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EXCURSIONS OF A RANDOM WALK
RELATED TO THE STRONG LAW OF LARGE NUMBERS

TRAVIS LEE, MAX MINZNER AND EVAN FISHER

1. Introduction. Let {X,i = 1,2,3,...} be a sequence of inde-
pendent and identically distributed random variables, each normally
distributed with mean p and variance o2. For n = 1,2,3,..., define
S, = Z?:l X; =Sy = 0. It follows from the Kolmogorov strong law of
large numbers (see [1, p. 274]), that lim, o (S, — np)/n* =0 a.s. for
all & > 1/2. Consequently, for each real number ¢ > 0, the inequality

(1.1) Sp —np > cn®

is satisfied for only finitely many indices n.

We define an excursion of the random walk {S,,n =1,2,3,...} to
be a complete sequence of consecutive indices for which the inequality
(1.1) holds. More precisely, we say that an excursion of length £,
k=1,2,3,..., begins at index n, n =1,2,3,..., if

(Sp—1—(m—Dp<c(n—1)Sppic1 —(n+i—Dp>c(n+i—1)°
fori=1,2,3,...,k,Spir — (n+E)u < c(n+k)%).
For n = 1,2,3,..., define the event A4, by A, = (S, — nu >

en®, Spy1 — (4 1Dp < e(n 4+ 1)*) and define the random variable
X(c) by

(1.2) X(e) =) _I(Ay).

(I(A) denotes the indicator function of the event A.) X(c) represents
the number of excursions. It follows from (1.1) that X(c) is finite-
valued. (We suppress, in the notation, the dependence of X (c) on a.)
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Here we investigate the expected number of excursions. The main
result of this paper, Theorem 2.1, establishes asymptotically close
upper and lower bounds on the expected value of X (¢) for 1/2 < o < 1.
(See Section 2.4) This provides a characterization of the relationship
between the fluctuations of the random walk {S,,} and the strong law
of large numbers.

The results in this paper contrast with earlier investigations on the
random variable N (c), which represents the number of indices for which
(1.1) occurs. Specifically, define the random variable N(c) by

(1.3) N(e) = I(By)

where B, = (S, — np > cn®). The random variable N(c) and
characterizations of its moments have been studied in a variety of
settings. (See, for example, Lai and Lan [4], Slivka [6], Stratton [8],
Razanadrakoto and Severo [5] and Klebaner [3].) Results on N(c¢) most
closely related to Theorem 2.1 appear in Drucker, Fodor, and Fisher [2]
and Slivka and Severo [7]. (We note that in the latter two references
the variable N(c) is defined by (1.3) with B,, = (|S,, — nu| > ¢n®).)

In Section 2 we state Theorem 2.1 and discuss various implications
of the theorem. We include tables of values for the upper and lower
bounds established by the theorem for a variety of values of ¢ and «
and relate the expected value of X (c) with the expected value of N(c).
The proof of Theorem 2.1 comprises Section 3 of the paper.

2. Statement and discussion of Theorem 2.1.

2.1. Notation and statement of results. We assume the notation and
definitions as described in the introduction. For notational convenience,
we make the following definitions. Let p = ¢/o, let ®(-) represent the
cumulative distribution function of the standard normal distribution,

and define

Theorem 2.1. Let {X; =1,2,3,...} be a sequence of independent,
normally distributed random variables with mean 1 and variance o>.
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Let ¢ >0 and 1/2 < a < 1. Let X(c) be as defined by (1.2). Then

max{L(p,a),0} < EX(c) <U(p,)

where
—a _ o)293/2-a
22) L(pi0) = A(pra) - -5 - 2T a) -
and
(2.3) Ulp,a) = A(p,a) + O;j(f"‘l).

Remark. We note that, as expected, the bounds on EX (c) are based
on ¢ and o through p = ¢/o.

The upper and lower bounds simplify considerably in the linear case,
which we record as the following corollary.

Corollary 2.2. Under the same conditions as Theorem 2.1, suppose
that o = 1. Then

1 3
max{ — — ——,
{p\/2ﬂ' NS

0} <EX(c) < ! + @(p).

T opV2m

2.2. The asymptotic behavior of EX(c). For fixed o satisfying
1/2 < a < 1, it is clear that lim.,o EX(c) = co. It follows easily
from Theorem 2.1 that

IR P pere-) ey S S Wy Y
2.4)  EX(c) 7r(40[_2)2 M5 )r

as ¢ — 0 and so

(2.5) EX(c) = O(p~/(a=1)y
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as ¢ — 0.

