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RANDOM FOURIER SERIES
AND ABSOLUTE SUMMABILITY

NASSER TOWGHI

ABSTRACT. In this article it is shown that many classical
results concerning absolute summability of Fourier series can
be obtained by random methods. An estimate on the modulus
of continuity of random Fourier series is obtained. This esti-
mate is then applied to obtain some new sufficient conditions
for the absolute summability of the Fourier series.

1. Introduction. A classical result of Bernstein [1] states that if f is
a periodic Lipschitz function of order greater than 1/2, then its Fourier
series converges absolutely. Later Hyslop [3] extended Bernstein’s
theorem by using absolute Cesaro summability, see Section 3 for the
definition of absolute summability. Hyslop proved that if f is a
Lipschitz function of order a@ and 0 < a < 1/2, then the Fourier
series of f is summable |C,3| whenever o + 8 > 1/2. Hyslop’s
result was extended by McFadden [9] and Lal [7] to the case of
summability for certain types of Norlund means, see Section 3. There
are a considerable number of sufficient conditions for the absolute
summapbility and absolute convergence of Fourier series, see for example
[10] and the references therein. Our contribution is that most of
the sufficiency conditions for absolute summability are obtained by
random methods using Khinchin’s inequality and the modified versions
of the three above-mentioned results, see for example Theorem 3.7 and
Theorem 3.8. In some instances we obtain modest extensions of the
classical results.

2. Random Fourier series. We consider the randomization of the
Fourier series of f. Let
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(1) co + Z cn(f) cos(nt + ¢y)

be the Fourier series of f. We randomize the Fourier series of f, that
is, let

(2) Z )cos(nt + @) Xn(s),

where X, is a subnormal sequence of random variables defined on
some probability space (2, P). Henceforth, F' will always represent a
randomization of the function f. For the purposes of proving absolute
summability results, we will often let X,,(s) = r,(s) where r, denotes
the nth Rademacher function defined on the unit interval [0,1], that
is, rn(s) = 1 — 2, where s = -, €x/(2") is the binary expansion of

€ [0,1]. In other words, c,(F(s,+)) = %cn(f). We introduce some
notation. Recall that the modulus of continuity of f is the function

w(f,h) = w(h) = supgc|p—y<ntlf(z) — f(y)|}, and the p-modulus of
continuity of f is the function

wplfsh) = wp(h) = sup ( / f(w)—f(y)l”>1/p-

0<|z—y|<h -7
For o > 0, It ip (eop, (m,7) = Lip(ep) = (£ : (1) < OO,
and Cy([—m,7]) = Cy = {f w(f,h) < Ch}. Forp > 1, let

Vo, [ 7]) = V() = [sup{ 3 oo w}]w,

M

where 7 denotes the partition {—7 = tg < ¢t; < -+ < ¢, = 7} of
[, 7]. Let

BVpl—m, 7| = BVp ={f : Vp(f) < oo}

We have the following relation: C4,, C BV, C Lip (1/p).

We need the following theorem.
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Theorem 2.1 [5, p. 86]. Let f be a measurable function and
its Fourier series be given by (1). For each positive integer j, let

s = (Zn g1 |cj|?)Y2. Suppose that s; = O(27P7§=7), where 3 and
v satisfy either 8 =0 and v > 1 or 8 > 0. Then, almost surely, as
hl0,

(a) B=0, v > 1 implies w(F(s,-),h) = O(|log h|*7).

(b) 0 < B < 1 implies w(F(s,-),h) = O(h®|logh|'/?~7).
(c) B=1, v <1/2 implies w(F(s,-),h) = O(h|logh|*~7).
(d) B=1, 1/2 < v < 1 implies w(F(s,-),h) = O(h|log h|'/?).
(e) B=1,1<~ or B >1 implies w(F(s,-),h) = O(h).

By slightly changing the proof of Theorem 2.1, one obtains the
following result.

