
H+ad+pBy >0, av>082>0andd > ~. Upper and

lower bounds for A are established for the existence of positive
solutions of this boundary value problem.

1. Introduction. Let a,b, b > a, be integers. We shall denote
[a,b] = {a,a + 1,...,b}. All other interval notation will carry its
standard meaning, e.g., [0,00) denotes the set of nonnegative real
numbers. Also, the symbol A’ denotes the ith forward difference
operator with stepsize 1.

In this paper we shall consider the nth order difference equation

(1 ]_) Any + AQ(k:7 y7 Ay? st 7An_2y) = AP(k:7 y7 Ay7 st 7An_1y)7

k € [0,N]
and the boundary conditions
(1.2) Aly(0)=0, 0<i<n-3,
(1.3) aA™ 2y (0) — BA™ 1y(0) = 0,
(1.4) YA 2y(N 4+ 1) + A" y(N +1) =0
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where n > 2, N(> n — 1) is a fixed positive integer, A > 0, a, 8,7 and
é are constants so that

(1.5) p=ay(N+1)+ad+py>0
and
(1.6) a >0, v >0, B8 >0, d0>7.

Further, we assume that there exist functions f : [0,00) — (0, 00)
and p,p1,¢,q1 : [0, N] = R such that

(i) f is nondecreasing;

(ii) for u € [0, 00),

Q(kv U, ULy - -y un72)

q(k) < ) < qi(k),
P(k,u,ul,... 7un—1)
plk) < o < pi(b);

(iii) g(k) — p1(k) is nonnegative and is not identically zero for k €
[0, N].

We shall characterize the values of A\ for which there exists a positive
solution of the boundary value problem (1.1)—(1.4). By a positive
solution y of (1.1)—(1.4), we mean y : [0, N+n] — R, y satisfies (1.1) on
[0, N], y fulfills (1.2)—(1.4), and y is nonnegative on [0, N + n], positive
on [n—1, N+n—2]. If, for a particular A, the boundary value problem
(1.1)—(1.4) has a positive solution y, then we shall call A an eigenvalue
and y a corresponding eigenfunction of (1.1)—(1.4).

The motivation for the present work stems from many recent in-
vestigations [1-15]. In fact, for the special case A = 1, applications
of (1.1)—(1.4) and its continuous version have been made to singular
boundary value problems by Agarwal and Wong [2, 14]. Further, as-
suming that f is either superlinear or sublinear, existence results for
positive solutions (when A = 1) have also been established by Wong
and Agarwal [15], as well as by Eloe, Henderson and Wong [5] in the
continuous case. For a general A > 0 we refer in particular to [3, 4,
8-10]. In all these papers, particular cases of the continuous version
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of (1.1)—(1.4) are considered. For example, in [9], Fink, Gatica and
Hernandez deal with the boundary value problem

'+ (@) f(y) =
y(0) = y(1
Their results are extended in [10] to systems of second order boundary

value problems. In [3] and [8] the authors tackle a different boundary
value problem

v+ (N = 1)/x)y + M(z)f(y) =0, = €(0,1),
y'(0) =y(1) = 0.

Recently, Chyan and Henderson [4] have studied a more general prob-
lem than (1.7), namely,

(L) (; z € (0,1),

(1.8)

¥+ Xq(2)f(y) =0, =z €(0,1),

1.9 )
( ) y(’)(O):y(”fz)(l)ZO, 0<i<n-—2.

Our results not only generalize and extend the known eigenvalue
theorems for (1.7)—(1.9) to the discrete case, but also include several
other known criteria discussed in [1].

Throughout, we shall let
E={\>0](1.1)-(1.4) has a positive solution}.

We note that F is the set of eigenvalues of (1.1)—(1.4).

The plan of this paper is as follows: In Section 2 we shall present some
properties of a Green’s function which will be used later. In Section 3
we define an appropriate Banach space and a cone so that the set F
can be characterized.

