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A BIRKHOFF THEOREM FOR RIEMANN SURFACES
ALFONSO MONTES-RODRIGUEZ

ABSTRACT. A classical theorem of Birkhoff asserts that
there exists an entire function f such that the sequence of
function {f(z 4+ n)}n>0 is dense in the space of entire func-
tions. In this paper we give sufficient conditions on a Riemann
surface R and on a given sequence {¢p },>p of holomorphic
self-mappings of R such that there exists a holomorphic func-
tion f on R such that {f o ¢n}n>0 is dense in the space of
holomorphic functions on R. The necessity of these conditions
is examined. In particular, we characterize the Riemann sur-
faces R and the sequences {¢n},>0 of automorphisms of R
for which there exists a holomorphic function f on R with the
property that the sequence {f o pn},>0 is dense in the space
of the holomorphic functions on R.

1. Introduction and terminology. As mentioned in the abstract,
in 1929 G.D. Birkhoff [4] proved the following:

Theorem. There exists an entire function f(z) for which an arbi-
trary entire function g(z) corresponds to a sequence {an}n>0 depending
on g(z) and satisfying

lim f(z+an) = g(2)

n—roo
uniformly on compact sets.
In 1941, W.P. Seidel and J.L. Walsh [31] established the following

analogous theorem for the unit disk in which the Euclidean translations
are replaced by the non-Euclidean translations.
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664 A. MONTES-RODRIGUEZ

Theorem. There exists a holomorphic function on the unit disk
f(2) for which an arbitrary holomorphic function on the unit disk g(z)
corresponds to a sequence {ou, tn>0 such that

lim f(l> = 9(2)

n— oo 1+a,z

uniformly on compact subsets of the unit disk.

These functions, whose existence asserts the above theorems, are
generally called universal functions.

In 1976, Luh [23] proved that, given a sequence {an}n>0 with limit
00, there exists an entire function f such that, for every compact set K
with connected complement in the complex plane and for every function
g holomorphic in the interior of K and continuous on K, there exists
a subsequence {an, }1x>o such that

lim f(z +an,) = 9(2)

k—o0

uniformly on K.

In 1984, Duios-Ruis [18] proved that, in Birkhoff’s theorem on
translations, the universal vectors can have “arbitrarily slow growth.”
This result is refined further and given an operator-theoretic twist by
Chan and Shapiro in [12]. Gethner and Shapiro furnished in [18] a
single sufficient condition that provides a unified proof of universality in
several situations, including theorems of Birkhoff, MacLane, Seidel and
Walsh and many others. This same point of view is further advanced
in the papers of Godefroy and Shapiro [19, Sections 4 and 5] and of
Bourdon and Shapiro [8]. The definition of universality always shows
that the set of universal functions is either empty or a dense G5. See [3,
6, 7, 20, 21, 24, 25| for additional interesting results on universality.
See also [29)], especially Chapters 7 and 8, where further references can
be found.

The purpose of this paper is to generalize the results of Birkhoff,
Seidel and Walsh to Riemann surfaces.

Throughout this paper R will stand for a noncompact Riemann
surface. By O(R) we denote the space of holomorphic functions on R,
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endowed with the topology of uniform convergence on compact subsets.
It is well known that O(R) is a second-countable Fréchet space and
thus a Baire space. By O(R; R) we denote the space of holomorphic
self-mappings ¢ : R — R.

If K is a compact subset of R, A(K') denotes the set of functions which
are holomorphic in the interior of K and continuous on K. K;i(R)
denotes the set of all compact subsets K C R whose complement
is connected and IC(R) denotes the set of all compact subsets whose
complement with respect to R has no connected, relatively compact
components, that is, JC(R) denotes the set of compact subsets which
are Runge in R. Clearly K1(R) C K(R). Most of the results that
we have mentioned use Mergelyan’s approximation theorem in their
proofs (older results use Runge’s approximation theorem). We shall
use a version of Mergelyan’s theorem for Riemann surfaces proved by
E. Bishop [5] which states that O(R) is dense in A(K) for all K € IC(R).

If f € O(R), then f is said to be universal with respect to a sequence
{¢n}tn>0 C O(R; R) in O(R) if the orbit {f o vy }n>0 is dense in Q(R).
Analogously, a function f € O(R) is said to be universal with respect
to a sequence {¢y,}n>0 C O(R; R) in A(K), where K C R is compact,
if the orbit {f o ¢, }n>0 is dense in A(K). It is clear that the above
results can be expressed in these terms.

In 1989 Zappa [32] proved a version of Birkhoff’s theorem with the
additive group of complex numbers C replaced by the multiplicative
group C*, and he pointed out a generalization for a general noncompact
Riemann surface R. He proved the following theorem

Theorem. Zappa’s theorem. Let R be a noncompact Riemann
surface with an infinite discrete group of automorphisms. Then there
exists a function f € O(R) such that, for every compact subset K with
a fundamental system of simply connected neighborhoods and for every
g € A(K) and for every € > 0, there exists an automorphism ¢ of R
such that

max|fop—g|<e

The group of automorphisms ¢ € Aut(R) of a Riemann surface
R is said to be discrete if for all compact subsets K C R, one has
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K Np(K) = @ for all but finitely many ¢ € Aut (R). The set of all
compact subsets of a Riemann surface R, with a fundamental system
of simply connected neighborhoods will be denoted by Z(R).

As a corollary of our results, in the following sections we will have
the following theorem.

Theorem 1.1. Let R be a noncompact Riemann surface with an
infinite discrete group of automorphisms. Then there exists a function
f € O(R) and a sequence of automorphisms {¢n}n>0 such that f is
unsversal with respect to {pn}n>0 in A(K) for all K € K1(R).

This theorem improves Zappa’s theorem because Z(R) C K1(R) and
this inclusion is an equality if and only if R is a plane surface.

Birkhoff’s theorem and Seidel-Walsh’s theorem can both be stated in
a single theorem

Theorem Birkhoff-Seidel-Walsh theorem. Let 2 C C be a simply
connected region (the complex plane or the hyperbolic plane, respectively),
then there exists a universal function f € O(Q) such that the set of its
compositions with the automorphisms of the region S is dense in the
space O(Q).

We emphasize here that the Birkhoff-Seidel-Walsh theorem does not
generalize to C*. It can be observed that Zappa’s theorem for C* is
weaker than the result of the Birkhoff-Seidel-Walsh theorem, see [32]
and Remark 4 in Section 3.

Universal functions on a complex region 2 C C for a sequence
of automorphisms are studied in [2]. In that paper a sequence of
automorphisms {¢,},>0 of a complex region 2 is called a run-away
sequence if, for every compact subset K C ) there is no(K) such that
KNp,,(K)=@. It is proved in [2] that if Q has a run-away sequence
of automorphisms and is not isomorphic to C*, then we can find a
holomorphic function in O(2) which is universal in O(2) with respect
to a sequence of automorphisms. That is, the Birkhoff-Seidel-Walsh
theorem generalizes to plane regions which are not isomorphic to C*
and has a run-away sequence of automorphisms.