Theorem 2.2. If 3> |c,(f)*n?(logn)? < oo, then almost surely
as h 10,

(a) B=0, v > 1 implies w(F(s,-),h) = O(|log h|1=7)/2).
(b) 0 < B < 2 implies w(F(s,-), h) = O(hP/?|log h|(1=7)/2),
(c) B =2, v < 1 implies w(F(s,-),h) = O(h|log h|(1=7)/2),
(d) B=2, 1< v <2 implies w(F(s,-),h) = O(h|log h|'/?).
(e) B=2,2<~ or B >1 implies w(F(s,-),h) = O(h).

Lemma 2.3. Let ¢ be a positive, nonincreasing function, r > 0 and
D omet lwp(f,1/n)["¢(n) < oo
(A) Suppose that one of the following three conditions is satisfied:
(i) p=>2,
(i) Y5 i1 ea(NIP < C©

(i) ap > 1, (here C in (ii) is a fized constant depending on f but
not on j),

then s; = O([27 /$(29)/7).
B) If p < 2 and f € Ly for some 2 < ¢q¢ < oo, then s; =
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O([277/(27)|Pla=2)/2r(a=P)) | If ¢ = oo, then ;= O([277/p(29))p/ (37,

(C) If p < 2 and X7, lwp(f,1/n)["d(n) < oo, then s; =
O(gj(l/p—1/2) [Q—j/¢(2j)]1/r)_

Proof. Suppose p > 2. By a familiar argument, see, e.g., [6, p. 32],
we have

27 1/2
5= X laP)  <cure),

n=27-1

If 22’?1 len ()P < C, by Holder’s inequality,

n=2i—1

291

sjgc{z

271

1/p’
Icn(f)”] .

By an argument similar to the one given in [6, p. 32|, it can be shown

that
23

Yo lenHF <0 > fens(HIF,

n=27—-1 n=27-1

where c,, ;(f) is the nth Fourier coefficient of the function ¢t — f(t +
277) — f(t). Since p’ > 2, an application of the Hausdorff-Young
inequality gives us

( > c"’j(f)'p')l/p’ <le [ it ran - sepa

n=27-1 -

< pr(fa 27j)'

Thus s; < Cwp(f,277). If ap > 1, then

271 291
Do el P = D> Own(f,1/n)?)
n=27—1 n=23i-1

291

<C > (wp(f,1/n)P) < 0.

n=27i-1
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That is, condition (iii) implies (ii). Therefore, s; < Cwpy(f,277).
Consequently, if any one of the conditions (i) through (iii) is satisfied,

we have ) . .
$(27)sj < Cp(2)|wp(f,277)["

2J
_ 1
S C2 J Z Wp <f7 E)
n=27i-1
i 1 _;

<C27I lep<f, E>¢(n) <277,
Therefore, s; = O([277/¢(27)]'/"). This proves (A). Suppose p < 2,
2<g¢g<ooand f € L, Let 8 = p(g—2)/(g—p). Since p < 2,

6 < p. Applying Holder’s inequality with exponents p/# and p/(p —6),
we obtain

[ 12 - fP -

r

¢(n)

—T

™ 1/2
- [ [ 12— s 2 ) - @) ds

—T

" . 6/(2p)
= C[/ [f(x+277) = f(z)|P dac] | f]| 26—}/ (2p)

< Cluwy(f,279)7/?
= Clw,(f, 279 |pla=2)/(2(a=p))

Arguing as in part (A), we obtain s; = O([277/¢(27)]Pla=2)/(2r(a=p)),
The case ¢ = oo is proved in a similar manner. To prove (C), apply
Holder’s inequality, with exponents p’/2 and p’/p/ — 2 to obtain

’ 2J ’ 1/p,
sy £ CHIO S e (]
n=27i-1
2j 1/p’
= 02i(1/p—1/2) [ Z |cn(f)p'] i

n=2i—-1

By an argument similar to the one given in [6, p. 32], it can be shown

that
2

S e <0 > feng(HIF,

n=2i—1 n=27-1
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where ¢, j(f) is the nth Fourier coefficient of the function ¢t — f(¢ +
279) — f(t). Since p’ > 2, an application of the Hausdorff-Young
inequality gives us s; < C2/(1/P=1/2)y, (f,277). Arguing as we did
for the case p > 2, we obtain that s; < C2/(/P=1/2)[277 /p(27)]/7.
This completes the proof. a

Combining Lemma 2.3 and Theorem 2.1, we obtain

Corollary 2.4. Suppose > oo (wp(f,1/n))"/(n?(logn)?) < occ.
(A) If one of the following three conditions is satisfied:
(i)p=2,
(i) S50, leal £ < C,
(iii) ap > 1,
then almost surely as h | 0,
(a) (1 =B)/r =0, v/r > 1 implies w(F(s,-),h) = O(|log h|*=7/").