2. Preliminaries. To obtain a solution of (1.1)—(1.4), we need a
mapping whose kernel g(7,7) is the Green’s function of the boundary
value problem

—A"y =0, Ay(0) =0, 0<i<n-—3,
aA™ ?y(0) — BA™ 1y(0) =0,
YA 2y(N 4+ 1) + A" ty(N +1) = 0.
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It can be verified that
G(i,j) = A" %g(i,§), wrt. i
is the Green’s function of the boundary value problem
—A%w =0, aw(0) — BAw(0) =0,
yw(N + 1)+ §Aw(N + 1) = 0.
Further, we have [14]

L[ ral+ BN -] jelni-1)
@) 660 = {5 s v o) j il

We observe that the conditions (1.5) and (1.6) imply that G(i,j) is

nonnegative on [0, N + 2] x [0, N] and positive on [1, N + 1] x [0, N].
Lemma 2.1 [15]. For (i, j) € [1, N] x [0, N], we have

(2.2) G(i,j) =2 KG(j,))

where 0 < K < 1 is given by

(B+)(d+1)

(2:3) K= G ramG+n)

Lemma 2.2 [15]. For (4,5) € [0, N + 2] x [0, N], we have
(2.4) G(i,j) < LG(j,J)
where L > 1 is given by

(2.5) L= {gﬁ +a)/B g § g

We shall need the following notations in Section 3. For a nonnegative
y which is not identically zero on [0, N|, we denote

6=> GDa) -pO)f (1)
=0
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and
N

r=3% &) -~ pOlf D).

=0

In view of (i)—(iii), it is clear that § > I' > 0. Further, we define the

constant
_ KT

§= 25

It is noted that 0 < £ < 1.

3. Main results. Let B be the Banach space defined by
B={y:[0,N+n] —R|A(0)=0,0<i<n-—3}

with the norm ||y|| = max,e[o,n42) |A"?y(k)|, and let

C= {y €B ‘ A" ?y(k) is nonnegative and is not identically zero

on 0.+ 205 min_ A"=y(k) > €[yl }

be a cone in B. Further, we let

Cu={yeCllyl <M}

Lemma 3.1 [15]. Let y € B. For 0 <i < n— 3, we have
(n—2—1)

mHyH,

kel[0,N+n—i.

) INTOIE

In particular,

) (n=2)
(3.2) ly(k)| < %mn, ke[0,N +nl.

Lemma 3.2 [15]. Lety € C. For 0 < i <n — 3, we have

(3.3) Aly(k) >0, ke[0,N+n—i



772 P.J.Y. WONG AND R.P. AGARWAL

and

(3.4) Al (k)>w§” l, E€[l,N+n—2—i
) g\ = (n—2—1)! vl ’ " '

In particular,

(3.5) y(k) = &llyll, ken—1,N+n-2].

Remark 3.1. If y € C'is a solution of (1.1)—(1.4), then (3.3) and (3.5)
imply that y is a positive solution of (1.1)—(1.4).

To obtain a positive solution of (1.1)—(1.4), we shall seek a fixed point
of the operator AS in the cone C, where S : C' — B is defined by

N
Sy(k) =Y 9(k,)[Q( y,Ay, ... , A" ?y)
(3.6) =0
- P(l,y,Ay, ... ,A"ily)],
k €[0,N +n].

It follows that

N

A" 28y(k) =Y G(k,DQ(,y,Ay, ... ,A"2y)
=0

- P(layaAya s aAnily)]a
kel0,N+2],

and in view of condition (ii) we get for k € [0, N + 2],
N

> Gk, DlaM) (W] (4 (1)

=0

IN

A" 2Sy(k)
(3.7)

M=

<

Gk, Dlg: (1) —p()]f (y(1))-

N
Il
o
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Theorem 3.1. There exists a ¢ > 0 such that the interval (0,c] C E.

Proof. Let M > 0 be given. Define

N -1
3B+ a5+ v — D]l () p(m} .

