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AN APPLICATION OF
REGULARLY VARYING FUNCTIONS

Y-T. HUANG, J. IBBOTSON AND Z. ZIELEZNY

ABSTRACT. Let K, be the space of distributions growing

no faster than eM(¢®) for some constant ¢, where M is a
suitably defined function. We assume that the dual of M
in the sense of Young is regularly varying at zero and infinity
with positive indices of variation. We prove that two necessary
conditions for a convolution operator to be hypoelliptic in Iqw
are also sufficient.

0. Introduction. D.H. Pahk [2] studied hypoelliptic convolution
equations in spaces K, of distributions growing no faster than e (c2)
for some positive constant ¢. Here M is a function defined on [0, 00) by

(0.1) M(z) = /0 " () dt

where p is a continuous, increasing function on [0, 00) such that u(0) =
0 and p(t) — oo as t — oo. We will also consider the extension of M,
which we also denote by M, to all of R™ by M(z) = M(|z|).

Pahk proved that the Fourier transform S of a distribution S which
is a hypoelliptic convolution operator in K, satisfies the following
conditions:

(H,) There exist positive constants A; and B; such that

1S(©) > €],  if£€€R" and [¢| > By

(He) (N(1)/1og|¢[) = oo, if ¢ = € +in € C", [¢| = 00 and $(¢) =0,
where N is the dual of M in the sense of Young.

On the other hand, a convolution operator S in K, is hypoelliptic in
'y if its Fourier transform S satisfies the seemingly stronger condition:
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(H) Given € > 0, we can find a positive constant B such that, for
every integer m > 0, there exists a constant C,,, with the property that

1

15(0)]
if (=¢+ineC", N(n) <mlog|¢| and [{]> Cp.

< K|BeEN(n)

’

The question whether conditions (H,) and (H.) imply (H) was left
open. However, it is known [3, Theorem 8] that they are equivalent in
the case where M (z) = zP/p for p > 1.

In this paper we prove that conditions (H,) and (H.) are indeed
equivalent to (H), if we assume that the function N is regularly varying
at zero and at infinity with positive indices of variation. The notion of
regular variation at infinity was first introduced by J. Karamata [1] for
application in probability theory.

In Section 1 we recall the basic facts concerning the space K}, and
the space O. (K}, : K};) of convolution operators in K. In Section 2
we discuss some properties of regularly varying functions. Section 3
contains the fundamental lemma and Section 4 is devoted to the proof
of our main result.

1. Preliminaries. Let M and N be functions on [0, 00) defined as
in equation (0.1) by means of ;1 and v, respectively. We say that M and
N are dual in the sense of Young if y and v are mutual inverses. For
example, 2P /p and 29/q are dual in the sense of Yong when p > 1 and
1/p+1/g=1. Ifz,n € R", we set M(x) = M(|z|) and N(n) = N(|n|).
We denote by KCp the space of all C'*°-functions on R"™ such that

(1.1) me(p)= sup eMEI|DY%(z)] <00, k=1,2,...,
zE€R",|a|<k

where, as usual, |a| = oy + a2 + a3+ -+ +a, and D* =[[7_, (i7"(9/
Oz;))*s.

The topology in Ky is defined by the seminorms (1.1).

The dual Ky of Kps can be identified with a subspace of the space

D’ of distributions on R™. A distribution u € D’ is in Ky if and only
if there exists an integer m > 0, a constant ¢ > 0, and a bounded
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continuous function f on R™ with

amn

= m
Oz ---0z™

u [eMef], where M.(z) = M(cz).

Because of this property we call K, the space of distributions which
“grow no faster than eM(°®)” for some ¢ > 0.

