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INFLECTION POINTS AND NONSINGULAR
EMBEDDINGS OF SURFACES IN R5

D.K.H. MOCHIDA, M.C. ROMERO-FUSTER AND M.A.S. RUAS

ABSTRACT. We define asymptotic direction fields on sur-
faces embedded in R5 and characterize their critical points
both as umbilics of height functions and as singular points of
order 2 of the embedding in Feldman’s sense. We show that
there are at least one and at most five of these fields defined
locally at each point of a generically embedded closed surface.
We use this viewpoint in order to consider the existence of
singular points of order 2 on a given surface.

1. Introduction. The osculating space of order k at a point p of a
m-dimensional manifold M in Rn is the linear subspace T k

p M spanned
by the osculating k-spaces of all the curves contained in M passing
through p. A smooth map f : M → N between smooth manifolds M
and N is said to be nondegenerate or non singular of order k if
it induces an injective linear map T k

p f : T k
p M → T k

f(p)N, ∀ p ∈ M.

These maps were studied by E.A. Feldman ([5] [7]), who determined
the dimensions m,n of the manifolds M and N for which the set of non
degenerate embeddings of order k is open and dense in the set of all the
embeddings of M in N with the Whitney C∞-topology and developed
several geometrical applications of these methods.

The existence of nondegenerate embeddings of order k from M to N
appears to be related to the global geometry of these manifolds. An
interesting question arising in this context is that of which surfaces
admit nondegenerate embeddings of order 2 in Rn. For this question
to make sense we must consider n = 5, 6, for when n < 5 there are no
such maps, and for n > 6, Feldman proved that they form a dense set
in Emb(M,Rn). We consider here the case n = 5. To approach this
problem we use the family of height functions induced by an embedding
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of a surface M in R5 to define the concept of asymptotic direction on M .
The study of the singularities of this family leads to the characterization
of the singular points of order 2 of the embedding, on the one hand as
the umbilic singularities of height functions on M , and on the other as
the singular points of the fields of asymptotic directions on M . So the
question of analyzing the existence of nonsingular embeddings of order
2 of surfaces in R5 is reduced to the problem of studying the behavior
of the asymptotic direction fields on these surfaces.

We observe that the singular points under consideration may be of
different types according to the type of contact the surface has with
its osculating hyperplanes at the point. We present a geometrical
characterization of this fact by analyzing the projection of the surface
into convenient 4-spaces. In any case, we prove that all these points
lie, generically, along regular closed curves.

A further analysis of the asymptotic lines tells us that a surface
generically embedded in R5 admits at least one and at most five locally
defined fields of asymptotic directions. When some of these fields are
globally defined on a surface M with nonvanishing Euler number, it is
possible to deduce the existence of singular points of order 2 on it.

On the other hand, it can be seen that stereographic projection takes
inflection points of surfaces in S4 (considered as embedded in R5) to
semi-umbilic points (i.e., points where the curvature ellipse degenerates
into a segment, see [10],[12]) of their images in R4. It then follows that
the semi-umbilic points of a generic surface in 4-space also form regular
closed curves, which provides an alternative proof to the one given by
Montaldi in [12] for this fact.

There are still many results to be obtained in this direction, and we
expect that further analysis of the global behavior of the singularities
of corank 2 of height functions, as well as a deeper study of the generic
configurations of the associated fields of asymptotic directions, will
contribute to this purpose.

2. Degenerate directions and binormals. Consider an embed-
ding of a surface

f : M −→ R5.

The family of height functions on M associated to this embedding is
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given by
λ(f) : M × S4 −→ R5

(p, v) �−→ fv(p) = 〈f(p), v〉.