=0

Let y € Cpy and 0 < A < ¢. We shall prove that ASy € Cy;. For this,
first we shall show that ASy € C. From (3.7) and (iii) we find

59) A"2ASy(k) 2 A Gk, Dla() — pr (D] (5(1) 2 0,
. =0

ke [0,N +2].
Further, it follows from (3.7) and Lemma 2.2 that

N

A2 8y(k) <Y Gk, D]ax(l) — p(1)]f (y(1))

=0

< LY 60, D) - pO1F(u(0),
=0

ke0,N+2]
Therefore,

N

(3.10) ISyl < LY G DI () = p(DIf (y(1) = Lé.

=0

Now, on using (3.7), Lemma 2.1 and (3.10) we find for k € [1, N],

N
A"2ASy(k) = XY Gk, Dla(l) — pr(D)]F (y(1)
=0

N

> MK G D)[g(l) - p1 (D] f (w(1))
=0
= AKT > X¢[|Sy|| = £[ASy]|.
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Hence,

11 in A" 2 > .
(3.11) (i ASy(k) = E[[ASy||

It follows from (3.9) and (3.11) that ASy € C.

Next, on using (3.7), Lemma 2.2, (3.2), (2.1) and (3.8) successively,
we get

A" 2(ASy) (k) < A Gk, D]gr () — p(0)]f (w (D))

N n)(™—2)
<IAD 60D sl ()
_ % S (B + ) + (N - 1)

=0

n)(1—2)
() —p(D]f(% )

<M, ke 0,N +2]

which implies
[ASyl < M.

Hence, (AS)(Cpr) € Cpy. Also, the standard arguments yield that AS
is completely continuous. By the Schauder fixed point theorem, A\S
has a fixed point in Cj;. Clearly, this fixed point is a positive solution
of (1.1)=(1.4) and therefore A is an eigenvalue of (1.1)—(1.4). Since
0 < A < ¢ is arbitrary, it follows immediately that (0,¢] C E. mi

Theorem 3.2. Suppose that \g € E. Then, for each 0 < A < A,
AEE.

Proof. The proof requires the monotonicity and the compactness of
the operator S on the cone, C, and is similar to that of Theorem 3.2
in [9]. O
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The following corollary is immediate from Theorem 3.2.
Corollary 3.1. E is an interval.

Next we shall establish conditions under which F is a bounded or an
unbounded interval. For this, we need the following results.

Theorem 3.3. Let A\ be an eigenvalue of (1.1)—(1.4) andy € C be a
corresponding eigenfunction.

(a) Suppose that § =~y =1 and 3 =0. If
(3.12) A" y(0) = v
for some v > 0, then X\ satisfies

(N +n)»=Dy

19w+ 2 )] <A< (N + 2)[7(0)]

(n—1)!

where

N+1 1
(3.14) a= { S (N +1-D)a() —p(l)]}

1=0
and

N+1 -1
(3.15) a1 = { > (N +1-1)[qg(0) —pl(l)]} :

=0

(b) Suppose that § > v and 8 = 0. If (3.12) holds for some v > 0,
then \ satisfies

(V4 m) Dy
(n—1)! >]
<A< biv[y(N +1) + 8] f(0)] "

(3.16) bu[y(N +1) + 4] [f(

where

(3.17) - {ZMN 1)+ 8l 1) —p(zn}
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and

R D AR R R

1=0
(c) Suppose that 6 =y=1 and B > 0. If
(3.19) A" 2y(0) = p, A" 1y(0) =v

for some p,v > 0 such that apu = B, then \ satisfies

(N +n) "2y (N4+n)» Dy
(n—2)! (n—1)!
<A<a[p+v(N+2)]f(0

(3.20) alu+ v(N +2)] [f(

where a,a; are defined in (3.14) and (3.15), respectively.

(d) Suppose that § > v and 8 > 0. If (3.19) holds for some p,v > 0
such that ap = P, then \ satisfies

(3.21)
e =D\~
blalp-4 vV 1)) av [ (B B )

<A < bi{ylu+ v(N + 1)) + ov}[f(0)]

where b, by are defined in (3.17) and (3.18), respectively.

Proof. (a) In this case the boundary conditions (1.2)—(1.4) reduce to

Aly(0)=0, 0<i<n-—2
(3.22) _2 y(0)=0, 0<i<n-2
A" 2y(N 4+ 2) = 0.

