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SUMS OF BIQUADRATES AND CUBES IN Fq[t]

LUIS GALLARDO

ABSTRACT. Every polynomial P ∈Fq [t] where gcd (q, 6) =
1 and q /∈ {5, 13, 17, 25, 29}, is a strict mixed sum of 11 bi-
quadrates and it is also a strict sum of 16 biquadrates. For the
strict mixed sum representation, a supplementary biquadrate
is required for q ∈ {13, 17, 25, 29} and four supplementary
biquadrates for q = 5. Every polynomial P ∈ Fq[t] where
gcd (q, 6) = 1 and q /∈ {7, 13} is a strict sum of 7 cubes. One
supplementary cube is required for q = 13 and two for q = 7.

1. Introduction. In order to study the analogue of the Waring
problem, and of the “easy” Waring problem over the ring F [t], where
F is a field, we fix some notation.

Let k be an integer greater than 1. Let F be a field, and let P ∈ F [t]
be a polynomial such that

P = ck
1 + · · ·+ ck

s ,

for some polynomials c1, . . . , cs ∈ F [t] such that deg (ck
i ) < deg (P )+k

for all i = 1, . . . , s. Then we say that P is restricted (or strict) sum of
s kth powers. We also say that a polynomial Q ∈ F [t] is a strict sum of
kth powers if, for some integer s ≥ 1, Q is a strict sum of s kth powers.

If k is even, then we can also consider sums and differences instead of
merely sums in the above representation of P . If this is the case, then
we replace the word “sum” by the words, “mixed sum.”

In this paper we are interested in the case F = Fq, a finite field with
q elements. More precisely, we study the case k = 4 and k = 3, for q
such that gcd (q, 6) = 1.

We establish the following results in this paper.

a) Every polynomial P ∈ Fq[t] where gcd (q, 6) = 1 and q /∈
{5, 13, 17, 25, 29}, is a strict mixed sum of 11 biquadrates, and it is also

Key words and phrases. Waring’s problem, polynomials, biquadrates, cubes,
finite fields.

Received by the editors on August 11, 2000, and in revised form on May 29,
2001.

Copyright c©2003 Rocky Mountain Mathematics Consortium

865



866 L. GALLARDO

a strict sum of 16 biquadrates. For the strict mixed sum representation,
a supplementary biquadrate is required for q ∈ {13, 17, 25, 29} and four
supplementary biquadrates for q = 5 (see Theorem 1).

b) Every polynomial P ∈ Fq[t] where gcd (q, 6) = 1 and q /∈ {7, 13} is
a strict sum of 7 cubes. One supplementary cube is required for q = 13
and two for q = 7 (see Theorem 2).

For any k > 3, it is not known whether every polynomial in Fq[t] is
a strict sum or a strict mixed sum of kth powers. Furthermore, even if
one or other of these properties is known to hold, it is not known (for
all k ≥ 3) what is the exact value of the minimal number gs(k, Fq[t]),
respectively vs(k, Fq[t]), of kth powers that are required.

On the other hand, for a similar problem without restrictions on the
degrees there are comprehensive results in [7] [10].

However, there are some results on gs(3, Fq[t]) that we will describe
below.

First of all, assuming that q is even, and assuming that the polyno-
mials to be represented are of sufficiently high degree and that they are
already sums of cubes (this is required only for q < 8), it is proved in
[1] that 11 cubes suffice, by use of the circle method.

More generally, this method is naturally adapted to study the repre-
sentation of polynomials of sufficiently high degree by sums of kth pow-
ers when gcd (q, k!) = 1. In these cases, with the assumption 0 < k < p
where p is the characteristic of Fq, there are known upper bounds on
the quantity Gs(k, Fq[t]), that is the analogue of gs(k, Fq[t]) for these
polynomials (see [3]). Otherwise, much more technical work is involved.
The method does not give an explicit representation of those polyno-
mials.

Recently (see [4]), we proved by applying an elementary constructive
procedure that, for any positive integer n such that n /∈ {1, 2, 4}, every
polynomial P ∈ F2n [t] is a restricted sum of 9 cubes, and that 10 cubes
suffice when n = 4.

On the other hand, the latter method gives only some partial infor-
mation about how many representations exist for a given polynomial.

Similar elementary methods are used here to establish our results.
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2. Main lemmas.

2.1 Some identities. The following results are easily checked.

First of all, we have the identity of Norrie (see [2, p. 729]).

Lemma 1 (Norrie). Let F be a field of characteristic not equal to 2.
Let a, b, c ∈ F be such that bc(b8 − c8) �= 0. Let d = c8 − b8.

Then we have Norrie’s identity:
(1)

t =
(

c2(d+ 2t)
2d

)4

−
(

c2(d−2t
2d

)4

+
(
2c4t−b4d

2bcd

)4

−
(
2c4t+b4d

2bcd

)4

,

and two supplementary identities yielding biquadrates:

48t = (t + 2)4 − 2(t + 1)4 + 2(t − 1)4 − (t − 2)4,(2)
8t3 = (t + 1)4 − (t − 1)4 − 8t.(3)

Remark. The lemma improves the result for the case k = 4 in [7,
p. 295] when A = Fq[t], provided q>5. Norrie’s identity (1) is vacuous
for the field of 5 elements when (2) has to be used.