Clearly, fv has a singularity at p ∈ M if and only if v is normal to M
at p. It follows from Looijenga’s genericity theorem ([11]) that there
is a residual set of embeddings in C∞(M,R5) with the Whitney C∞-
topology, for which the family λ(f) is locally stable and thus, for any
v ∈ NpM , the height function fv has a singularity of one of the following
types at p: Morse (A1), fold (A2), cusp (A3), swallowtail (A4), butterfly
(A5), elliptic umbilic (D+

4 ), hyperbolic umbilic (D−
4 ) or parabolic um-

bilic (D5). The series {Ak}k≥1 is known as the cuspoids family. They
represent singularities of corank 1 (corank(fv)=corank(Hess (fv)))and
A-codimension k − 1. The {D±

k }k≥4 series is known as the umbilics
family. These singularities have corank 2, and have A-codimension
k − 1 (see [1]).

A vector v ∈ NpM shall be called degenerate direction for M
provided that p is a non Morse singularity of fv, that is, a singularity
of A-codimension at least 1.

Given a generic embedding f : M → R5, we shall characterize the
global distribution of its degenerate directions over the surface M in
terms of the coefficients of the second fundamental form of f . Let
{e1, e2, e3, e4, e5} be an orthonormal frame in a neighborhood of a point
p in M , such that {e1, e2} is a tangent frame and {e3, e4, e5} is a normal
frame in this neighborhood. The matrix of the second fundamental
form of f with respect to this frame is given by

αf (p) =




a20 a11 a02

b20 b11 b02

c20 c11 c02




where a20 = 〈fxx, e3〉 , a11 = 〈fxy, e3〉 , a02 = 〈fyy, e3〉 , b20 =
〈fxx, e4〉 , b11 = 〈fxy, e4〉 , b02 = 〈fyy, e4〉 , c20 = 〈fxx, e5〉 , c11 =
〈fxy, e5〉 and c02 = 〈fyy, e5〉.

This vector valued quadratic form induces, for each p ∈ M , a linear
map Ap from the normal space, NpM , of M at p to the space Q of
quadratic forms in the variables x and y. If we represent a vector
v ∈ NpM by its coordinates (v3, v4, v5) with respect to the basis
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{e3, e4, e5}, we have

Ap(v3, v4, v5) = v3(d2f · e3) + v4(d2f · e4) + v5(d2f · e5).

Now, by using the natural identifications (through the basis induced
by the above frame) of NpM and Q with R3, we can view this as the
linear map Ap : R3 → R3, whose matrix is αf (p).

Denote by Σp the projectivized normal space of f(M) at f(p). That
is, Σp represents the set of all (nonoriented) normal directions at f(p).
Then we can show the following.

Lemma 1. An embedding of a surface M in R5 induces a decomposi-
tion of M into subsets Mi = {p ∈ M : rank(αf (p)) = i}, i = 0, 1, 2, 3.
Moreover,

i) If p ∈ M3 then there is a closed curve in Σp of degenerate
directions at p.

ii) The subset M2 is subdivided, in turn, into the following :

M2(2) = {p∈M2 : there are two lines of degenerate directions in Σp}
M2(1) = {p∈M2 : there is a unique line of degenerate directions in Σp}
M2(0) = {p∈M2 : there is a unique degenerate direction in Σp}

iii) If p ∈ M1 then there is either a unique line of degenerate directions
in Σp or the whole projective plane Σp is made of degenerate directions.

iv) If p ∈ M0 then all the directions in Σp are degenerate.

Proof . Let C represent the cone of degenerate quadratic forms in Q.

i) If rank(αf (p)) = 3, then Im(Ap) fills the whole Q and hence
A−1

p (C) is a closed curve in Σp.

ii) If rank(αf (p)) = 2, then Im(Ap) is a 2-plane and we may have
one of the 3 following possibilities according to the relative position of
this plane with respect to the cone C.

a) ImAp ∩ C is a pair of intersecting lines. Then A−1
p (C) gives a

couple of intersecting planes in R3, defining a pair of projective lines
in Σp.
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b) ImAp ∩ C = {0}. In this case A−1
p (C) = Ker(Ap), which defines

a unique point in Σp.

c) ImAp ∩ C is tangent to C along one of its generatrices. Then
A−1

p (C) is a plane in R3, defining a projective line in Σp.

iii) If rank(αf (p)) = 1 we can also have 3 possibilities according
to the relative position of the line Im(Ap) with respect to C: lying
inside, outside or on the cone. We have that in the two first cases
A−1

p (C) = Ker(Ap) which defines a projective line in Σp. On the
other hand, it is not difficult to see that under the third assumption
A−1

p (C) = NpM and thus all the directions are degenerate.

iv) If rank(αf (p)) = 0 , we clearly have that A−1
p (C) = A−1

p (0) =
NpM and the result follows.