Clearly, the eigenfunction y that satisfies (3.12) is the unique solution
of the initial value problem

Any + AQ(k, Y, Ay, e ,An72y) = AP(k, Y, Ay, . ,Anfly),

(3.23) ke (0N,
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(3.24)

Since

Any(k) = )\[P(k, Yy, Ay, Ce ,An_ly) — Q(]{;, Y, Ay, L. ,An—Qy)]
< Alpi(k) — q(k)]f(y(k)) <0,

we have A" 1y is nonincreasing and hence
(3.25) A" ly(k) < A" y(0)=v, ke€[0,N+1].

Using the initial conditions (3.24) and (3.25), we find for k € [0, N +2],

k—1 k—1

A" 2y (k) = Z A" y(l) < v =vk.
1=0 1=0

This in turn leads to
s k—1 Y k—1 k(2)
A y(k):ZA y(l)SZul:u?,
1=0 1=0

kelo,N + 3]

Continuing the process we obtain for k£ € [0, N + n],

BoD (N4 m)eD

(3.26) y(k) < YD) =Y o)

Now, in view of (ii), (i) and (3.26), we get for k € [0, N],
Ag(k) = p1 (k)] f(0) < —A"y(k)

(3.27) SAMAk%—p@Hf<V

(N +n)»=b
(n—1)! >

Summing (3.27) from 0 to (k — 1) provides

(328) (k) < A™y(k) < ga(k), ke [0,N+1]
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where

[ (1) = p(1)]

(k) =v — )‘f<vw) llc1

(n—1)!

and
k _

d2(k) = v = Af(0) Y _[a(t) — pr()].

=0

[u

Again, we sum (3.28) from 0 to (k — 1), and subsequently change the
order of summation to obtain

(3.29) ¢3(k) < A" ?y(k) < ¢a(k), k€ [0, N +2]

where

¢3(k)=l/k—>\f( (NM"I)Z (k= 1= (1) — p(0)]
1=

n—1)!

and

e
—

¢a(k) = vk = Af(0) p_(k—1-=0D[g(l) —pr(D)].

N
I
=)

Since the solution y of (3.23) and (3.24) is an eigenfunction corre-
sponding to ), it satisfies the boundary condition A"~2y(N + 2) = 0,
see (3.22). Therefore, in inequality (3.29) we must have

$3(N+2) <0 and ¢s(N +2) >0,

or equivalently

n)"=Dy\7
(3.30) A > av(N +2) {f(%ﬂ
and
(3.31) A < av(N +2)[f(0)] "

The inequality (3.13) follows immediately.
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(b) Here the boundary conditions (1.2)—(1.4) reduce to

Aly(0) =0, 0<i<n-2,

3.32
(8:32) YA"2y(N 4+ 1) + A" ty(N +1) = 0.

It is obvious that the eigenfunction y that satisfies (3.12) is the unique
solution of the initial value problem (3.23), (3.24). As in case (a) we
get the inequalities (3.28) and (3.29). It follows that

vo3(k) + 6¢1 (k) < yA"2y(k) + A" 'y (k)

(3.33) < vda(k) + dpa(k).

Since y satisfies YA" " 2y(N + 1) + §A" " 1y(N + 1) = 0 (from (3.32)),
in inequality (3.33) it is necessary that

Y3(N +1) +d¢1(N +1) <0
and

Y94(N +1) +6¢2(N +1) = 0

which respectively lead to

n)m=Dp\1*
(3.34) A > bu[y(N +1) + 4] [f(%)]
and
(3.35) A <biwly(N +1) +3][£(0)] .

Coupling (3.34) and (3.35), we get (3.16).
(c) In this case the boundary conditions (1.2)—(1.4) become

Ay(0) =0, 0<i<n-—3,
(3.36) A" 2y(N +2) =0,
aA"2y(0) — BA™1y(0) = 0.
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Clearly, the eigenfunction y that satisfies (3.19) is the unique solution
of the difference equation (3.23), together with the initial conditions

Aly(0) =0, 0<i<n-—3,

(3.37) A"24(0) = p, A" 1y(0) = v.