(b) 0 < (1-8)/r < 1 implies w(F(s,-), k) = O(hL=P)/"|log h|'/2=7/T),

() 1=p8)/r =1, ~/r <1/2 implies w(F(s ), h) = O(h|log h|t=7/T).

@ 1 -=p8)/r =1, 1/2 < v/r < 1 implies w(F(s,-),h) =
O(h \logh|1/2).

(e) 1—=pB)/r=1,1<v/r or 8 >1 implies w(F(s,-),h) = O(h).

(B) If p <2 and f € L, such that 2 < g < oo, then (a) through (e) of
part (A) holds with (1 — B)/r replaced by §(1 — B)/r everywhere, where
0 =p(g—2)/(2(q —p)). If ¢ = oo, then (a) through (e) of part (A)
holds with (1 — B)/r replaced by p(1 — B)/(2r) everywhere.

(C) If p < 2, then (a) through (e) of part (A) holds with (1 — B)/r
replaced by 1/2 — 1/p+ (1 — B)/r everywhere.

Proof of the following corollary is similar to the proof of the last
result. We omit the proof.

Corollary 2.5. Let f € Lip (e, p).
(A) Suppose that one of the following three conditions is satisfied:
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(i) p>2,

) T2 L e < C,
(iii) ap > 1,

then for almost all s,

(3) w(F(s,7),h) = O(h*[| log h}*/?).

(B) If p< 2 and f € L, such that 2 < g < oo, then (3) holds almost
surely with o replaced by ad, where 6 = p(q —2)/(2(¢ —p)). If ¢ = 0,
then (3) holds almost surely with « replaced by pa/2.

(C) If f e Lip (a,p), p < 2 and 1/p < a+1/2, then, for almost all s,

(4) w(F(s,7),h) = O([n* /217 log h|]'/2).

By slightly modifying the proof of Theorem 2.1, we obtain

Theorem 2.6. If f € Lip (a,p) and p < 2, then almost surely

(5) W(F(s,-),h) = O([h*Pw(f, k) >~ | log A[]'/?).

Since BV, C Lip (1/p,p) N Lo, we obtain

Corollary 2.7. Let f € BV,. If p < 2, then almost surely

w(F(s,-),h) = O(y/h|loghl|). If p > 2, then almost surely w(F(s,-),h)
= O([h'/?|log h|'/?).

Corollary 2.8. If f € BV,NC, and p < 2, then, for almost all s,
(6) W(F(s,),h) = O([h***27P) [ log h[]'/?).

In particular, almost surely, F(s,-) € Cg where 8 < (1/2+a(2—p)/2) =
a+(1—ap)/2.
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3. Absolute summability of Fourier series. Let ) a, be a
given infinite series with a sequence of partial sums {S,}. Let {p,} be
a sequence of constants. Let

Pn:Zpk:; Py=p =0 fork>1
k=0

The Noérlund transform of the sequence S,, generated by the sequence
{pn} is the sequence {t,} given by

1 O 1 o
t, = P_n;pnfksk = P_n kZ_OPka'nfka Pn 7é 0.

If the series Y .° | |t, — t,_1| converges, then ) a, is said to be
absolutely Norlund summable or summable |N,p,|. When p,, = A%~1
are Cesaro numbers of order o — 1, where A is given by the following

formulae
o0

d A" =(1-z) ",

n=0

then the summability |N,p,| is the same as the summability |C,«]
(absolute Cesaro summability of order «). Extending Bernstein’s
theorem on absolute convergence of the Fourier series, Hyslop [3] proved
the following theorem.