Next we have the identity of Serre, see [9] (slightly modified)

Lemma 2 (Serre). Let F be a field of characteristic not equal to 3,
in which there are two elements x, y such that 1 = x3 + y3 and xy �= 0.
Let p be a nonzero element of F .

Then we have Serre’s identity:

(4) t =
(

p6(x3+1) + t

3xp4

)3

+
(

p6(x3−2) + t

3yp4

)3

+
(

p6(2x3−1)− t

3xyp4

)3

,

and two supplementary identities yielding cubes:

6t2 = (t + 1)3 − (t − 1)3 − 2,(5)
90t = (t + 4)3 + (t − 4)3 − (t + 1)3 − (t − 1)3.(6)
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2.2 Sums of biquadrates and cubes in Fq.

Lemma 3. Let F be a finite field of characteristic p with q elements.
Suppose that p > 3. Then

a) Every element of F is a sum of 2 biquadrates if q > 31.

b) Every element of F is a sum of 3 biquadrates if q ≤ 31 and q �= 5.

c) Every element of F is a sum of 4 biquadrates if q = 5.

d) −1 is a sum of 2 biquadrates if q /∈ {5, 29}.

Proof. For q > 41, the first result follows from [5, p. 295] by special-
izing k to 4, while for q ∈ {37, 41} it follows by direct computation.
The other results are easily checked by direct computation.

Lemma 4. Let F be a finite field of characteristic p with q elements.
Suppose that p > 3. Then

a) Every element of F is a sum of 2 cubes if q �= 7.

b) Every element of F is a sum of 3 cubes if q = 7.

c) 1 is a sum of two nonzero cubes if q /∈ {7, 13}.

Proof. The first result follows from [5, p. 327] that refers to [6].
Another proof of (a) is obtained by specializing k to 3 in [5, p. 295].
The same specialization of k proves (c). The other result is easily
checked by direct computation.

2.3 Descent. First we study the representation by sums of bi-
quadrates.

Lemma 5. Let F be a field of characteristic p > 3 in which
every element is a sum of s biquadrates, where 4 ≥ s ≥ 1. Let
n > 0 be an integer and let P ∈ F [t] be a polynomial of degree
m ∈ {4n + 4, 4n + 3, 4n + 2, 4n + 1}.
Then there exist polynomials {a, b, . . ., g, R}={A, B, A1, B1, C, D, E, R}

in F [t] satisfying the conditions
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1) A1 and B1 are 0 if m �≡ 0 (mod 4),

2) B = 0 if m ≡ 0 (mod 4) and s = 3,

3) B and B1 are 0 if m ≡ 0 (mod 4) and s = 2,

and such that

a) P = a4 + b4 + c4 + d4 − e4 + 8f3 + 8g3 + R,

b) max(deg (a, b, . . . , g, R)) < m/4 + 1.

Proof. Write
P = p0 + · · ·+ p4n+4 t4n+4.

First of all, we study the case where P is monic and 4 divides m. We
contend that P = A4 + Q where deg (A4) = m, deg (Q) = 3n + 3 and
the leading coefficient of Q is equal to 8. Write

A =
n∑

r=0

+art
r + tn+1.

By equating coefficients of tk in the expansion of A4 in powers of t with
those of P − 8t3n+3, for k descending from 4n+3 to 3n+ 3, we obtain
an, . . . , a0 by solving the corresponding linear equations.

Since P = −t4n+4 + (P + t4n+4), the cases where m �≡ 0 (mod 4),
reduce to the above one.

We can then suppose that 4 divides m and that P is not monic.
Since the leading coefficient of P is a sum of s biquadrates, the same
procedure as above yields P = A4−B4+A4

1+B4
1+Q where A, B, A1, B1

are polynomials satisfying the conditions 2) and 3). Furthermore, we
have

max(deg (A4), deg (B4), deg (A4
1), deg (B

4
1)) < m + 4,

deg (Q) = 3n + 3 and the leading coefficient of Q is equal to 8.

Now, to represent Q in the desired form, by a similar argument we
obtain

Q = 8C3 + Q1,

where deg (C) = n+ 1, deg (Q1) = r, where r is the closest multiple of
4 that is greater than or equal to 2n + 2 and the leading coefficient of
Q1 is equal to 1.
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Next, to represent Q1 in the desired form, by a similar argument we
obtain

Q1 = D4 + Q2,

where deg (D) = r/4, deg (Q2) = s, where s is the closest multiple of 3
that is greater than or equal to 3(n + 1)/2 and the leading coefficient
of Q2 is equal to 8.

Finally, to represent Q2 in the desired form, by a similar argument
we obtain

Q2 = 8E3 + R,

where deg (E) = s/3 and deg (R) < m/4 + 1.