If S € K, and the function g(y) = (S, p(y — x)) is in Kps for every
¢ € K, then S is a convolution operator in ;. In this case one can
define the convolution S * u of S with every distribution v € K),. We
denote by OL(K', : K;) the space of all convolution operators in Ky
If S € O.(K), : K)) then the Fourier transform S of S is an entire
function having the following Paley-Wiener type property:

(PW) For every € > 0 there exist positive constants Ay and By such
that

1S(Q)] < [¢|P2esN ™M, if ¢ =€+ine C and [¢|> Ao,

where N is the dual to M in the sense of Young.
We denote by £y the space of all C'*°-functions f on R™ such that

Df(z) = O(eM@)  as |z| — oo,

for all multi-indices o and some constant a > 0 depending on f. If
S e O Ky KYy) and w € €y then S xu € £y The distribution
S is said to be hypoelliptic in K, if every solution u € K, of the
convolution equation S * u = v is in £y; whenever v € £y.

2. Regularly varying functions. We consider real-valued, in-
creasing functions ¢ defined on [0, 00) with (0) = 0.

Definition. The function v is regularly varying at infinity if, for
each > 0 and for some p € R,

(2.1) lim 202 _ o

e ()

The number p is called the index of regular variation at infinity.
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The function ¢ is regularly varying at zero if ¥(z~!) is regularly
varying at infinity. In other words, 1 is regularly varying at zero if, for
each z > 0 and some o € R we have

. ¢(TI) _ ma
(22) Jm e

We call o the index of regular variation at zero.

Remark 1. Since 9 is increasing and positive for > 0, it is regularly
varying at infinity if we assume only that the limit in (2.1) exists and
is finite for two positive values of z, say x; and x3, such that z; # 1
and z3 # 1 and log 1/ log x5 is irrational, see [4, Theorem 1.8].

One of the fundamental theorems on regularly varying functions
concerns uniform convergence.

Uniform convergence theorem [4, Theorem 1.1]. If ¢ is regularly
varying at infinity (or at zero), then for every interval [a,b], 0 < a <
b < o0, the convergence in (2.1) (in (2.2), respectively) is uniform for
z € [a,b].

Another useful result concerns the growth of a regularly varying
function at infinity.

Theorem [4, p. 18]. If ¢ is regularly varying at infinity with index
p, then for every e > 0,

lim 2P %¢y(z) = 0.

T—>0o0

In particular, if p > p, then there is a constant C' such that
(2.3) P(z) <C(1+2P), 0<z < 0.

If 4 is regularly varying at infinity with index p > 0, we can improve
the uniform convergence theorem in the following way.

Theorem 1. If ¥ is reqularly varying at infinity with index p > 0,
then, for every h > 0 the convergence in (2.1) is uniform for x € [0, h].
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Proof. For a given ¢ > 0, choose zp > 0 so that zfj < £/3. Next,
choose ry such that

< forzg <z <h and 7r>ry.

oo [

This is possible by the uniform convergence theorem. It follows that

<
3

—i—az:p<i—i—£:2—5 forr > r
0>3737 3 =0

P
Lo

Y(rag) _ |Y(rao)
o) = ‘ ()

and so

Y(rag) < %1&(7‘) for r > rg.

Since 1 is increasing, we have
Y(rz) < Y(rzg) < 23—6¢(7“) for0<z<gzy and r > rg.
Also, since p > 0,
xp§x§<§ for 0 < z < xg.
Therefore,

(2.5)

for 0 <z < zgand r > rg.

Now, combining (2.4) and (2.5), we obtain

<e for0<z<h and 7> rg,

(4

which proves the theorem. ]

ses) s
7)

In a similar way we can extend the uniform convergence theorem for
functions regularly varying at zero.

Theorem 2. If v is regularly varying at zero with index o > 0, then,
for every h > 0 the convergence in (2.2) is uniform for x € [0, h].
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Corollary 1. If ¢ is regularly varying at both zero and infinity with
positive indices of variation, then, for any h > 0, ¥ (rz)/v¥(r) is bounded
when 0 <z < h and 0 <r < co.