Theorem 3.1 [3]. Let 0 < « < 1/2, 8 >0 and a+ B > 1/2. If
w(f,h) = O(h|logh|?), then the Fourier series is of summable |C, 3]

everywhere.

Actually Hyslop proved the above theorem under the condition that
w(f,h) = O(h®); however, his argument also proves Theorem 3.1. In
fact, Hyslop’s proof with minor modifications gives us the following
result.

Theorem 3.2. If fe L,,1<p<2,8<1/pand)_ ocop=1(wp(f,(1/
n))/nPt/P) < oo, then the Fourier series of f is almost everywhere
|C, B summable.
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Corollary 3.3. wy(f,1/n) = O(n *(logn)?) and a+ B > 1/2, then
the Fourier series of f is almost everywhere |C, 3| summable.

Extending Hyslop’s result, McFadden [9] proved the following result.

Theorem 3.4 [9]. Let p, be nonnegative and nonincreasing,
lim, 0o P = 0, |Apn| = |Pn+1 — Pn| nonincreasing and satisfying the
conditions

Y PETP<A, D PIRTTP <A

k=1 k=1
If w(f,h) = O(h“|logh|"), then the Fourier series is of summable
|N, pn| everywhere.

The final result in this direction is the following theorem of M. Izumi
and S. Izumi [4] and Lal [7].

Theorem 3.5. Let f € L,, 1 < p < 2, p, be nonnegative and
nonincreasing, lim, oo pr, = 0, |Apn| = |Pn+1 — Pn| nonincreasing and
satisfying the conditions

o0 oo 1 ,
P2k 2 < A, w < ,—)P—lkl/P < A.

Then the Fourier series is of summable |N,p,| almost everywhere.

We introduce some notation. Let
®,(t) = f(z+1t) + f(z —t) — 2f(x).

If the Fourier series of f(z) is Z?’;o c;(f)cos(jt+¢;), then the Fourier
series of @, is

S ei()lcos(ift +2) + ¢5)
(7 + cos(j(t = 7) + ;) — 2eos(ja + ¢;)]

= Z Aj(z) cos(jt + ¢;)
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where Aj(z) = c;j(f)cos(jz + ¢;). Let Q(n,k) = ppPn — pnPe
and 7,(f,z) = to(f,2) — tn_1(f,z), where {t,(f,2)} is the Norlund
transform of the Fourier series of f at . Then

P,P,_mn(f,z) = /7r D, (1) i Q(n, k) cos((n — k)t + ¢n—g) dt
0 k=0

= [ S ensite @) +6,) + eostie—2) 45,

n—1

—2cos(jz + ¢;) Z Q(n, k) cos((n — k)t + ¢p—x) dt

k=0

= /0 i Q(n, k)c(nk)(f) cos((n — k) + ¢n-r)
k=0
~cos?((n — k)t + @) dt

n—1

=C Z Q(n, k)c(n_i)(f) cos((n — k)x + ¢r_t)-

k=0

Let F(s,t) = >252,7i(s)ci(f) cos(jt + ¢;), where ro(s) = 1 and r; is
the jth Rademacher function. Then
(8)

Tn(F7 l‘) = Tn(F(S, )7$)

Z (i) (f)ra(8) cos((n — k)z + di).

We need the following lemma.

Lemma 3.6. The measure (probability) of the set {s: [*_|7(F(s,-),

z)|dz > C [T |7(f,z)|dx} is positive, where C is some fized universal
constant.

Proof.

// |70 (F w|dacds-/ /\Tn z)|dsdz
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(Khinchin’s inequality =)

> /: CK{/OI |Tn (F (s, -),:c)st] v dz

™ CK -1

1/2
-cos((n — k)z + ¢n_k)2} dz

(Minkowski’s inequality =)

> S [; A
ccos((n = k)a + dnyp)| da:> 2] v

(| cos()| > |cos()* =)

> Lg ([ 1@tk s (s)
241/2
-cos((n — k)2 + Gns)|? da;) ]

(C=Ck(f"_|cos((n —k)x + ¢n_)|* dx)? =)

C n-l 1/2
" PPy [Z 'Q“"k)@(nk)(f)ﬂ
C

k=0

- PnPn—l |:/—7r

S QW (f)
k=0
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-cos((n — k)x + ¢n—k)

:C[/: |Tn(f,m)2dacr/2

>C |70 (f, 2)| d.