Proposition 2. Let f be a generic embedding of a closed surface M
in R5. Then M = M3 ∪ M2.

Proof . We must prove that generically the rank of the second
fundamental form at any point is at least 2. In fact, if it were
lower at some point p we would have that the three normal vectors
a20e3 + b20e4 + c20e5, a11e3 + b11e4 + c11e5 and a02e3 + b02e4 + c02e5

would be mutually linearly dependent at this point. But this is
equivalent to the vanishing of at least 4 quadratic equations in the
variables aij , bij and cij , which can be taken as coordinates in the
jet space J2(M,R5). The zeroes of these equations determine a
stratified subset V of codimension at least 4 in J2(M,R5) and the
Thom transversality theorem ([9]) ensures us that the image of the 2-
jet, j2f : M → J2(M,R5) of any generic embedding f : M → R5 must
avoid such a subset.

Let ∆(p) = det(αf (p)). It is clear that ∆−1(0) = M2 ∪ M1 ∪ M0. In
the following proposition we analyze the properties of the set ∆−1(0)
for a generic embedding f .

Proposition 3. Let f be a generic embedding of a closed surface M
in R5. Then,

a) M3 is an open subset of M .
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b) ∆−1(0) = M2 is a regularly embedded curve.

Proof . M − M3 = ∆−1(0) and since ∆ is a continuous function on
M , M3 must be an open region in M .

Let

f : R2, 0 −→ R5

(x, y) �−→ (x, y, f1(x, y), f2(x, y), f3(x, y))

be the local representation of M in the Monge form at a point p ∈ M . In
these coordinates ∆(p) = f1xxf2xyf3yy −f1xyf2xxf3yy −f1xxf2yyf3xy +
f1yyf2xxf3xy +f1xyf2yyf3xx−f1yyf2xyf3xx. It follows from this expres-
sion that, under appropriate transversality conditions on the 3-jet of f ,
the set ∆ = 0 represents a curve possibly with isolated singular points
determined by the vanishing of the derivatives of the function ∆. We
observe that the orthogonality property of the frame {e1, e2, e3, e4, e5}
is irrelevant for our study. In fact, a change of basis in NpM preserves
the relative position of Im(Ap) with the cone C in Q, and thus the sets
M3, M2(j) and M1. So we can take {e3, e4, e5} such that e5 generates
Ker(Ap).

If p ∈ M2(2), we choose {e3, e4} as the two degenerate directions
in NpM . Furthermore, we can also make a change of coordinates in
the source, such that the two degenerate directions correspond to the
quadratic forms x2 and y2 in C. Thus f can be locally written as

f(x, y) = (x, y, x2 + R1(x, y), y2 + R2(x, y), R3(x, y)),

where Ri ∈ m3, i.e., all the derivatives of the Ri vanish up to order 3,
i = 1, 2, 3.

If p ∈ M2(0), then Im(Ap) ∩ C = {(0, 0, 0)} is tangent to C and we
take e5 as the generator of A−1

p (Im(Ap) ∩C). With additional change
of coordinates in the source, f can be written as

f(x, y) = (x, y, x2 − y2 + R1(x, y), xy + R2(x, y), R3(x, y)).

If p ∈ M2(1) then analogously, f can be written as

f(x, y) = (x, y, x2 + R1(x, y), xy + R2(x, y), R3(x, y)).



INFLECTION POINTS AND NONSINGULAR EMBEDDINGS 1001

In each of the above cases it is a simple (but tedious) calculation to
verify that under generic conditions on the 3-jet of f at (0, 0), the point
p is a regular point of ∆−1(0).