Proof. By Theorem 2, there are ¢ > 0 and r; > 0 such that

d}(m)§1+x”§1+h” for0<z<h and 0<r<r;.
P(r)
Similarly, by Theorem 1, there are p > 0 and 7 > 71 such that
1/1(T$)S1+mp§1+hp for0<z<h and r>ry.
P(r)
If we have r; < r < g, then
vre) _ plras) _wah) o
Y(r) Y(r1) P(r1)
Consequently,
Y(rz)

h
§max{1+h",l+h’),¢(r2 )}

Y(r) Y(r1)

for0<z<hand0<r < oo. a

So far we have only assumed that ¢ is an increasing function on
[0, 00) with 1(0) = 0. Now suppose that 1 is also continuous on [0, 00).
Then, given h > 0 and ry > 0, r — ro implies that ¥(r) — ¥(ry) > 0
and ¢¥(rz) — ¢¥(roz) uniformly for € [0,h]. We therefore have the
following.

Corollary 2. If ¢ is continuous and regularly varying at both zero
and infinity with positive indices of variation, and if ¥(rz)/¥(r) —
L(z) asr — 0, orr — 00, or 7 — 719, 0 < 19 < 00, then
L(z) < C(1+aP), 0 < x < oo for some positive constants C' and
.

Proof. If r — 0T or r — oo, the conclusion follows immediately from
the definition of regular variation of ¢ at zero or infinity. Also, since



AN APPLICATION OF REGULARLY VARYING FUNCTIONS 511

1 is regularly varying at infinity, there are positive constants C' and p
such that
P(z) < C(1+2P) for 0 <z < oo,

by (2.3). Hence, if r — 79, 0 < 79 < 00, we have

Y(roz)
¥(ro)

where C* = (C(1 4 r§) /¥ (ro)).

L(z) =

<C*(1+2P), 0<z< oo,

3. The basic lemma. We assume that 1 is a continuous, increasing
function on [0, 00) with ¢(0) = 0, and we extend ¥ to R by setting

Y(—z) = ¢Y(x) for z > 0.

Lemma. Let ¢ be regularly varying at both zero and infinity with
positive indices of variation. Then, for given positive constants A, B
and b, we can find a constant H such that, if u is a harmonic function
for 2 + y? < R? and satisfies the inequalities

u(z,0) <0 and wu(z,y) > —ay(r) — By(r), z? +y% < R?,
it follows that
u(z,y) < ap(y) + (B+b)y(r), z*+y° <r?,

provided that 0 < a < A and 0 <r < R/H.

Proof. Assume the lemma is false. Then we can find positive
constants A, B and b, sequences of numbers a,,R, and 7, with
0 < a, < A and R,/r, > n, and a sequence of harmonic functions
u, such that
(3.1) un(2,0) <0 and wu,(z,y) > —an¥(ry) — BY(ry),

z? + y? < Rn?,

(3.2) Un (T Yn) > an(yn) + (B + b)Y (rn),
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for some (z,,yn) € R? with 22 + y2 < rZ.

We now set

Un(2,Y) = un(rnz, 7ny) /Y(10), Ty, = Tn /T, Y = Yn/Tn-

Since Ry, /7, > n, it follows from (3.1) and (3.2) that

(3.3) vp(2,0) <0 and wv,(z,y) > —ay %Z:y)) B, 2?+y*<n?
and
(3.4) v (2, ur) > an% + B +0b.

By assumption, v is regularly varying at zero and at infinity with
positive indices of variation. Therefore, given any h > 0, the functions
¥(rny)/¢(ry,) are uniformly bounded for |y| < h by Corollary 1.
Accordingly, from (3.3) and Harnack’s inequality, it follows that the
sequence {v,} is uniformly bounded on every compact set in R?Z.
Applying the “compactness theorem” for harmonic functions, we can
select a subsequence {v/,} of {v,} which converges to a harmonic
function v uniformly on every compact subset of R%. Since (z})? +
(y:)?<1,0< a, < Aand 0 < r,, < 0o, we can choose the subsequence
{v],} of {v,} so that the sequences {z*'},{y'}, {r,} and {a]} have
limits xg,y9,70 and ag, respectively, where ro may be oco. Then, by
Theorems 1 and 2, Remark 2 and Corollary 2, ¢ (r}y)/v¥(r},) converges
uniformly on every interval |y| < h to a function L(y) such that

0<L(y) <C(1+yl"), yeR,

for some constants C' and p. In particular, ¥(r),y})/v(r],) converges to
L(yo)-

Thus, we have
(36) U(I,y) S 05 U(I,y) Z *GOL(y) - B? (I,y) € R27
and

(3.7) v(x0,¥0) > aoL(yo) + B +b.