As in case (a), we see that A" 1y is nonincreasing and hence (3.25)
holds. In view of the initial conditions (3.37) and (3.25), we find

A2y =+ 3D AT L)

k-1

SH+ZV:N+VI€7
=0
ke [0,N +2].

It follows that, for k € [0, N + 3],

k-1

A Py(k) =Y A Py(1) <Y (et vl) = pk 4 v
=0

e
=

L(2)
20

N
Il
o

Continuing the process, we obtain for k € [0, N + n],

(k) - f(n—2) N f(n—1)
A P R PO T
(N +n)»=2) (N +n)»D

m-2l ' o1

(3.38)

<p

Now it follows from (ii), (i) and (3.38) that, for k € [0, N],

a1(k) — p(k)]
(339) N + 7’L (n 2) (N + n)(nfl)
( (-2t 7 (n-1) )
Summing (3.39) from 0 to (k — 1) gives
(3.40) ¢s5(k) < A" 'y(k) < dg(k), ke [0,N+1]
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where

(N +n)»=2) (N +n)»-1
m-2r ' o1 >
k—1

(@) = p()]

=0

ds(k) = v — Af <u

and
k—1

d6(k) = v = Af(0) D [a(t) — p1(1)].

=0

Once again, we sum (3.40) from 0 to (k — 1) to get
(3.41) ¢r(k) < A" 2y(k) < ¢s(k), k€ [0, N +2]

where

(N +n)(=2) (N + n)("_1)>

¢7(k)zﬂ+yk_)‘f<“ (n—2)! T (n —1)!

S k-1 Dlar (1) - p(0)]
=0
and 1
¢s(k) = p+vk = Af(0) > (k—1-=1)g(l) — pr(1)]-

Since y satisfies the boundary condition A"~2y(N +2) = 0 (see (3.36)),
in inequality (3.41) we must have

p7(N+2)<0 and ¢s(N+2)>0

or equivalently

(N+n)" 2y (N + n)(n—l),,>] -1

(3.42) A > a[u+v(N +2)] [f< (n—2) (n—1)!

and

(3.43) A< afu+ (N +2)][F(0)] .
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The inequality (3.20) follows immediately.

(d) It is obvious that the eigenfunction y that satisfies (3.19) is the
unique solution of the initial value problem (3.23), (3.37). As in case
(c) we get the inequalities (3.40) and (3.41) which lead to

Yo7 (k) + 0¢s (k) < yA"2y(k) + SA™ 'y (k)

(3.44) < vos(k) + 5o (k).

Since y satisfies the boundary condition yA"~2y(N +1) + A"~ 1y(N +
1) =0, in inequality (3.44) it is necessary that

Y97 (N +1) +6¢5(N +1) <0

and

Yps(N +1) +d¢s(N +1) >0
which reduce to

(345) A2 b{ylu+v(N +1)] +dv}

. [f((Na—ln_)(;)—!?)y (Ngln_)(ln)—!l),/ﬂ—l

and
(3.46) A< bi{ylp+v(N +1)] + dv}f(0)] 7"

Combining (3.45) and (3.46), we get (3.21). o

Theorem 3.4. Let A be an eigenvalue of (1.1)—(1.4) and y € C be a
corresponding eigenfunction. Further, let n = ||y||. Then

N

3 (B + )5+ (N — D]l () —p(zn} .

=0
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Also, there exists a ¢ > 0 such that

np -
31y as (6 + e +(N = Ollel) - n)f

where

(3.49) g { (LN +1)/2] n=2,

[n —1,N] n>3

Proof. We observe that A™y is nonpositive and hence A" 2y is
concave on [0, N + 2]. This, together with the fact that A" 2y is
nonnegative, implies the existence of a unique kg € [1, N + 1] such that

n=lyll = A"y (ko)-

To prove that (3.47) holds, we use (3.7), Lemma 2.2, (3.2) and (2.1)
successively to get

n=A""?y(ky) = A" *ASy(ko)
N

<AY Gko, D (1) — p(W]f(y(D))
=0
N
<SALY G D[ (1) - p)]F(y(1)
=0
N

n)(n—2)
< ALY G D[a (1) - p()])f (%)

1=0
AL <(N+ n)(”2)17>

3 (n—2)!