This finishes the proof of the lemma.

We study now the representation of polynomials of degree less than
or equal to 4.

Lemma 6. Let F be a field of characteristic p > 3 in which every
element is a sum of s biquadrates, where 4 ≥ s ≥ 1. Let P ∈ F [t] be
a polynomial of degree m ≤ 4. Then P is a strict mixed sum of s + 6
biquadrates if card (F ) > 5, and of s + 8 biquadrates if card (F ) = 5.

Proof. For m ≤ 3, we have for some a ∈ F , P = −t4 + (t + a)4 + Q,
and for m = 4 we have P = a4

1t
4 + · · ·+ (ast+ a)4 +Q, where Q ∈ F [t]

has deg (Q) = 3, and the leading coefficient of Q is equal to 8. For
some b, c, d ∈ F , we have Q = 8(t + b)3 + ct + d. The result follows
from identities (3) and (1) in Lemma 1 if card (F ) > 5 and, from the
identities (3) and (2) in Lemma 1 if card (F ) = 5.

Next we study the representation by cubes.

Lemma 7. Let F be a field of characteristic p > 3 in which every
element is a sum of s cubes where 3 ≥ s ≥ 1. Let n ≥ 0 be an integer
and let P ∈ F [t] be a polynomial of degree m ∈ {3n+3, 3n+2, 3n+1}.
Then there exist polynomials {a, b, . . . , e, R} = {A, B, A1, B1, C, R}

in F [t] satisfying the conditions

1) A1 and B1 are 0 if m �≡ 0 (mod 3),
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2) B = 0 if m ≡ 0 (mod 3) and s = 3,

3) A1 and B1 are 0 if s = 2,

and such that

a) P = a3 + b3 + c3 + d3 + 6e2 + R,

b) max(deg (a, b, . . . , e, R)) < m/3 + 1.

Proof. Suppose that n > 0. The proof is similar to the first two steps
(mutatis mutandis) of the proof of Lemma 5. For n = 0, the proof is
similar to those of Lemma 6.

3. Representation by biquadrates. In this section and the next
one, we specialize F to a finite field with q elements.

Theorem 1. Every polynomial P ∈ Fq[t], where gcd (q, 6) = 1
and q /∈ {5, 13, 17, 25, 29}, is a strict mixed sum of 11 biquadrates,
and it is also a strict sum of 16 biquadrates. For the strict mixed
sum representation, a supplementary biquadrate is required for q ∈
{13, 17, 25, 29} and four supplementary biquadrates for q = 5.

Proof. Assume that q > 5. The result follows from Lemmas 5, 6 and
3, and from identities (3) and (1) in Lemma 1.

For example, if m = deg (P ) �≡ 0 (mod 4) and q > 31, then in
Lemma 5 a) there are three nonzero biquadrates (A1 = B1 = 0),
so that P = a4 + b4 − e4 + 8f3 + 8g3 + R. Apply (3) with t = f
and g to yield 4 more, and finally apply (1) with t replaced by what
remains (a polynomial of degree < m/4 + 1). This yields the claimed
11 biquadrates for the strict mixed representation of P (6 of them with
sign + and the remaining 5 with negative signs −.)

Now, with the help of Lemma 3 d) we convert the latter 5 biquadrates
into 10 biquadrates with positive sign +. This yields the 16 claimed
biquadrates for the strict sum representation of P , and so on for the
other cases.

For q = 5 the proof is similar. We apply identity (2) in Lemma 1
instead of Norrie’s identity (1) in Lemma 1.
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Remark 1. The upper bounds for gs(4, Fq[t]) when q∈{5, 13, 17, 25, 29}
can be easily deduced from Theorem 1 and from Lemma 3.

Remark 2. We do not know whether our bounds are best possible.
Indeed it seems to be a difficult problem to establish nontrivial lower
bounds for vs(4, Fq[t]) or for gs(4, Fq[t]).

4. Representation by cubes.

Theorem 2. Every polynomial P ∈ Fq[t] where gcd (q, 6) = 1 and
q /∈ {7, 13} is a strict sum of 7 cubes. One supplementary cube is
required for q = 13 and two for q = 7.

Proof. Assume that q /∈ {7, 13}. The result follows from Lemmas 7
and 4, from identity (5) in Lemma 2 and from Serre’s identity (4) in
Lemma 2.

For example, since q �= 7, Lemma 4 a) tells us that in Lemma 7 a)
there are 2 nonzero cubes (A1 = B1 = 0), so that P = a3+b3+6c2+R.
Apply (5) with t = c to yield 2 more, and finally apply (4) with t
replaced by what remains (a polynomial of degree < m/3 + 1). This
yields the claimed 7 cubes for the strict representation of P .

For q ∈ {7, 13} the proof is similar. We apply identity (6) instead of
identity (4) in Lemma 2.

Remark 3. We do not know whether our bounds are best possible.
Indeed it seems to be a difficult problem to establish nontrivial lower
bounds for gs(3, Fq[t]) = vs(3, Fq[t]).
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