BIRKHOFF THEOREM FOR RIEMANN SURFACES 667

In the light of the above results, some questions arise. First, to
which Riemann surfaces can the Birkhoff-Seidel-Walsh theorem be
extended? Second, for which Riemann surfaces can we extend Zappa’s
theorem to a larger class of compact subsets? Third, in these results,
can the automorphisms be replaced by more general self-mappings of
the Riemann surface? In this paper we give some answers to these
questions, thus extending the results of [2] to Riemann surfaces. By
means of Freudenthal’s compactification, to be described below, the
theorem of Zappa is improved. For instance, if R supports a sequence of
holomorphic self-mappings {¢,, },>0, not necessarily of automorphisms,
which satisfies certain conditions, see Definition 2.1, then there exists
a universal function with respect to {¢n}n>0 in A(K) for all compact
subsets of K1 (R), thus enlarging the class of compact subsets for which
the conclusion of Zappa’s theorem holds. If R is not “similar” to C* in a
topological sense given by Freudenthal’s compactification and supports
a sequence of holomorphic self-mappings {¢,}n>0 which satisfies a
certain additional condition, which always holds when dealing with
sequences of automorphisms, then we can find universal functions in
O(R) with respect to {¢s, }r>0. This would be the theorem analogous to
the Birkhoff-Seidel-Walsh theorem for a Riemann surface. The results
of this paper suggest that the property of a Riemann surface R of having
a sequence of holomorphic self-mappings {¢n }n>0 for which there is a
holomorphic function on R which is universal with respect to {¢n }n>0
imposes strong restrictions on the topological structure of R.

As a particular consequence of our results, we will find the Riemann
surfaces to which the Birkhoff-Seidel-Walsh theorem generalizes for
sequences of automorphisms, Theorem 1.2.

In Section 2 we introduce the concept of run-away sequence of
holomorphic self-mappings in a Riemann surface, and we give some
examples. We study some of the properties of the run-away sequences
and prove some lemmas needed to establish the existence of universal
functions. These lemmas may be interesting in their own right. In
Section 3 we study the existence of universal functions. The proof of
the main result in this section is a mixture of arguments from function
theoretic approximation and topology.

In the next two sections Freudenthal’s compactification will play a
fundamental role. This compactification is also known as Stoilow’s
compactification, see [1] and [28]. Let us begin with a clarifying exam-
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ple. If R = Q is a plane surface, then it is embedded in the Riemann
sphere C>* = CU{o0}. The Freudenthal compactification of 2 will be
constructed by letting one point correspond to each connected compo-
nent of C>*°\Q and adding these points to Q. Hence the Freudenthal
compactification of €2 is homeomorphic to C*. This procedure can
also be viewed, in a rather imprecise language, in the following way.
Take any exhaustive sequence of connected compact subsets {K,} of
Q, K, Cint K, 41 and Q2 = UK, as n increases the number of the con-
nected components of C*\K,, is nondecreasing, but these connected
components are decreasing to the connected components of C*\Q. To
each decreasing sequence of these connected components we associate
one point.

In general if R is not a plane surface we do not have any space as
nice as C* in which R is embedded so we need a more sophisticated
construction. Now we describe briefly the Freudenthal compactification
of a general Riemann surface and record some of its most important
properties. What follows can be found in [16, 17] and [11, pages
81-87]. For the definitions of inverse system and the inverse limit,
see [14, pages 427-434]. If X is a noncompact, locally compact,
connected, locally connected and second countable topological space,
then we may consider an exhausting increasing sequence of compact
subsets {K,}n>0, i€, K, C intK,41 and X = Up>oK,. The
sequence of compact subsets can be directed by the order K,, > K,
if K, ¢ K,,. If we denote the set of connected components of
X\K, by m(X\K,), then we may consider the inverse limit F(X) =
£i£17r0(X\Kn) of the inverse system {mo(X\K4); tnm, { Kn }n>0} Where
tnm : K, — K,, denotes the natural inclusion when m > n. The
set F(X) is independent of the sequence of compact subsets { Ky, }n>0.
Each element of F(X) is called a Freudenthal end or simply an end.
By definition, an end is determined by a strictly decreasing sequence
{Un}n>0 where each U, is a connected component of X\K,. Two
sequences {Up}n>0 and {U,},>0 corresponding to two exhausting
sequences { K, }n>0 and {K] },>0 determine the same end if and only
if each U, contains some U/, and vice versa.

The Freudenthal space associated with X is defined as X = X UF(X)
with the topology generated by the basis of the open sets of the topology
of X and by the sets U = U UU* where U € mo(X\K,,) and U* is the
set of ends determined by some sequence {Um}mZO with some U,,, C U
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(we shall say that U determines U*). Since X is second countable,
so is X. The space Xisa compact Hausdorff space that contains X
as a dense subset; it is called the Freudenthal compactification of X.
Its remainder F(X) is homeomorphic to a closed subset of the Cantor
set and is therefore compact, metrizable and totally disconnected. In
fact, X is the maximal compactification of X with zero-dimensional
remainder.

On the other hand, it is well known that every noncompact Riemann
surface R is an orientable open two-manifold, see [1], for instance, which
satisfies all the above topological conditions, so it has a Freudenthal
compactification R. 1t should be noted that a compact subset K is
Runge if and only if each connected component of R\K contains at least
one end; this, in turn, holds if and only if the set of ends determined
by each connected component of R\K is not the emptyset.

An important example for us is the Freudenthal compactification of
C*, which is C*, where F(C*) = {0,00}. What we meant earlier by
a Riemann surface R “similar” to C* is precisely that the set F(R)
has exactly two elements. For instance, if R is a punctured disk or
an annulus, then F(R) has two elements. An example of a nonplanar
Riemann surface with two Freudenthal ends is the “infinite ladder,”
see 2.9 in the next section, Example 5b. Another important example
is that in which R is a noncompact simply connected Riemann surface,
then it is isomorphic to the unit disk or to the complex plane, and
thus F(R) is a point set. For an example of a nonplanar surface with
one Freudenthal end, see 2.9 Example 5a. Finally, we stress that, for a
plane region Q C C, the cardinal of F() is just the connectivity of Q.
We recall that the connectivity of a region 2 C C is defined to be the
number of connected components of C*\Q.

The Freudenthal compactification allows us to compare the collection
of compact subsets Z(R) in the conclusion of Zappa’s theorem with
K1(R) and K(R); we have

Z(R) C K1(R) C K(R).

We have pointed out earlier that Z(R) = K;(R) if and only if R
is a plane surface. We also have that K;(R) = K(R) if and only if
F(R) is a one-point set. So Z(R) = K(R) if and only if R is a plane
surface and F(R) is a point-set, that is, R is a noncompact simply
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connected Riemann surface and thus isomorphic to the complex plane
or isomorphic to the unit disk.

Having defined the Freudenthal compactification, we can state in very
precise terms a theorem which generalizes the Birkhoff-Seidel-Walsh
theorem to Riemann surfaces R with infinite discrete groups.

Theorem 1.2. Let R be a noncompact Riemann surface with an
infinite discrete group of automorphisms and such that F(R) is not a
two-point set. Then there exists a holomorphic function f € O(R) and
a sequence of automorphisms {pn}n>0 such that f is universal with
respect to {ontn>0 in O(R).