DB+ + AN = D]l (l) = p(O)].
=0

The inequality (3.47) follows immediately.

Next, to prove (3.48) we shall consider four cases.
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Case 1. § =~y =1, 3=0. Here A" 2y(0) = A" 2y(N +2) = 0. By
the concavity of A” 2y, we find

An—Zy(k) > { (n/kO)k ke [07k0]7
n/(N+2—ko)(N+2—k) kE€l[ky,N+2]

Ui
> — .
_(N+2)2k(N+2 k), kel[0,N+2]

(3.50)

Thus, on using (1.2) and (3.50) we get for k& € [0, N + 3],

k—1

A Sy(k) = 30 A 2y (k)
=0

k—1
n
>
l§:0 & 2)2l(N+2 )

(2) (3)
_ n [(N 1 k k

(N +2)? 2 3

Continuing the summation process, we obtain

n
(3.51) y(k) = m¢(k)a k € [0,N +n],
where (ne1) -
kin— kn
We note that
k) 2(k —n+2)
Ay(k) = (n—2)] [N+l—n—1

is nonnegative for k € I where

I { [0,[(N+1)/2] n=2,
[0, N + 2] n>3.

Hence, in particular, (k) is nondecreasing for k € J C I, see (3.49).
Consequently, for k € J,

P(1) n=2

G- noaf =N

(3.52) b(k) > {
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It follows from (3.51) and (3.52) that

(3.53) y(k) >cen, ked
where

N+1
3.54 =— > >0.
(3:54) ‘T WNt22°

Now, in view of (3.7), (3.53) and (2.1), we find
n> A" ?y(n —1) = A"2ASy(n — 1)

> /\ﬁG(n = 1L,D[q() = p1 (D] (y(1))

> AiG(n = LD[e() —p1(D]f (1))

leJ
>AY G(n—1,0)[g(l) = pr(D]f(cn)
leJ
- %f(cn) S8+ s + 1(N = )]la(t) — pr (0]

leJ

from which (3.48) follows immediately.

Case 2. § > v, 3 = 0. In this case A""?y(0) = 0, A"~ ?y(N +2) # 0.
Hence, for k € [0, N + 2],

A"=2y(N +2)
A2 >— v 7
y(k) 2 —x "

A"=2y(N + 2)
- (N+2)2

(3.55)
k(N +2— k).

Using a similar technique as in Case 1, it follows from (3.55) and
successive summations that

A" 2y(N +2)

356w > S



786 P.J.Y. WONG AND R.P. AGARWAL

From (3.56) and (3.52) we get

(3.57) yw)zé%g%%%th+n_wm ke,
where
(3.58) _ %(N +1)>0.

The rest of the proof is similar to that of Case 1.

Case 3. 6 =y =1, B> 0. In this case A" 2y(0) # 0, A" 2y(N +
2) = 0. Thus, for k € [0,N + 2],

A" 2y (k) > A;v;fgo)(N +2— k)

Again, as in Case 1 it follows from (3.59) and successive summations
that

A" 2y(0)

(3.60) y(k) = m

P(k), kel0,N +n].

From (3.60) and (3.52) we find

(3.61) y(k) > %(N-l— )=ecn, keJ
where
(3.62) c= ?(j\?iiyg))l(N +1)>0.

The rest of the proof is similar to that of Case 1.

Case 4. § > v, B > 0. Here A" 2y(0) # 0, A" 2y(N +2) # 0. Let

m = min{ A" ?y(0), A" ?y(N +2)}.
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Then
A" 2y(k) > m
m
3.63 > —sk(N+2-kF
( ) = (N + 2)2 ( + )7
keo,N +2].

787

Once again it follows from (3.63) and successive summations that

T __y(k), ke0,N+n].