2 1/2
dx]

This proves the lemma. u]

In view of Theorems (3.1), (3.4) and Lemma (3.6), we obtain the
following theorems.

Theorem 3.7. Let p, be a sequence satisfying the hypothesis of
Theorem 3.4. Let

(9) Fg (s,t) = Z rn(8)An(z) cos(nt + ¢y,),

where A, (z) is defined in Equation (7). If almost surely w(Fg,(s,-),h) =
O(h*|logh|) as h | 0, then Fourier series of f at x is |N,py|
summable. («a appears in the hypothesis of Theorem 3.4).

Theorem 3.8. Let 0 < a<2,8>0 and a+ 8 > 1/2. If almost
surely w(Fg,(s,-),h) = O(h*|logh|?) as h | 0, then Fourier series of
f at x is |C, B summable.

We now show that number of classical results concerning summability
of Fourier series can be obtained as easy consequences of Theorem 3.2
and/or the above two results. In some cases we obtain some extension
of the classical results. We cannot deduce Lal’s result, Theorem 3.5,
from Theorem 3.7. However, we do obtain some results which cannot be
obtained as consequences of Theorem 3.5, see Theorems 3.10 through
3.15. Combining Corollary 2.4, Corollary 2.5, Theorems 3.7 and 3.8,
we obtain the following results.
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Theorem 3.9. Let f € Lip («, p).

(A) Suppose one of the following three conditions is satisfied:
(i) p=2,
(i) X5 oi 1 lea()P < €,
(iil) ap > 1.
Then the Fourier series of f at each x is |C, 3| summable whenever
a+p>1/2.

(B) If p < 2 and f € Ly, such that 2 < q < oo, then the Fourier
series of f at x is |C,B| summable whenever ad + f > 1/2 where
0 =p(qg—2)/(2(q —p)). If ¢ = 00, then the Fourier series of f at x is
|C, B| summable whenever pa/2+ 8 > 1/2.

(C) If p< 2 and 1/p < a+ 1/2, then the Fourier series of f at x is
|C, B| summable whenever o + 5 > 1/p.

Theorem 3.10. Let p,, be nonnegative and nonincreasing, lim,, . p,
=0, |Apn| = |Pnt1 — Pn| nonincreasing and satisfying the conditions

Y Pk’ <A, > P kT <AL
k=1 k=1
Let f € Lip (o, p).
(A) Suppose one of the following three conditions is satisfied:
(i) p=>2,

. 271
(i) Xonmzi [en (AP < C,
(iil) ap > 1.
Then the Fourier series of f at each x is |N,pp| summable whenever
a>f.

(B) If p < 2 and f € L, such that 2 < ¢ < oo, then the Fourier
series of f at x is |N,p,| summable whenever ad > [, where § =
plg —2)/(2(q — p)). If ¢ = oo, then the Fourier series of f at x is
|N, pn| summable whenever pa/2 > 3.

(C) If p< 2 and 1/p < a+ 1/2, then the Fourier series of f at x is
|N, pn| summable whenever a +1/2 > B+ 1/p.
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Theorem 3.11. Suppose Y oo (wp(f,1/n))"/(nf(logn)7) < cc.
(A) If 0 < (1 — B)/r and any one of the following three conditions is
satisfied:
(i) p=2,

(i) S0 oi 1 len(N)IP < €,

(iil) ap > 1,
then the Fourier series of f is |C, 0| summable whenever 0 < (1—3)/r+
6>1/2.

(B) If p < 2 and f € Ly such that 2 < g < oo and §(1 — B)/r > 0
where § = p(q — 2)/(2(q¢ — p)), then the Fourier series of f is |C,0)|
summable whenever 6(1 — B)/r + 0 > 1/2. If ¢ = oo, then the Fourier
series of f is |C,0| summable whenever p(1 — B)/(2r) +6 > 1/2.