Observe that although in Theorem 1.2 we have added a “small”
extra hypothesis to Theorem 1.1, we have obtained a better result
on universality. This is an easy consequence of Mergelyan’s theorem
which states that O(R) is dense in A(K) for all K € K(R) and the
fact that /C1(R) C K(R). So we have obtained a further improvement
of Theorem 1.1 for those Riemann surfaces whose Freudenthal space of
ends F(R) is not a two-point set.

In order to prove the topological lemmas in Section 2, we are inter-
ested in working with “very regular” exhaustive sequences of compact
subsets. To this end, it is quite helpful to bear in mind that there is a
classification of the open two-manifolds, see [27] or [9], in which, inci-
dentally, Freudenthal’s compactification also plays a fundamental role.
In these last two references it is proved that an exhaustive sequence of
compact subsets {K,},>0 may be chosen satisfying:

i) Each K, is a compact bordered surface.

ii) Each connected component of R\ K, is not relatively compact and
is either planar or of infinite genus.

iii) The closure of each connected component of R\K, intersected
with K, is a topological circle.

We recall that, if K € K£(R), then R\K has finitely many connected
components. Property iii) implies that the number of connected com-
ponents of R\K,, is the same as the number of boundary components
K,,. The geometrical meaning is that each K, is chosen without “cut-
ting handles.” According to Property i) each K, is connected and of
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finite genus. In fact, by the classification theorem of compact bordered
surfaces each K, is homeomorphic to a sphere with finitely many han-
dles attached from which finitely many disjoint open topological disks
have been removed. We recall that a compact bordered surface is of
genus g € N if it has g handles attached.

The set of all compact subsets satisfying properties i), ii) and iii) will
be denoted by K'(R). Clearly K'(R) is a subset of (R). Implicitly, we
shall always assume that all exhaustive sequences we use are contained

in K'(R).
2. Run-away sequences of holomorphic self-mappings.

Definition 2.1. A sequence {¢,}n>0 C O(R; R) is said to be run-
away if for each compact subset K C R there exists a positive integer
ng = no(K) such that K N ¢y, (K) = @ and ¢,, restricted to K is
one-to-one.

This definition is motivated by the following two theorems in which
we examine the necessity of the conditions in Definition 2.1 for the
existence of universal functions.

Theorem 2.2. Let {¢,}n>0 C O(R; R) be a sequence of holomorphic
self-mappings. If there is a universal function for {¢©n}n>0, then for
every compact subset K there exists a matural number ng such that
KN, (K)=2.

Proof. Suppose that there is a compact subset K C R such that
K Ny, (K) # @ for all natural numbers n. Without loss of generality,
we may suppose that K € K(R). Hence, we can choose z, € K
with ¢, (2,) € K. Let f € O(R) be a universal function in O(R)
for {¢n}n>0. According to Mergelyan’s theorem, f is also universal in
A(K). Now consider the constant function g(z) = 1 + maxg |f(2)| €
O(R). We find that, for every n, max,cx |9(z) — f(pn(2))| > |9(zn)| —
|f(on(zn)] = 1+ max.er |f(2)] — |f(en(2n))| > 1, which contradicts
the fact that f is universal in A(K). O
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The necessity of the one-to-one condition, at least for regions 2 C C,
is given by the following theorem.

Theorem 2.3. Let Q C C be a region, and let {pn}n>0 C O(;Q)
be a sequence of holomorphic self-mappings. If there is a universal
function for {¢on}n>0, then for every compact subset K C ) there exists
a natural number ng such that ¢, is one-to-one on K.

Proof. Let K be any compact subset of 2. By putting a fine enough
rectangular grid on C, we may choose a compact subset K; C €2 which
is a connected, finite union of closed squares such that K C K;. For
such a compact subset K, there is a positive number M such that,
for all z1,29 € K1, there is an arc v contained in K7 joining z; to 22
and with length (7) < M|z; — z2|. To see this, let m be the number of
closed squares whose union is K7 and [ the length of the edge of these
squares. Then we may choose M = max{+v/2,m} since, if |z; — 25| > [
we may join z; to zo with a polygonal of length at most ml and if
|21 — 22| < I, then z; and 25 lie in the same square or in adjacent
squares, and we can either join them by an arc of length |21 — 23| or
IRe (21 — 22)| + [Im (21 — 22)| < V2|21 — 2.

Since K7 C €2 is compact, there is a positive number r > 0 such that
K, C U?zlﬁ(aj,r) C U?zlﬁ(aj,%) CQ If f e O€)is universal,
then there exists a natural number ng such that maxg, |fopn,(2)—z| <
r/(2M) where Ko = UF_B(a;,2r). We set ¢ = f o ¢,,. Now if
z € Ky, then z € B(a;,r) for some a;. So, by Cauchy’s formula for the
derivative, for all z € K; we have:

/ 1 g(§) —¢
‘g (Z) - 1| - 2_7m fig_aﬂzm W dg‘
| l9(¢) — €| L
< Tz 1l <4
N 7{5 a

2m —aj|=2r |'£ - Z‘z M

Let us suppose that there are z1,20 € Ky with 21 # 20 and g(z1) =
g(z2). If we choose an arc v such that length (y) < M|z1 — 22|, then

o1 — 2] = /7<g'(z) 1)de ng'(z) e

length ()
S TN

< ‘Zl — 22|,



BIRKHOFF THEOREM FOR RIEMANN SURFACES 673

which is a contradiction. Hence, g = f o ¢y, is one-to-one on K; and,
consequently, so is ¢y, thus ¢, is also one-to-one on K. ]

It is an easy exercise to check that if ¢ is an isomorphism from R onto
Ry, then {p,},>0 is run-away on R if and only if {¢) o @, 0 " },>0
is run-away on R;. It is clear from the definition that if {K,},>¢ is
an exhaustive sequence of compact subsets in R, then we only have to
verify the condition on every K, . In fact, by extracting a subsequence
of {¢n }n>0, if necessary, we may always assume that if {¢y, }n>0 is run-
away on R, then there is an exhaustive sequence of compact subsets
{Ky}n>0 such that K,, N, (K,) = @ and ¢, restricted to K, is one-
to-one. For such a sequence {¢y, }n>0, every subsequence of {¢y,}n>0 is
also run-away. In this case it is interesting to observe that {¢,(2)}n>0
has no accumulation point in R for any z € R. The converse is
not true. Consider, for instance, R = C and {¢,}n>0 defined by
¢n(z) =n?z +n. The sequence {¢, }n>0 is not run-away, even though
{©n(2)} is a discrete subset of C for every z € C.

Definition 2.1 generalizes another definition given in [2] for a sequence
of automorphisms on a region {2 C C. Definition 2.1 makes no sense
for compact Riemann surfaces. If R itself is compact, then RNy(R) =
R for all nonconstant ¢ of O(R;R), since nonconstant holomorphic
mappings between compact Riemann surfaces are surjective, see [15,
page 11], for example.

The following easy theorem begins to show the topological character
of Definition 2.1.

Theorem 2.4. If R has a run-away sequence of holomorphic self-
mappings, and R is not of genus zero, then R is of infinite genus. That
s, a Riemann surface with finite and positive genus cannot support a
Tun-away sequence.