Remark . It follows from its definition that the set M2(1) is the union
of the isolated regular points of ∆−1(0).

A unit vector v ∈ Σp is called binormal direction for M if and only
if fv has a singularity of cusp type or worse (i.e., the A-codimension of
fv is at least 2) at p.

It follows from above that these singularities are generically of one of
the following types

1) A3 (cusp) for points p in an open region of M .

2) A4 (swallowtail) for points p lying along curves in M .

3) A5 (butterfly) at isolated points of M .

4) D4 (elliptic and hyperbolic umbilic) for the point p varying along
curves in M .

5) D5 (parabolic umbilic) at isolated points of M .

We call these directions binormal by analogy to the case of curves
in R3. In this case the tangent hyperplane orthogonal to the binormal
direction has higher order of contact with M (see [12]).

The genericity conditions for a locally stable family of height functions
on a closed surface ensure that at each point of the open and dense
subset M3, the number of binormals must be finite. We shall see in the
next section that this number is different from zero at every point of
M .

Following Feldman ([5], [7]), we say that a point p of M is 2-singular
or an inflection point whenever the linear map T 2

p f : T 2
p M → T 2

f(p)R
5

is not injective. By choosing local coordinates {x, y} at p in M ,
we have that the linear subspace T 2

p M is generated by the vectors{
∂f
∂x |p, ∂f

∂y |p, ∂2f
∂x2 |p, ∂2f

∂x∂y |p, ∂2f
∂y2 |p

}
. Thus the definition of 2-singular

point amounts to asking that the vectors
{

∂f
∂x , ∂f

∂y , ∂2f
∂x2 , ∂2f

∂x∂y , ∂2f
∂y2

}
be

linearly dependent at p. An embedding f : M → R5 is said to be
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regular of order 2 if there are no 2-singular points in M .

Theorem 4. For an embedding f : M → R5, the following
conditions are equivalent,

a) A point p ∈ M is 2-singular.

b) ∆(p) = 0 (i.e., p ∈ M2(0) ∪ M2(1) ∪ M2(2) ∪ M1 ∪ M0).

c) The point p ∈ M is a singularity of corank 2 for some height
function on M .

Proof . Let f : M → R5 be given in the Monge form in a neighbor-
hood of the point p as in the proof of Proposition 3 and let αf (p) be
the matrix of the second fundamental form of f with respect to this
normal form. We observe that a point p ∈ M is regular of order 2 if
and only if the following matrix has maximal rank




1 0 0 0 0
0 1 0 0 0
0 0 a20 a11 a02

0 0 b20 b11 b02

0 0 c20 c11 c02


 .

This is equivalent to asking that rank(αf (p)) = 3 and this proves that
a) and b) are equivalent. Suppose on the other hand that p is a corank
2 singularity for some height function, say fv = fe5 on M . This implies
that the quadratic form d2f · e5 (i.e., the second fundamental form in
the direction e5) vanishes at p. But this means that the matrix αf (p)
has a null row and therefore we have ∆(p) = 0. Hence c) implies b).
Conversely, if ∆(p) = 0, then it is not hard to show that by a convenient
change of coordinates we can assume that d2f · e5 = 0 and thus p is a
corank 2 singularity for the height function in the normal direction e5.

An immediate consequence of this and Proposition 2 is the following:

Corollary 5. The inflection points of a generic embedding f : M →
R5 form regular closed curves.
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Remark . For a generic embedding, the singularities of corank 2 of
height functions on M can only be of umbilic type Dk, with k = 4, 5.

Corollary 6. Given an embedding f : M → R5, we have the
following:

a) If p ∈ M2 then there is a unique direction v ∈ Σp such that the
height function fv has a corank 2 singularity at p. This direction is
given by the intersection of the 2 projective lines when p ∈ M2(2), and
by the unique degenerate direction when p ∈ M2(0).

b) If p ∈ M1 then it is a corank 2 singularity for the height functions
corresponding to all the degenerate directions of M at p.

c) If p ∈ M0 then it is a corank 2 singularity for the height functions
corresponding to all the normal directions to M at p.