AN APPLICATION OF REGULARLY VARYING FUNCTIONS 513

We apply Harnack’s inequality again and infer from (3.5) and (3.6) that
(1+]y|P)~tv(x,y) is bounded on R?. Hence, v is a harmonic polynomial
that does not depend on z, and so it must be a linear function of y.
Suppose that v(z,y) = cy + d. Then d < 0, by the first inequality in
(3.6) and, from (3.6) and (3.7), it follows that

(3.8) apL(y) +cy+B+d>0
and

(3.9) aoL(yo) —cyo + B+b—d <0.
In particular, setting y = —yo in (3.8), we obtain

aoL(yo) —cyo+ B+d >0,

which contradicts the inequality (3.9) since b > 0 and d < 0. Thus, the
lemma is proved. a

4. Application to the hypoellipticity problem in K);. As
stated in Section 1, every distribution S € O (K, : K},) can be
characterized in its Fourier transform $ by the Paley-Wiener type
condition (PW). If S is hypoelliptic in K}, then § also satisfies
conditions (H,) and (H.). Note that the function N appearing in
conditions (H,) and (PW) is the dual to M in the sense of Young.
Therefore, N is continuous and increasing on [0,00) with N(0) = 0.

We now prove our main result.

Theorem. Suppose that the function N is regularly varying at zero
and infinity with positive indices of variation. Then conditions (H,.),
(H.) and (PW) imply condition (H).

Proof. Let ( = £ +in € C be such that 0 < N(n) < mlog|{|. We
define an analytic function of one complex variable z by

Fe(z) = 5’(5 + z%|>

for all z with N(|z|]) < mglog]|¢|, where mg is a constant to be
determined later. If |{| is sufficiently large, then F¢(z) # 0, in view
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of (H.). Applying condition (H,) and the fact that N(z)/z — oo as
x — oo, for x € R, we obtain

(4.1)  Fe(z) > (21¢)) 75, ifzeR and N(z) < mglog|¢|,

provided that |¢| is sufficiently large.

Also, by condition (PW), for a given ¢ > 0, we have
(4.2)

|Fe(2)] < (2¢))P2esN®), ifz€ C and N(|z]) < mglog|(|

when |(| is sufficiently large.

We consider the function

ug(z,y) =log{(2ACN " |Fe(2) 7'}, z=w+iy,

which is harmonic when N(|z|) < mglog[{| and when |(| is sufficiently
large. Moreover, from (4.1) and (4.2), it follows that

ue(z,0) <0 if N(z) < molog|(|
and

—eN(y) — (B1 + Bz)log(2[¢])
—eN(y) — (B + B2 + 1) log([¢]),

u¢(z,y) >
>

if N(|z|]) < molog|¢|- In both inequalities, we assume that |(] is
sufficiently large.

We now apply the basic lemma with A = 1+¢, B = (B; + By +
1)/(m+1),b=1/(m+1), r = N~Y(m + 1)log|¢|]] and ¥ = N. Let
H be the constant in that lemma. Since N is regularly varying at zero
and at infinity, there is a constant h > 0 such that N(Hz) < hN(z),
0 <z < oo. Hence N"1(z) < N }(hz)/H, 0 < z < oco. If we set
mo = h(m + 1), then from the lemma it follows that

(4.3) u¢(x,y) < eN(y) — (B + Bz +2)log([¢])

if N(J2]) < (m +1)log|(].
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Since N(n) < mlog|¢| < (m + 1)log|¢|, we may substitute z = in in
(4.3), which yields

(2[¢)
log{ ] } <eN(n)+ (B1 + Bz + 2) log [¢].

Hence, we conclude that

1
——— < (BBt esNI i N () < mlog ],
1S(¢)]

when |(| is sufficiently large. This completes the proof of the theorem.
]

Corollary. If N is regularly varying at zero and at infinity with
positive indices of variation, the condition (H) is necessary for the
hypoellipticity of S in K'y,.
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