2.3. The relationship between X (c) and N(c). It is of interest to
compare the asymptotic behavior as ¢ — 0 of the expected number
of excursions and the expected number of steps of the normal random
walk above the boundaries described in Theorem 2.1. It follows from
Drucker, Fodor, and Fisher [2, Theorem 2.3 and proof of Corollary 3.1]
and (2.4) that

EN(c) P((2a+1)/(4a —2)) 2\1/(4a—2
Ex(o) ~ DV T(i/(da—2) 27 e
as ¢ — 0 and hence that
EN(c) _ 2a—1
as ¢ — 0.

2.4. Remarks and examples related to the upper and lower bounds on

EX(c). Define

d(p, a) = U(p, a) - L(p, a)'
In the linear case (o = 1) of Corollary 2.2, it is easily seen that
d(p,1) < ®(p) + 3/(v/2r) < 1.68 for all p > 0. For p < /7/3,
it is clear that d(p,1) = ®(p) + 3/(v/27) and that lim, o d(p,1) =
1/2+3/(v/2m) ~ 1.2. Hence, we note that the upper and lower bounds
on EX(c) are uniformly close in the case of a linear boundary.

We illustrate Corollary 2.2 with the following table of results (rounded
off to the third decimal place) calculated using Mathematica (see [9]).
We take ¢ = 1. For selected values of ¢, we display the interval
containing EX (c¢) obtained through Corollary 2.2 and, for purposes of
comparison, we display the interval containing £ N (c) obtained through
the application of the aforementioned result in [2, Theorem 2.3].

c EN(c) EX(c)

1 [0,.5] [0,1.240]

.1 [49.5,50] [3.314,4.529]
.01 [4999.5, 5000] [39.219, 40.398]
.001 [499,999.5, 500,000] [398.267,399.443]




EXCURSIONS OF A RANDOM WALK 599

For the case 1/2 < o < 1, we observe that

3 1

lim d =

so that the relative error in approximating EX (c) through Theorem 2.1
approaches zero as ¢ approaches zero. As we did earlier for the case
a = 1, we illustrate Theorem 2.1 for ¢ = 1 with selected values of ¢
and a. Here we also display an approximation of EN(c) showing its
order of magnitude for comparison with EX (c).

a ¢ EN(c EX(c)

75 1 15,000 [62.731,64.457)
.6 .5 483,340 [189.687,193.346]
b5 .8 2.8x 101 [11380.3,11387.3]

3. Proof of Theorem 2.1. We divide the proof of Theorem 2.1
into two sections. In Section 3.1 we derive the upper bound (2.3), and
in Section 3.2 we derive the lower bound (2.2).

Define X} = (X,, —p)/o and S =>;_, Xiforn=1,2,3,.... It
follows from (1.2) that

EX(c)= Y P(Sp>pn® Sp+ X}, < p(n+1)%)
n=1
so that
(3.1)
0 rp((n+1)"-n®)
Exo=Y [ P(pn < S}, < pln+1)* — y)o(y) dy

n=1
®©  rp((n=1)%-n%) o a
pin+1)* —y pn
nz::l /_oo { < NG ym ) oWy
where ¢(-) represents the standard normal density function.

3.1. Derivation of the upper bound. We apply the mean value theorem
to the first factor of the latter integrand in (3.1) and use the fact that
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¢'(y) = —y¢(y) to obtain

EX(c) < Z ! exp(—p*n?*1/2)
p(n+1)%—pn
- /_ (p(n+1)" = pn® —y)o(y) dy
1

(3.2) _ i
2
- ®(p(n+1)* — pn®) exp(—p*n**"1/2)

£ o olpln +1)% — pn®) exp(—p*n*" f2).

(p(n+1)* — pn®)

It follows from the monotonicity of ®(-) and the inequality (n + 1)* —
n® < an®"! for o < 1, that

> e

n=1

p(n+1)% — pn®)®(p(n + 1)* — pn®) eXp(fpznzo"l/Q)
pad(pa) 5 a1
§ : —p°n 2
\/271'713/2 a exp(—p /2)

PO“I)(PO‘)/ a—3/2 2, 2a—1
< —" T exp(—p“x 2) dx
<= /| p(—p /2)

For future reference, we note that, with the elementary change of
variables y = pz® /2, one obtains the result

(3.3) /0 2o exp(—(1/2) 2 ) d = 7(2*;% 5

It follows that

(3.4) i":

n:l

p(n+1)% — pn®)®(p(n +1)* — pn®)

a®(pa)

rexp(—p*n*1/2) < S
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We consider the latter sum in (3.2) and note that ¢(-) < 1/v27 to
obtain

(n+1)% — pn®) exp(—p°n**~1/2)

< i ; exp _ p_2n2a71
= 2m\/n 2
1 [ 2
< o | z Y2 exp ( %x%‘l) dx.
The change of variables y = p?22*~1/2 applied to the latter integral

results in the inequality

(3.5) p(n+1)% = pn) exp(—p*n®* "1 /2)

3 1 2 1/(40472)1—‘ 1
~ n(da—2)\ p? da—2)°

Together the results (3.2)—(3.5) establish the upper bound of Theo-
rem 2.1 described by (2.3).