Proof . As before, p ∈ M2 if and only if rank(αf (p)) = 2. But this
means that Ker(αf (p)) is 1-dimensional and this provides the unique
direction for which the associated quadratic form vanishes. But this
implies that p is a corank 2 singularity for the corresponding height
function.

On the other hand, if p ∈ M1, then rank(αf (p)) = 1 and Ker(αf (p))
has dimension 2. Therefore there is a whole projective line of degenerate
directions for which the corresponding height functions have a corank
2 singularity. These are, generically, of type D±

4 .

Finally, if p ∈ M0, we have that Ker(αf (p)) = NpM , so all the
quadratic parts of all the height functions vanish and thus all these
functions have a singularity of corank 2 at p.

Remark . Observe that when p ∈ M2(0) ∪ M1 ∪ M0 the degenerate
directions coincide with the binormals, whereas when p ∈ M2(2) ∪
M2(1) there are degenerate directions which are not binormals for M
at p.

We characterize below the different types of inflection points of a
surface M in 5-space in terms of the local geometry of the projections
of M into convenient hyperplanes. We recall from [14] that a point on
a surface embedded in 4-space can be hyperbolic, parabolic or elliptic
according to the existence of two, one or zero binormal directions for
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M at the point. Inflection points for surfaces in 4-space are corank
2 singularities of height functions on the surface. A more geometrical
characterization of these points in terms of the curvature ellipses can
be found in [10].

Theorem 7. Let p ∈ M be an inflection point, so there is some
v ∈ NpM such that p is a singularity of corank 2 of the height function
fv. Let Hv be the orthogonal hyperplane to v passing through p and
πv : R5 → Hv the orthogonal projection in the direction v. Then,
gv = πv ◦ f : M → Hv ≡ R4 provides a local embedding of M in R4.
Moreover,

i) p ∈ M2(2) if and only if p is a hyperbolic point of the surface
gv(M) in R4.

ii) p ∈ M2(0) if and only if p is an elliptic point of gv(M).

iii) p ∈ M2(1) if and only if p is a parabolic point of gv(M).

iv) p ∈ M1 ∪ M0 if and only if p is an inflection point of gv(M).

Proof . Since p is an inflection point we have rank(αf (p)) < 3. Let
v ∈ NpM such that p is an umbilic singularity for the height function
fv. Then v ∈ Ker(αf (p)). Observe now that Ker(πv) =< v >⊂
Ker(αf (p)) = Ker(Ap). Hence Ap : NpM → Q induces a linear map
Ãp : NpM ∩Hv → Q. The subset Ã−1

p (C) gives the binormal directions
of the surface gv(M) at p. It is not difficult to verify that

i) If p ∈ M2(2) then Ã−1
p (C) = A−1

p (C) ∩ Hv consists of 2 distinct
binormal directions. So p is a hyperbolic point of gv(M). ii) If
p ∈ M2(1) then Ã−1

p (C) = A−1
p (C) ∩ Hv is the unique binormal

direction. So p is a parabolic point of gv(M). iii) If p ∈ M2(0)
then Ã−1

p (C) = Ker(Ap) ∩ Hv = {0}, which means that there are
no binormal directions at p. So p is an elliptic point of gv(M). iv)
If p ∈ M1 ∪ M0 then Ã−1

p (C) = Ker(Ap) ∩ Hv gives a direction
corresponding to a height function of corank 2. So p is an inflection
point of gv(M).

3. Asymptotic directions. Let p ∈ M and v ∈ Σp a binormal
direction at p. Then fv has a degenerate singularity at p and hence
rank(Hess (fv)) < 2. Therefore dim {Ker(Hess (fv))} ≥ 1. An
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asymptotic direction at p, associated to the binormal direction v
is any unit vector in TpM that lies in the kernel of the quadratic form
given by the hessian of fv. Therefore, any binormal direction at p
defines some asymptotic direction at p. In fact, since p is a singularity
of type Ak, k > 2 of the height function fv, then rank(Hess fv) = 1,
and thus there is a unique asymptotic direction associated to the
binormal v at p. Whereas if p is a singularity of umbilic type for some
height function (i.e., an inflection point), then there is a whole circle of
asymptotic directions associated to v at p.