Proof. Suppose that the genus of R is finite and greater than 0, say
g > 0. Then, by definition of the surface of genus g, there exists a
compact bordered Riemann surface K C R whose genus is precisely g
and for which each connected component of R\K is a plane surface.
If {¢n}n>0 is a run-away sequence in R, then there exists a natural
number ng such that K N ¢,,(K) = @ and ¢,, is one-to-one on
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K. Since the genus is a topological invariant, ¢,,(K) is a compact
bordered surface of genus g which is contained in some of the connected
components of R\K. This is a contradiction because any plane surface
is of genus 0. o

The following theorem relates the property of a sequence being run-
away with the fixed points of its elements.

Theorem 2.5. Let {¢,}n>0 C O(R; R) be a run-away sequence,
and suppose that there exists a sequence {zp}n>0 C R such that
©n(zn) = zn, n > 0; that is, z, is a fized point for ¢,, n > 0. Then
there exist a subsequence {zn, }r>0 and an end e € F(R) such that
limg_y o0 2, = €.

Proof. All we have to prove is that there is a subsequence {z,, }x>0
of fixed points which diverges in R. So, by the compactness of R,
we can extract from this subsequence a subsequence which converges
in R. Therefore, this extracted subsequence must converge to an end
e € F(R). If there is no subsequence which diverges in R, then there is
a compact subset K C R such that {z,},>0 is contained in K. Hence,
we have K N ¢, (K) D {z,} # @ for every positive integer n, which
contradicts the fact that {¢,},>0 is run-away. O

An important special case is that in which the sequence {¢y, }n>0 is
given by the sequence of iterates of a holomorphic self-mapping ¢. In
this case universal functions for {y,},>o are generally called hyper-
cyclic functions. Let us denote ¢° = identity on R and " = ¢" 1o .
The following theorem gives an almost complete and easy characteri-
zation of run-away sequences of iterates for noncompact Riemann sur-
faces.

Theorem 2.6. Let R be a noncompact Riemann surface, and let
¢ : R — R be a holomorphic self-mapping of R. If R is simply
connected, then {¢"},>0 is run-away if and only if ¢ is univalent and
has no fized point in R. The same is true even if R is not simply
connected, provided that ¢ ts not an automorphism.
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Proof. First we prove that if {¢"},>¢ is run-away, then ¢ is a
univalent holomorphic mapping without fixed points. Now, if ¢ has
a fixed point in R, so has ¢" for every n. Therefore, by Theorem 2.4,
{¢"}n>0 cannot be run-away. If ¢ is not univalent, then there are
20,721 € R, 20 # z1 with ¢©(z0) = (21) and, thus, giving ¢"(29) =
©"(z1) for every n. Hence, there is no natural number n such that "
can be one-to-one on the compact subset {zg, 21 }.

In the opposite direction, the Riemann mapping theorem states that,
if R is simply connected, then R is either isomorphic to the complex
plane C or R is isomorphic to the unit disk D. If R = C and ¢ is
univalent, then ¢ is an automorphism of the complex plane, and since
¢ has no fixed points, ¢ is a nontrivial translation of the complex plane.
It is now straightforward to verify that {¢"},>0 is run-away.

If R is isomorphic to D, without loss of generality we may assume
that R = D. From the Denjoy-Wolff theorem, see [10], for instance, if
¢ has no fixed point in D, then {¢"},>¢ tends uniformly on compact
subsets to a constant o of modulus 1. If K is a compact subset of the
unit disk, then for every z € K we have |z| < r for some r, 0 <7 < 1.
So there exists a positive integer ng such that, for all n > ngy, we
have |¢"(2) —a| < 1 —r for all z, |z| < r. Then ming |p"(2)] > r
and, consequently, K N ¢,(K) = & for all natural numbers n > ng.
Hence, ¢ being univalent, {¢"},>¢ is run-away. We have proved the
first statement of the theorem.

If R is not simply connected, by applying the Riemann mapping theo-
rem again, we know that the universal covering surface of a noncompact
Riemann surface is either the complex plane C or the unit disk D. If
it is the complex plane, then R is either isomorphic to C or isomorphic
to C*. The former has been treated before and for the latter there is
nothing to prove, since the only univalent holomorphic self-mappings
of C* are the automorphisms and these are excluded by hypothesis. If
the universal covering of R is the unit disk, there is a generalization of
the Denjoy-Wolff theorem due to M.H. Heins, see [22]. As ¢ is not an
automorphism of R and it has no fixed points, the sequence {¢"},>0
converges uniformly to the ideal boundary F(R) of R and, in a similar
way, we may do as in the paragraph above. o

Remarks 1. In general, it is easy to construct non-compact Riemann
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surfaces R and ¢ € O(R; R) such that the sequence of iterates {¢" }n>0
is run-away in R. For a Riemann surface R’ whose universal covering
surface is the unit disk, we find that if ¢ € O(R'; R') is a univalent
holomorphic self-mapping which is not an automorphism of R’ and
if ¢ has a fixed point in R’, say 2o, then {¢"},>¢ tends uniformly
on compact subsets of R’ to zg, see [26]. Hence, as in Theorem 2.6,
{¢"}n>0 is run-away in R = R'\{z}.

2. Tt is easy to find examples of multiply connected regions in which
there are automorphisms ¢ without fixed points for which {¢"},>0
may or may not be run-away. For instance, R = C* and ¢(z) = cz,
¢ # 0. If |e| = 1, the sequence of iterates is not run-away, and if |¢| # 1,
the sequence of iterates is run-away.

Let us examine the Riemann surfaces which have a run-away sequence
of automorphisms. It is well known that there are five types of
noncompact Riemann surfaces which fail to have a discrete group of
automorphisms, see [30, pages 243-244], for instance. These are the
complex plane C, the punctured complex plane C*, the unit disk D,
the punctured unit disk and the annuli. In [2], the run-away sequences
of automorphisms of C, D and C* are characterized. For the punctured
disk and the annuli it is easy to show, by seeing their groups of
automorphisms, that there is no run-away sequence of automorphisms
in any of them. The rest of noncompact Riemann surfaces have a
discrete group of automorphisms. If a Riemann surface has a finite
discrete group of automorphisms, say {¢1,...,¢n}, then there is no
run-away sequence of automorphisms in R. To see this, just consider
K = Utyp;(M), where M is any nonvoid compact subset of R. If R
has an infinite discrete group of automorphisms, then by applying the
definition of discrete group it is easy to show that run-away sequences
of automorphisms do exist. All these results together give the following

Proposition 2.7. A Riemann surface has a run-away sequence of
automorphisms if and only if it is isomorphic to C, D, C*, or it has
an infinite discrete group of automorphisms.

A noncompact Riemann surface with a discrete group of automor-
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phisms in which there is a universal function with respect to a sequence
of automorphisms has, necessarily, an infinite group of automorphisms.
This is a consequence of the following;:

Corollary 2.8. If there is a universal function with respect to a
sequence of automorphisms of a Riemann surface R, then R is one of
the Riemann surfaces given by Proposition 2.7.