(3.64) y(k) > m

From (3.64) and (3.52) we have

m

(3.65) y(k) > m(N—i— 1)=cn, kelJ
where

The rest of the proof is similar to that of Case 1.
This completes the proof of the theorem. ]

Theorem 3.5. Let

fztu) is bounded for u € |0, oo)},

(a) If f € F, then E = (0,¢) or (0,c] for some c € (0,00).

(b) If f € Fy, then E = (0, ] for some ¢ € (0,00).
(c) If f € F, then E = (0,00).
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Proof. (a) This is immediate from (3.48).
(b) Since Fy C Fp, it follows from case (a) that E = (0,¢) or (0,c]
for some ¢ € (0, 00). In particular,

(3.67) c=supF.

Let {\}72, be a monotonically increasing sequence in E which
converges to ¢, and let {y}5°; in C' be a corresponding sequence of
eigenfunctions. Further, let n; = ||y;]|]. Then (3.48) implies that
no subsequence of {n};°; can diverge to infinity. Thus, there exists
M > 0 such that 7y < M for all I. In view of (3.2), we find that y; is
uniformly bounded. Hence, there is a subsequence of {y;}, relabelled

as the original sequence, which converges uniformly to some y € C.
Noting that A\;Sy; = y;, we have
c
(3.68) cSy; = )\—yl.
!

Since {cSy; }2, is relatively compact, y; converges to y and \; converges
to ¢, it follows from (3.68) that

cSy =y,
i.e., ¢ € E. This completes the proof for case (b).
(c) This follows from Corollary 3.1 and (3.47). O

Example 3.1. Consider the boundary value problem

A’y + )\{45(’%3/) + m}(y +2)
=Ap(k,y)(y +2)", kel0,11],
124(0) — Ay(0) =0,
12y(12) + 13Ay(12) = 0
where A > 0, r > 0 and ¢(k,y) is any function of k and y.
Taking f(y) = (y + 2)", we find

Q(k, y) 2

i BT mm o e
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and
P(k,y,Ay)
flyy ?k 1)
Hence, we may choose
1
q(k) = ¢(k,y) + m,
2
q1(k) = ¢(k,y) + 3=k 3"

and
p(k) = p1(k) = ¢(k, y).

Case 1. 0 < r < 1. Since f € F,, by Theorem 3.5(c) the set
E = (0,00). For example, when A\ = 1, the boundary value problem
has a positive solution given by y(k) = k(13 — k) + 1.

Case 2. r = 1. Since f € Fp, by Theorem 3.5(a) the set F is an open
or half-closed interval. Further, we note from Case 1 and Theorem 3.2
that E contains the interval (0, 1].

Case 3. r > 1. Since f € Fy, by Theorem 3.5(b) the set F is a
half-closed interval. Again, it is noted that (0,1] C E.

Example 3.2. Consider the boundary value problem

24k
A?’y“{‘i’(’“’ YA+ B0 = (= D) k= 6) (kT 1)) £ 17 }(y“)r
= )\gb(k,y, Ay)(y + 1)T7 ke [07 10],
y(0) =0,
3Ay(0) — 625A2y(0) = 0,
162Ay(11) 4+ 163A%y(11) = 0,

where A > 0, r > 0 and ¢(k,y, Ay) is any function of k, y and Ay.
Taking f(y) = (y + 1)", we find

Q(k,y, Ay) 24k
) ok, y, Ay) + k(5000 — (k — 1)(k — 6)(k + 1)) + 1"
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and P(k,y, Ay, A%y)
Plhyy, Ay, A%) 0 Ay
) o(k,y, Ay)
Hence, we may take
k
24k

a1 (k) = ¢(k,y, Ay) +

[6(5000 — (k — 1)(k — 6)(k + 1)) + 1]

and
p(k) = p1(k) = d(k,y, Ay).

We note that when A = 1 the boundary value problem has a positive
solution given by y(k) = k[5000 — (k — 1)(k — 6)(k + 1)]. The three
cases considered in Example 3.1 also apply to this problem.
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