Remark . If b is a binormal direction at p, the hyperplane Hb

orthogonal to b passing through p has higher order contact with M
at p. This contact occurs along the elements θ ∈ Ker(Hess (fb)),
which means that the straight line through p in the direction θ must
have higher order of contact with M at p than most tangent lines to
M at p. This is why θ is called an asymptotic direction. This clearly
generalizes the definition of asymptotic directions for surfaces in R4 (see
[14],[15]). It is worth pointing out that in the last case the concepts of
degenerate and binormal directions coincide.

Let v be a degenerate direction at a point p of M3, so rank(Hess (fv))=
1, and let θ be a tangent vector in the kernel of the quadratic form
Hess (fv)(p). We denote by γθ the normal section of the surface M
in the tangent direction θ. That is, γθ is a curve in the 4-space
Vθ = 〈θ〉 ⊕ NpM , obtained as the intersection of this 4-space with
M . The restriction of the family of height functions λ(f) to (some
parametrization of) the curve γθ gives the family of height functions
on this curve. Now, if we take into account that the binormal (or 3rd
normal vector) n3 of a curve in 4-space can be characterized by the fact
that the height function over the curve, corresponding to the direction
n3, has a singularity of type Ak, k ≥ 3, we obtain the following geomet-
rical characterization of the asymptotic directions at regular points of
surfaces in 5-space. (A proof of a similar assertion for curves in 3-space
can be found in [2], the case of curves in 4-space is proven in [3].)

Proposition 8. Let p ∈ M3 and v ∈ NpM a degenerate direction
for M at p. Let θ be a tangent direction in Ker(Hess (fv)(p)). Then θ
is an asymptotic direction corresponding to the binormal v if and only
if v is the binormal direction at p for the curve γθ in the 4-space Vθ.
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Theorem 9. There are at least one and at most 5 asymptotic
directions at each point of M3.

Proof . Let M be given in the Monge form

f(x, y) = (x, y, f1(x, y), f2(x, y), f3(x, y))

in a neighborhood of p = (0, 0) ∈ R2, with fi(x, y) = Qi(x, y) +
Ki(x, y) + Ri(x, y), where Qi are quadratic forms, Ki are cubic forms
and Ri ∈ m4, i = 1, 2, 3. Since p ∈ M3, the 3 quadratic forms
Q1(x, y), Q2(x, y) and Q3(x, y) must be linearly independent (in Q)
and without loss of generality we can take local coordinates at p
in such a way that Q3(x, y) = −(x2 + y2) and K3(x, y) = 0. To
simplify the notation we denote as Qi(u, v), i = 1, 2, 3 the bilinear
form d2fi(x, y)(u, v), where u, v ∈ TqM and q = (x, y) varies in a
small enough neighborhood of p in R2. Analogously Ki(u3), i = 1, 2, 3
denotes the cubic form associated to f at the point q acting on a vector
u ∈ TqM .

Let v ∈ NqM be a solution of the equation Aq(v) = 0. Then
Hess (fv(q)) is a degenerate quadratic form and so there is u ∈ TqM
such that Hess (fv(q))(u,w) = 0, ∀w ∈ TqM . By writing v =
v3e3 + v4e4 + v5e5 ∈ NqM in terms of the normal frame {e3, e4, e5}, we
have v3Q1(u,w) + v4Q2(u,w) − v5〈u,w〉 = 0. This expression must be
true in particular for the vector u and a vector w ∈ TqM orthogonal to
u, so we have the equations,

v3Q1(u, u) + v4Q2(u, u) − v5(u2
1 + u2

2) = 0(1)
v3Q1(u,w) + v4Q2(u,w) = 0.(2)

On the other hand, q is a singular point of cusp type or worse if the
vector u satisfies v3K1(u3) + v4K2(u3) + v5K3(u3) = 0 (see [12]). And
since in the chosen local coordinates K3(x, y) = 0, this gives

(3) v3K1(u3) + v4K2(u3) = 0.