Proof. If f € O(R) is a universal function with respect to a sequence
of automorphisms {¢,},>0, then it follows from Theorem 2.2 and
the fact that the one-to-one condition is automatically satisfied, that
{¢n}n>0 is a run-away sequence of automorphisms of R. Hence,
applying Proposition 2.7, we have the desired result. O

As a consequence, Theorem 1.2 does not hold if R has a finite discrete
group of automorphisms.

As a consequence of Theorem 2.16 we will deduce an old result which
states that, if the connectivity of a plane region is finite and greater than
two, then it has a finite group of automorphisms. So, if the connectivity
of a plane region is finite and is greater than or equal to two, except
C*, there is no sequence of automorphisms which can be run-away.
The same is true for a large class of regions with infinite connectivity
for which the group of automorphisms is a finite set. Thus, there
are good reasons for extending the definition of run-away sequences
to sequences of holomorphic self-mappings and not necessarily just
sequences of automorphisms. For instance, the only automorphisms
of @ = D\{1 —1/n : n € N} is the identity map. To see this, just
show that any automorphism of 2 has a removable singularity at each
point of the sequence {1 —1/n}, then apply the open mapping theorem
to prove that any automorphism of ) extends to an automorphism of
D. This automorphism has to take the whole sequence {1 — 1/n}
onto itself and this is impossible for an automorphism of the unit
disk which is not the identity. However, it is easy to show that
{on(2) =2z/n+1/n —1},>1 is a run-away sequence in 2.

Examples 2.9. Due to the “rigidity” of automorphisms, there are
relatively few Riemann surfaces R with sequences of automorphisms



678 A. MONTES-RODRIGUEZ

which can be run-away in R. Here are a few examples that show the
less restrictive nature of Definition 2.1. The following examples also
show that the mappings involved need not be globally one-to-one.

Ezample 1. Let {an}n>0 and {b,},>0 be two sequences of complex
numbers such that lim,,_, , a,, = 0, with a,, # 0 for all natural numbers
n, and lim,, ., Reb, = +oo. Let us show that {¢,(z) = e***bn tn>o
is run-away in C. Let B(0,r) denote the closed disk of center 0 an
radius r. Set a,, = r,e"’». Each function e®»**%» is one-to-one on the
strip B, = {z = e""w e C: —7/r, < Imw < 7/r,}. Since {a,}n>0
tends to zero, we have F(U,r) C B, for all natural numbers n > n;.
On the other hand, —r,7 + Reb,, > r for all n > ns. Now, if r > 0, we
have

min |e** | = min |e*+%| = min efe(anz+btn)
|z|<r |z|=r |z|=r
_ efrnr+Rebn Z e’ > 7.

With this, if n > max{ni,no} we have that B(0,7) N ¢, (B(0,7)) = @
and @, is one-to-one on B(0,r). Finally, if K is any compact subset
K Cc C, then we can find a positive number r > 0 such that K C

B(0,r). Therefore, {¢y,}n>0 is run-away.

Ezample 2. Let {a,z+ by, }n>0 be a sequence of automorphisms of C
such that lim,_, o (min{|b,/an|, |bn|}) = +o00. We also consider a se-
quence of natural numbers {cy, }n>0 such that lim,_,(1/cn)|bn/an| =
0o. Then the sequence of functions {¢,(2) = (anz + bn)°" }n>0 is run-
away in C. To see this, we choose any closed disk B(0,r) with > 1.
Each function ¢,, is one-to-one on the angular region

bn ; bn bn
B, = {z =—4re?:0<r< oo;—l—arg— <l < l—i—arg—}.
c

This angular region contains the disk B(0,r,) with

bn

an

.
sin —
Cn

Tn =

and, since lim,_,o 7, = +00, there is a natural number n; such that
©n, is one-to-one on B(0,r) for all n > ny. It is also easy to verify that
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there is a natural number n such that min ;| <, [anz + by| > r for all
n > ny. If r > 1, we obtain min|,<, |(anz + by)®| > 7°* > r. Asin
Example 1, we find that {¢,}n>0 is run-away in C.

Ezample 3. As in the previous examples, it is easy to verify that if
Yn(z) = kn(z—an)/(1—an,z) is a sequence of automorphisms of D such
that lim,_,« |a,| = 1 and p is any positive integer, then the sequence
{¢n(2) = (¥n(2))?}n>0 is run-away on D.

Ezample 4. Let {¢n(2) = (2 — an)(z — bn)}n>0 be a sequence of
polynomials of degree two. It is easy to verify that p,(z) = ¢n(2)
if and only if 2 + 2’ = a, + b,. So ¢, is one-to-one in B(0,r) with
r < |an + bn|/2. On the other hand, if r + v/r < min{|a,], |b,|},
we have, for all z € B(0,r), the inequality |(z — a,)(z — b,)| >
(lan|—12])(Jbn]—|2]) > r. So, if lim, o min{|ay|, |bn|, |@n+bn|/2} = oo,
then {¢n,}n>0 is run-away in C.

Ezample 5. a) Let R be formed by doubling the region in the zy-plane
bounded by the line y = 0 and the sequence of circles |z —i —n| = 1/9,
n € Z. We represent R in the three-space by the union of the
region which results by removing from C the sequence of closed disks
|z+i—n| <1/9, n € Z, joined to the m-rotation around the z-axis of
the same circles. The space of the ends of R is a one-point set.

b) Let R be the “infinite ladder” formed by doubling the region in
the xy-plane bounded by the lines y = +1 and the sequence of circles
|z —n| =1/9, n € Z. We represent R as a surface in the three-space
lying above and below the given region. The space of the ends of R is
a two-point set.

¢) We remove from the surface in b) the points where the surface (in
the three-space) meets the z-axis. The space of the ends of R is an
infinite set.

Now we consider a translation w in the three-space whose modulus is
a positive integer and whose direction coincides with the z-axis. This
translation induces an automorphism of R in the above three cases. It
is easy to check that in all three cases the sequence {¢"},>¢ is a run-
away sequence. Part a) of Theorem 3.1 (or Theorem 1.2) in the next
section is applicable in only cases a) and b) while part b) of Theorem
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3.1 (or Theorem 1.1) is applicable in all three cases.

As mentioned in the introduction, in order to prove the main theorem
in the next section we need some topological lemmas. To prove
two of these lemmas, we need some “regular” compact subsets with
connected complement. If R is a noncompact Riemann surface, we
set Ki(R) = K'(R) N K1(R). The following two properties are easy
consequences of the definition of K| (R) and their proofs are omitted.

Property 1. A compact subset K C R is in K| (R) if and only if K
is a compact bordered surface of R which is homeomorphic to a sphere
with finitely many handles attached from which one topological disk
has been removed.

Property 2. If K' € K'(R), then K; C int K’ is in ;1 (R) if and only
if int K"\ K; is connected.

We shall make use of this property, especially when K’ belongs to
Ki(R).

Lemma 2.10. For every noncompact Riemann surface, there exists
a sequence of compact subsets {K| }n>0 C K{(R) such that, for all
K, € K1(R) there exists a positive integer ng such that K C int K, .