(C) If p < 2, then the Fourier series of f is |C, 0| summable whenever
1/2-1/p+(1-08)/r+6>1/2.

Theorem 3.12. Let p,, be nonnegative and nonincreasing, lim,
Dn = 0, |Apn| = |Pnt1—Dn| nonincreasing and satisfying the conditions

P2k < A, ZP,;lk—a—l/Q < A
1 k=1

M2

ES
Il

Suppose Yo7 (wp(f,1/n))"/(nP(logn)?) < oco.
(A) If 0 < (1 — B)/r and any one of the following three conditions is
satisfied:
Hp=>2,

(i) S0 50 len(P < €,

(iii) ap > 1,
then the Fourier series of f is | N, p,| summable whenever 0((1—3)/r >
ab).

B) Ifp<2and f € Ly such that 2 < ¢ < 0o and 6(1 —B)/r >0
where § = p(q — 2)/(2(q — p)), then the Fourier series of f is |N,pn|
summable whenever §(1 — 3)/r > a. If ¢ = oo, then the Fourier series
of f is |N,p,| summable whenever p(1 — B)/(2r) > a.
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(C) If p < 2, then the Fourier series of f is |N,P,| summable
whenever 1/2 —1/p+ (1 = 38)/r > a.

Combining Theorems 2.2 and 3.2, we obtain

Theorem 3.13. Suppose Y o |cn(f)]|?n?(logn)? < cc.

(A) If 0 < B, then the Fourier series of f is |C, a| summable whenever
8>0,8/2+a>1/2.

(B) If 8 = 0 and v > 1, then the Fourier series of f is |C, «| summable
whenever o > 1/2.

(C)IfB >0 and B/24+ a =1/2 and v > 3, then the Fourier series
of f is |C,a| summable.

We should point out that F.T. Wang [11] has proved the following
stronger version of part (C) of Theorem 3.13. Wang’s proof is direct,
and we can’t seem to obtain his result by random methods.

Theorem 3.14 [11]. Suppose > oo |en(f)[*n? (logn)? < oo.

(C) If B = 0 and v > 2, then the Fourier series of f is |C,1/2]
summable almost everywhere.

(CYIfB>0,,a<1/2, /24 a=1/2 and v > 2, then the Fourier
series of f is |C, a| summable almost everywhere.

Theorem 3.15. Let p, be nonnegative and nonincreasing, lim,_,
P =0, |Apy,| = |Prt1—Dpn| nonincreasing and satisfying the conditions

NoPkP<A, Y PUEVE<A
k=1 k=1

IF 22 o len(£)*nP (logn)Y < oo and 0 < B, then the Fourier series of
f is N, a| summable whenever /2 > a > 1/2.

As a corollary of Theorem 3.10, we obtain

Corollary 3.16. Suppose f € BV,. If p < 2, then the Fourier series
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of f is |C, 8| summable whenever 8 > 0. If f € BV, then the Fourier
series of f at x is |C, 3| summable whenever 8+ 1/p > 1/2.

As corollaries of (3.10) and (3.15), we obtain the following results of
N. Matsuyama and L.S. Bosanquet.

Corollary 3.17 [8, Theorem 1]. If f € Lip (a,p), 0 < a < 1,
1 <p <2 ap <1, then the Fourier series of f is |C,1/p — a + ¢
summable almost everywhere, € being any positive number.

Corollary 3.18 [8, Theorem 2|. If f € Lip (a,p), 0 < a < 1,
1<p <2, ap> 1, then the Fourier series of f is |C,1/p'+&| summable
almost everywhere, € being any positive number.

Corollary 3.19 [2]. If f € BV, then the Fourier series of f is |C, €|
summable almost everywhere, € being any positive number.

The next result of F.T. Wang is a corollary of Theorem 3.13.

Corollary 3.20 [11]. If Yo7 |ea(f)|?*(logn)!™® < oo, then the
Fourier series of f is |C,a| summable almost everywhere whenever
a>1/2.
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