Once given v3 and v4, we can obtain v5 from (1). On the other hand,
eliminating v3 and v4 in (2) and (3) gives

K1(u3)Q2(u,w) − K2(u3)Q1(u,w) = 0.
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Since the coordinates of the vector w (orthogonal to u in TqM) can
be given as a linear combination of those of u, we obtain that for each
q in a neighborhood of p = (0, 0), the above equation is defined by a
quintic form in two variables. This gives the differential equation for
the asymptotic lines in M . We observe that this equation cannot be
identically zero on regular points of order 2 of a generic surface.

Corollary 10. For a generically embedded surface M in R5 there are
at least 1 and at most 5 locally defined fields of asymptotic directions
on M , whose singularities occur on the curve ∆−1(0).

It is a well known consequence of the work of H. Hopf that a compact
connected manifold M admits a global nowhere zero vector field if and
only if its Euler number is zero. Therefore, we can state the following

Corollary 11. Let M be a compact connected surface with non-
vanishing Euler number generically immersed in R5. If M admits a
globally defined field of asymptotic directions, then it has necessarily
singular points of order 2.

An example of a 2-regular embedding of the 2-sphere in 5-space
is given by the restriction to S2 of the Veronese map of order 2
V : R3 → R6, given by V (x, y, z) = (x2, y2, z2,

√
2xy,

√
2xz,

√
2yz)

(see [4]). This can be seen as an embedding of the projective plane in
4-sphere. Studying the singularities of the family of height functions on
this surface leads to the conclusion that all the binormals give rise to
singularities of infinite codimension. This is an extremely degenerate
example from the viewpoint of contact of the surface with its set of
tangent lines (and hence with the tangent hyperplanes containing these
lines).

4. Stereographic projection and surfaces in R4. Given a
surface M in R4 we define an osculating hypersphere of M at a point p
as a hypersphere whose order of contact with M at p is at least 3. This
order of contact can be measured through the distance squared function
from the center of the given hypersphere (see [13]). Having order of
contact k means that this function has a singularity of codimension
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k−1, and at the contact point these are generically of type Ak or Dk−1.
Semi-umbilic points of M are points where some distance squared
function has a singularity of corank 2. These are generically of type
D±

4 along curves in M and D5 at isolated points of these curves ([12]).
In fact, Montaldi proved that the semi-umbilic points of a generically
embedded surface in R4 lie along curves on the surface. He saw that
the possible singularities of these curves correspond to the vanishing
of the second fundamental form of the embedding (i.e., all the height
functions at the point have zero quadratic part). Since this cannot
happen for a generic embedding of a surface in R4, these curves are
smoothly embedded on the surface.

Composing an embedding g : M → R4, of a surface in 4-space with
the inverse of the stereographic projection, leads to another embedding
of the surface M in 5-space,

f : M −→ R4 −→ S4 −→ R5

where ψ : R4 → S4 denotes the inverse of the stereographic projection,
and the map in the right-hand side is the natural inclusion of S4 in
R5. Now, since the stereographic projection transforms hyperspheres
of R4 into hypercircles of S4 preserving their respective contacts with
g(M) and f(M), it can be seen that any osculating hypersphere having
a given contact with g(M) is in correspondence, through ψ, with an
osculating hyperplane having the same contact with f(M) in R5 ([16]).
Consequently we can state,

Proposition 12. The inverse ψ of the stereographic projection
takes the semi-umbilic points of a surface M immersed in R4 into the
inflection points of the surface ψ(M) ∈ S4 ∈ R5.

Now, since we know that for a generic embedding the inflection points
form regular closed curves (Corollary 5), we have that Montaldi’s
result can be considered as a particular case, corresponding to the
hyperspherical surfaces of R5, of ours.
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