Proof. Let {Ky,}n>0 C K'(R) be an exhaustive sequence of compact
subsets of R. If we take any compact subset K; of 1 (R), then there is
an ng such that Ky C int K,,,. Let m and g be the number of connected
components of R\K,,, and the genus of K, respectively. Then K,
is homeomorphic to a sphere with g handles attached from which m
disjoint topological disks have been removed. Let C;, i = 1,...,m,
be the boundary components corresponding to the m disks. Since
K; € Ki(R), we have by Property 2 that int K, \K; is an open
connected set, so it is arc-connected. We may join the circle Cy to Cs
by a Jordan arc L whose end points are in C; and Cs. Since Ky and L
are compact subsets, we may cover L by a connected, simply connected
open set V, that is, V is a narrow strip such that VNK,; = @. Without
loss of generality, we may assume that V is a finite union of topological
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disks of the denumerable basis of K, .

The resulting surface M; = K,,,\V is homeomorphic to a sphere with
g handles attached from which m — 1 open topological disks have been
removed. Since VN K; = @, we find that K; C int M;. In this way, in
finitely many steps we reach M, ; = K], which is homeomorphic to
a sphere with g handles attached from which one topological disk has
been removed.

Finally, observe that K, ~has been constructed as the difference
between two kinds of sets (one of the exhaustive sequence {K,, }, >0 and
the other as a finite union of the denumerable basis of each K, ) and
both kinds of sets are denumerable; therefore, we have the statement
of the lemma. o

The previous lemma is better, and its proof easier, than an analogous
lemma for the compact subsets of Z(R) proved by Zappa, see [31,
Lemma 2].

Zappa [31] remarks that, in a Riemann surface R, if K1 € Ki(R)
and K € K(R), the disjoint union does not necessarily belong to IC(R).
This is true (in fact, the disjoint union of two elements of K;(R) need
not be in C(R)). However, when dealing with run-away sequences of
holomorphic self-mappings we have the following crucial lemma (and
not only with run-away sequences of automorphisms).

Lemma 2.11. Let R be a noncompact Riemann surface, and let
{on}tn>0 C O(R;R) be a run-away sequence. Then, given K, €
K1(R) and K € K(R) there exists a positive integer ng such that
KNy, (K1) = O, @n, restricted to Ky is one-to-one and KUy, (K1) €
K(R).

Proof. According to Lemma 2.10, we may choose a compact subset
K| € K{(R) such that K; C int K{. Since {¢,}n>0 is run-away, there
is a positive integer ng such that K Ny, (K1) = @ and ¢, restricted
to K/ is one-to-one. This is the key point: the run-away property is
applied on K7, not on K. Since K7 is connected, so is ¢, (K1). Hence,
©no (K1) is contained in U, where U is a connected component of R\ K
which is not relatively compact. We observe that U is also a Riemann
subsurface of R. Now, since ¢,, is a one-to-one holomorphic mapping
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on K7, we know that it is a homeomorphism from K| onto its image
©no (K1). Since @, (K1) C U, we can apply Property 1 to conclude
that @n, (K) belongs to I} (U). Therefore, U\, (K1) is connected.

On the other hand, R\ (K Up,,(K1)) has the same connected compo-
nents as R\ K, except that U is replaced by U\, (K1). But the latter
is also not relatively compact, for if it were relatively compact then the
same would be true of U = (U\pn, (K1) U ¢n, (K1), a contradiction.
Thus, we have proved that K U ¢, (K1) € K(R).

It remains to be proved that K U p,, (K1) € K(R). To this end it
is sufficient to show that U\yp, (K1) is connected (the proof that it is
not relatively compact is as before). But this has to be true, because
int K1\ K is connected and connectedness is a topological invariant;
therefore, @, (int K1\ K1) = int @, (K1)\¢n, (K1) is a connected set in
©no (K1) and, since ¢, (K1) C U, we can apply Property 2 to conclude
that U\¢pn, (K1) is also connected. O

The statement of the previous lemma will be used only for compact
subsets of Kj(R). The fact that this statement is true for compact
subsets of K1 (R) suggests that the existence of a run-away sequence
in a Riemann surface R imposes strong topological properties on R.
If we add a condition to Definition 2.1 we can improve Lemma 2.11
for those Riemann surfaces whose Freudenthal space of ends is not a
two-point set. This extra condition is satisfied by run-away sequences
of automorphisms.

If K € K'(R) and ¢ is continuous and one-to-one on K, then it is a
homeomorphism onto ¢(K). Therefore, since the genus is a topological
invariant, ¢(K) has the same genus as K. However, each connected
component of R\¢(K) may be relatively compact, so p(K) is not
necessarily in K£'(R). In fact, R\¢(K) may not have the same number
of connected components as R\K. To avoid these difficulties we give
the following

Definition 2.12. A sequence {¢,}n>0 C O(R; R) is said to be run-
away preserving if, for all K € K'(R), there exists a positive integer
ng such that K N ¢p, (K) = 9, ¢n, restricted to K is one-to-one and

o (K) € K'(R).
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Since K and ¢, (K) are in K'(R), and for this kind of compact subset
the number of connected components of the complement is the same
as the number of the connected components of the boundary, we may
conclude from the fact that ¢, is a homeomorphism that R\ K has as
many connected components as R\py, (K).

Despite the extra requirement of Definition 2.12; the following propo-
sition shows that there are still many examples of run-away preserving
sequences.

Proposition 2.13. Under any of the following conditions if {¢n }n>0
s run-away, then it is also run-away preserving.

i) The space of ends F(R) is a one-point set, in particular, if R is
simply connected.

ii) The sequence {¢n}n>0 is contained in the group of automorphisms

of R.

iii) The Riemann surface R is a plane region and each element of
{¢n}n>0 is a covering map.

Proof. i) Since F(R) is a one-point set, we have that K'(R) = K} (R).
Let K be a compact subset in K'(R). Since {¢y, }»>0 is run-away, then
there is a natural number ng such that K N ¢, (K) = &, and @,
restricted to K is one-to-one. This implies that ¢,,, restricted to K is
a homeomorphism from K onto ¢,,(K). Hence, ¢,,(K) € K{(R) =
K'(R). Therefore, {¢n, }n>0 is run-away preserving.

ii) We only have to prove that each ¢, preserves the relatively
compact connected components. But this is obvious because ¢, is
a global homeomorphism from R onto itself.

iii) Let us consider a compact subset K in K'(R). Let Cy,...,Cp
be the boundary connected components of K. Since {wn}nzo is run-
away in R, there is a natural number ng such that K N, (K) = @
and ¢, is one-to-one on K. Since ¢,, is one-to-one on K, we have
that ¢,,(K) has as many boundary connected components as K. Since
©no (K) is contained in a plane surface, we have that K and ¢, (K) have
the same order of connectivity. Hence, R\K has as many connected
components as R\@n,(K). As before, we only have to prove that
none of the connected components of R\p,,(K) is relatively compact.
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To see this, we may suppose that R C C. If U is the nonbounded
connected component in C of R\¢,,(K), then automatically it is
not relatively compact. Now suppose that U is a bounded relatively
compact connected component of R\, (K), and let ¢,,(C;) be the
boundary connected component of U; then the closure U = U U, (C;)
is a closed topological disk which is contained in R. This implies that
©no (C;) is null-homotopic in R. However, the connected component of
R\K corresponding to C; is not relatively compact and from this we
find that C; is not null-homotopic in R. This is a contradiction because
any covering map between Riemann surfaces induces a one-to-one
homomorphism between their fundamental groups, see [15, Chapter
1, Section 4]. O

Consequently, all examples given in Examples 2.9 are run-away pre-
serving. There is a standard way to construct examples of noncom-
pact Riemann surfaces with a run-away preserving sequence of map-
pings. Consider, for instance, the unit disk D and the sequence
given by {¢,(z) = (1/n)z}n>1. For each natural number k we de-
fine Fj, = {@;, 0 i, -0 p;, (1) 1 i1,i2,... i € N}, and we denote
F' = U2 Fy, and F = F’ U {0}. Then it is easy to show that {¢,},>0
is run-away preserving in the region 2 = D\ F.