3.2. Derivation of the lower bound. It follows from (3.1) and an
application of the mean value theorem that

(3.6)
00 p(n+1)*—pn™
g\/—/ (p(n+1)* = pn® — )

4%%@ dy.

The change of variables u = p(n + 1)® — y applied to the integral in

(3.6) yields
02 % gomow (g 1)

(3.7) / u— pn®)
exp { ; (” * 1) (w2 — 2pn(n + 1)a—1u)} du.
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Completing the square in the latter exponential function results in

@23 e (- o)
(3.8) /,, (u— pn)
-exp{—%(n:1>(u—pn(n+1)o‘_1)2}du.

We write the sum in (3.8) as
(3.9)

- 1 1 2 2a—1
- _ = 1)2e
S srmee (- grer )

-/pw (= pnyesp { = 3 (1) (g4 71

= né_o:l ﬁ €xp ( - %Pz(n + 1)2“_1>
[ ey
'eXP{ - %(n: 1>(u—pn(n+ 1)0‘_1)2}du

+Z%\f(m(n+1) L= pn®)

n=1

1
- exp < - §p2(n + 1)20‘_1>

[orm{-4(E o e

We apply the change of variables y = —((n + 1)/(2n))(u — pn(n +
Do 2 and y = \/(n + 1)/n(u—pn(n+1)*~1) to the second and third
integrals that appear in (3.9), respectively. This, with (3.8), yields the
inequality

(310) EX(C) Z Tl - T2
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where

and
L= —— (e pnn+ 1)
= —_——— n- — pnin
? = 27r(n+1)p P
1
-q»(— et (pna—pn<n+1>“1>)

1
- exp < - §p2(n + 1)2"‘1>.

We consider T3 and note that 0 < n® ! — (n+1)*"1 < (1 —a)n®2
for 1/2 < a < 1. It follows from this and (3.3) that

F(l Oé) 1 1 2 2a—1
Ty < E _ -
2 9 — 3/2 exp 2p n

n=1

(3.11) < /0(1_04){/oo a—3/2 <_1 2 2a1) d }
=% U x exp P z

l1—-«
doa —2°

The same remark leading to (3.11) leads to

(3.12)

- 1
> ——exp(—p*(n+1)%*71/2

(T (- 2852))
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Applying the inequalities exp(—z) > 1 — z and y/n/(n+1) > 1 —
1/(24/n(n + 1)), we obtain

(3.13)
N =2 TR A v e )

Further, since n? > (n + 1)/2, it follows from (3.13) that

(3.14) \/nTHexp < _ %)

1
>1— —— —p*(1—a)?2'"¥(n + 1)*7L,

B V2(n +1)

From (3.12) and (3.14), we observe that
(3.15) Ty > T —Tie —Ths

where 171, T12 and T13 are defined by

(3.16)
Tio = 2\;§7r 721 n +11)3/2 exp <— %p2(n+1)2a—1>
Tys = p*(1 —Q‘jr)2217a ::1 o 11)3/2 — exp (— —PQ(n+1)2a1>

We derive a lower bound on 775, beginning with the relation

1 ° 1 1
3.17 T, > — — Zp? 1)22=1) da.
( ) o ) mexp( 2p (z+1) T
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The change of variables y = p?(z + 1)2*71/2 leads to

1~ 1 L, 2a—1
— ——¢€ — = LL'+1 « diL‘
27r/1 rdm( 5P (@ +1) >

1 o0
> 9/ 21/ (4a—2) / 1/(4a—2)—1 —0)d
_W(4a_2)( /p”) v exp(—y) dy

p222a72
_/ yl/(da=2)-1 dy}
0

1 2\1/(4a—2 1 V2
- 7r(4a—2)(2/p ) )F(4a—2> T

)

and we conclude that

(3'18) Ty > m@/p2)l/(4a—2)r(4al_ 2> . g

It is elementary that

ro oL /°° L 1
LT = .
P =9var Jo (@+1)3/2 V2

Finally, we consider 713 and observe that

2 1— 2 00 1
Tz < u/ @ 3/2 exp < - §p2m2°‘_1> dx.
1

2%

(3.19)

The same change of variables employed in deriving (3.3) leads to

- L 5 2a-1 _ 2v2r(1 - ®(p))
(3.20) /1 3/ exp(—ip x >dm—w.

We apply (3.20) to obtain

23/2—o¢p(1 _ O[)2

3.21 T3 ——(1-¢ .

The results (3.18), (3.19), (3.21) and (3.15) along with (3.10) and
(3.11) establish the lower bound described in (2.2). This completes the
proof of Theorem 2.1. ]
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