As we shall see shortly, if F(R) is finite and has three or more
elements, there is no sequence which can be run-away preserving. So,
in Lemmas 2.15 and 2.17, F(R) will be infinite. We shall make use of
the following notation. If § C R, then we denote S = SN R.

Definition 2.14. Let R be a noncompact Riemann surface. An end
e € F(R) is said to be nonisolated if it is a nonisolated point in the
topological space F(R); that is, for every open neighborhood UCR
with e € U there is another end €’ # e such that ¢’ € U.

Observe the use of the fact that F(R) has at least three elements in
the proof of the following lemma.

Lemma 2.15. Let R be a noncompact Riemann surface with an
infinite space of ends F(R) and {on}n>0 C O(R;R) a run-away
preserving sequence. Then there exist a nonisolated end e and a run-
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away preserving subsequence {¢n, }r>0 such that, for every compact
subset K C R and for every open neighborhood U C R with e € U,
there exists a positive integer kg such that, for every k > ko, we have
On,, () CU and py,, restricted to K is one-to-one.

Proof. We may choose an exhaustive sequence {K,},>0 C K'(R) in
such a way that each R\K,, = Uje,, Uj*, where the union is disjoint,
J, is a finite set, and each UJ” is an open, connected subset of R.

Furthermore, we may choose each UJ" such that it contains a unique,
isolated end or it contains a nonisolated end. In the latter case, it
must therefore contain infinitely many ends of F(R). Since the space
of ends F(R) is infinite, we may suppose that R\Kn has three or more
components for each n. Since {¢n}n>0 is run-away preserving, we
may assume, by extracting a subsequence if necessary, that for each n,
K, Npn(K,) = 9, ¢, restricted to K, is one-to-one and R\p,(K,)
has as many connected components as R\ K,,. Hence, ¢, (K,) C R\K,
and, from the connectedness of ¢, (K,), there exists jo € J, such
that ¢, (K,) C U and [A]J’g contains a nonisolated end of F(R) which
we denote by e,. This is so because R\y,(K,) has at least three
connected components, two of which (determining at least two distinct
ends, since they are disjoint) are subsets of Uj,, which is impossible

if Uj, determines exactly one end (or equivalently, if U}, contains an

isolated end). Hence, by the compactness of R, there exists an end e
of F(R) and a subsequence {e,, }1>0 tending to e.

Clearly, e is nonisolated. Let U be a neighborhood of e. Without
loss of generality, we may suppose that U is a connected component of
R\K,, for some natural number k;. Since {e,, }r>0 tends to e, we
know that e,, € U for all k > ka. So U determines e, for all k£ > ka.
Therefore, since {K,,},>0 is exhaustive for all & > max{ki, k2}, we
have U}* C U.

Now, given any compact subset K, there is k3 such that, for all
k > ks, we have K C int K,,,. So, if & > max{ky, ko, ks}, we have
@ny, (K) C ¢pp, (Kpn,) CUZ* C U, which is the statement of the lemma.
O

In the sequel, if R has an infinite space of ends F(R) and {¢p }n>0 C
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O(R; R) is a run-away preserving sequence, we may assume by extract-
ing a subsequence if necessary that {¢,},>0 satisfies the property of
the previous lemma.

The proof of Lemma 2.15 gives the following topological requirement
on a Riemann surface to have a run-away preserving sequence.

Theorem 2.16. Let R be a noncompact Riemann surface. If F(R)
18 finite and has three or more elements, then R cannot support a run-
away preserving sequence.

Proof. Since F(R) is finite, all ends are isolated. Since F(R) has
three or more elements, we can repeat step by step the first part of
the proof of Lemma 2.15 to obtain a nonisolated end, a contradiction.
mi

Of course, the statement of the above theorem is not true if F(R)
has one or two elements, see Examples 2.9. On the other hand, it is
very easy to construct run-away (not preserving) sequences on the unit
disk with a finite set of points deleted. Hence, Theorem 2.16 is false
for run-away (not preserving) sequences.

Since run-away sequences of automorphisms are preserving (Propo-
sition 2.13 ii)), we find that if F(R) is finite and has three or more
elements, then R cannot support any run-away sequence of automor-
phisms. Therefore, by Proposition 2.7, we find that R is isomorphic to
a punctured disk or to an annulus or has a finite discrete group of au-
tomorphisms. Since F(R) is finite and has three or more elements, the
last possibility must occur. Recalling that the connectivity of a plane
region coincides with the cardinal of F(R), we have reproved the old
result that if the connectivity of a plane region (2 is finite and greater
than two, the group of automorphisms of 2 is finite.

Lemma 2.17. Let R be an open Riemann surface with an infinite
space of ends F(R), {¢n}tn>0 C O(R;R) a run-away preserving se-
quence and K1, K € K'(R). Then there exists a positive integer ng
such that K1 N pn,(K) = &, @n, restricted to K is one-to-one and
Ky U, (K) € K(R).
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Proof. Let l; and | be the number of connected components of K
and K which are not relatively compact, respectively. Consider the
end e furnished by Lemma 2.15. Let U, be the connected component
of R\K 1 which contains e. Since e is nonisolated, there are an open
neighborhood U of e and an end ey € F(R) such that e € U C U; and
e € Ul\U According to Lemma 2.15, there exists a positive integer ng
such that ¢,,(K) C U and ¢, restricted to K is one-to-one. Clearly,
KiNgy(K) =2.

Let Uy, Us,... ,U;and Vq,..., V] be the connected components of the
complements of K7 and ¢, (K), respectively. We may assume that
V1 is the connected component containing Kj;. Then the connected
components of R\(K; U pn,(K)) are Uy N V4, Us,... U, Va,..., V.
Clearly, I; + 1 — 2 of these connected components are not relatively
compact. Since the remaining connected component U; N V; contains
Ui\U, and this latter set determines ey, we conclude that Uy NV is
not relatively compact and the proof is complete. a

The statement of the previous lemma is trivial when F(R) is a one-
point set. But it is false when F(R) is a two-point set. (See C* or
Example 2.9.5 b).)

3. Existence of universal functions. In this section we prove
the existence of universal functions when the sequence of mappings

{@n}n>0 is run-away.

Theorem 3.1. Let R be a noncompact Riemann surface. Then,
given a sequence {@,}n>0 C O(R; R), we have

a) If F(R) is not a two-point set and {@y, }n>0 1S run-away preserving,
then there exists a residual set of functions of O(R) which are universal

in O(R).

b) If {¢n }n>0 is run-away, then there exists a residual set of functions
of O(R) which are universal in A(K) for all K € K1(R).

Proof. First we prove a). Let {fix}r>0 C O(R) be a denumerable
dense subset of O(R). We also consider a strictly decreasing sequence
of positive real numbers {ey, }m>0 with limit 0 and {K,},>0 C K'(R)
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an exhaustive sequence of compact subsets in R. Note that, according
to the hypothesis and Theorem 2.16, F(R) must be either a one-point
set or an infinite set.

Since {¢n, }n>0 C O(R; R), we may define its corresponding sequence
of composition operators T;, : O(R) — O(R), n > 0, by T,,(f) = fopn.
Obviously, every T, is a continuous linear operator on O(R).

Let K C R be a compact subset, f € O(R) and £ > 0. We define the
following subsets of O(R):

G(f,e,K) ={g € O(R) : thereis an n € N such that
max |Tn(g(2)) — £(2)| < e}
O(f,&, K) = {h € O(R) : max|h(z) - f(2)| <e}.

In fact, the subsets O(f,e, K) are an open basis for the topology of
O(R). Since each T, is continuous for every positive integer n, we find
that G(f,e, K) is an open subset of O(R), because it is given by

o0

G(f,6,K) = |J 1.1 (O(f,¢, K)).

n=0

We now prove that, if K € K'(R), then G(f,¢, K) is a dense subset
in O(R). To see this, fix &’ > 0, h € O(R) and K’ € K'(R). We must
prove that G(f,e,K) N O(h,e’, K') # &, that is to say, there exists
g € O(R) such that

(1) max |h(z) — g(2)] < ¢’
and
(2) max |f(2) = Tng (9(2))] <,

for some positive integer ng.

Since {¢n, }n>0 is run-away preserving on R, from Lemma 2.17 there
exists a positive integer ny such that K' N ¢, (K) = @, L = K' U
©no (K) € K(R) and ¢y, restricted to K is a homeomorphism onto its
image @n, (K).
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We define on L the function

L { h(z) if z € K,
1= - .

Flony (2))  if 2 € on, (K),
where ¢, 1 denotes the inverse mapping of ¢n, : K = ¢n,(K). It is
clear that hy € A(L); then, since L € K(R), we may apply Mergelyan’s
approximation theorem to obtain a holomorphic function g € O(R)
such that max,cr, |h1(2) — g(2)| < €’ = min(e,e’). Therefore, we have

o /
max [h(z) — g(2)| <e

and
max |f(2) = Tng (9(2))] = max |£(2) = g(¢n,(2))]

T oK) £ (eny (2)) = 9(2)]

< _
< max [hi(2) - g(2)| <,

which are (1) and (2), respectively.

On the other hand, it is easy to see that the set G of universal
functions on O(R) may be written as

® a-(1 N

oo

G(fr:ems Kn)-
0

n=

Thus G is a G set and since O(R) is a Baire space we conclude that
G is a residual set. So, we have proved a).

In order to prove b), we replace the exhaustive sequence of compact
subsets by the sequence of compact subsets furnished by Lemma 2.10.
Analogously, as before, we may prove that if K € K;(R), then
G(f,e,K) is a dense subset on O(R), the only difference being that
Lemma 2.11 instead of Lemma 2.17 has to be applied. Finally, if the
set of universal functions in A(K) for all K € Ky(R) is denoted by
G, then this set may be written again as in (3). Since the left inclu-
sion is obvious, we only prove the right inclusion. We have to prove
that if f is universal in A(K,,) for each n, then it is also universal
in A(K) for all K € K1(R). Given any K € Ki(R) there exists ng
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such that K C int K,,, and int K,,,\K being connected, we may ap-
ply Mergelyan’s theorem again to show that A(K,,) is dense in A(K).
Since f is universal in A(K,,), it is also universal in A(K). This proves
the right inclusion. Hence, we also have b) and the proof of the theorem
is concluded. O

Remarks 1. Part a) of Theorem 3.1 gives sufficient conditions on a
Riemann surface and on a given sequence of holomorphic self-mappings
for the existence of a universal function with respect to this sequence.
Observe that the Birkhoff-Seidel-Walsh theorem and Theorem 1.2 fol-
low from part a) of Theorem 3.1, Proposition 2.7 and Proposition 2.13
ii). Analogously, Zappa’s theorem and Theorem 1.1 follow from part b)
of Theorem 3.1 and Proposition 2.7. Observe that, by an application
of Mergelyan’s theorem O(R) is dense in A(K) for all K € K(R). Con-
sequently, in case a) the universal functions on O(R) are also universal
on A(K) for all K € KC(R). Since K(R) = K1(R) if and only if F(R) is
a one-point set, a further improvement of part b) has been obtained.

2. The proof of Theorem 3.1 still works for sequences of continuous
mappings {¢,}n>0 such that, for every compact subset K € K'(R)
there exists ng such that K N pp (K) = &, ¢n, restricted to K is
in A(K) and one-to-one on K and ¢,,(K) € K'(R). In fact, in the
proofs of the topological lemmas in Section 2, we have not used any
analytic property, and the analytic properties needed in the proof of
Theorem 3.1 are satisfied if the restriction of ¢,,, to K is in A(K), the
space of analytic functions in the interior of K and continuous on K.

3. It is also possible to define run-away semi-preserving sequences
of mappings {¢,}n>0 C O(R; R) as follows. For every compact subset
K € K'(R) there is a natural number ng such that K Ny, (K) = @,
©n, restricted to K is one-to-one and ¢, (K) € K(R) (instead of
K'(R)). This definition would alter the topological lemmas at the
end of Section 2 and Theorem 2.16. For instance, the existence of
run-away semi-preserving sequences of mappings would be possible
for noncompact Riemann surfaces whose Freudenthal space is finite
and has three or more elements. It is still possible to show a similar
statement to that of Theorem 3.1 for this kind of sequence.
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4. Finally, we examine the necessity of the topological condition on
R in part a) of Theorem 3.1. That is, the statement of Theorem 3.1 a)
is not true if F(R) is a two-point set. To see this, we consider R = C*
and let {c,} be a sequence that converges to zero; thus, {cn,z}>0 is
a run-away preserving sequence for C*, and suppose that there is a
function f € O(C*) which is universal in O(C*) (this forces f to have
an essential singularity at 0 and at co). Without loss of generality,
we may assume that {c,}n>0 decreases to zero. Let f,(2) = f(cn2),
n > 0. Since f is universal, we may extract a subsequence {fy, }x>0
which converges uniformly to zero on |z] = 1. Consequently, the
functions {f,, }x>0 are uniformly bounded on |z| = 1. This implies
that |f(z)] < M on |z| = |cp,| for all £ > 0. Applying the maximum
principle, we see that |f(z)| < M on 0 < |z| < |¢p, |, which contradicts
the fact that f has an essential singularity at the origin.
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