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GENERATION OF ANALYTIC SEMIGROUPS
BY DIFFERENTIAL OPERATORS WITH
MIXED BOUNDARY CONDITIONS

JOSE M. GALLARDO

ABSTRACT. We study the generation of analytic semi-
groups in the space L!(a,8) by a second order operator
Lu = v + q1(z)v/ + go(z)u with mixed non-separated and
integral boundary conditions of the form

Bi(u) = a;u(a) + biu'(a) + ciu(B) + diu’(B)

B 8
+/)mmM0ﬁ+/‘&@wmﬁ
=0, i=1,2.

We obtain quite general results that extend previous works by
the author (see [3]—[4]).

The key for showing the generation of analytic semigroups
will be an estimate of the form

[ROA: L)|| < M|X!

for the resolvent operator in a suitable sector of the complex
plane.

1. Introduction and preliminaries. This work has been inspired
by a model arising in optical physics, specifically that in [8]-[9],
where BOITAL (Thermally Induced Optical Bistability with Localized
Absorption) multilayer devices are considered and the proposed models
numerically analyzed. The authors in [8]-[9] give a PDE model that,
after physical considerations, can be reduced to a finite dimensional
ODE model exhibiting similar dynamics. Both in the PDE and ODE
models, the boundary conditions that appear are mixed non-separated
and integral ones, although a nonlinear function on the boundary is
also involved.
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In this paper we consider a linearized version of the boundary condi-
tions mentioned above, and we study the generation of semigroups by
the differential operator associated to the system in the space L (a, 3)
of integrable functions in the finite interval («, 3). This is the first step
in the analytical study of the dynamics of such systems, and it connects
directly with previous works by the author [3]-[4], where the generation
of analytic semigroups by differential operators with non-separated or
integral boundary conditions were investigated.

In this way the present work should also be viewed as a continuation of
our previous papers [3]—[4]. The results in [3], where integral boundary
conditions are considered, can be seen as particular cases of the main
theorem 7.1 simply by taking a; = b; = ¢; = d; = 0. The paper [4] deals
with the case of non-separated boundary conditions (i.e., R; = S; = 0)
and we proved there the generation of analytic semigroups for regular
boundary conditions in every space LP(a,3), 1 < p < co. For p =1
the results in [4] are simply special cases of Theorem 7.1; however, as
we will see in Section 8, it is not possible to generalize this theorem to
the LP setting, so [4] provides more precise results than Theorem 7.1
in the case of non-separated boundary conditions.

Consider a formal second order operator in the finite interval (o, 3),
that is,
l(u) =u" + q(2)u’ + qo(x)u, =€ (a,f)
where g1 and gy are regular complex-valued functions. We associate to
[ two mixed boundary conditions of the form

Bi(u) = aju(a) + b’ (a) + c;u(B) + diu' (3)
B &)
+ / Ri(t)u(t) dt + / Si(t)u'(t) dt =0

«
for © = 1,2; here, the coefficients a;,b;,c;,d; are complex and the
continuous functions R; and S; are complex-valued. Of course, some
kind of independence of the boundary conditions should be imposed
for avoiding such cases as, for example,

Bi(u) = u(a) — u(B) = 0
By (u) = faﬂu’(t) dt =0
where the boundary conditions are formally the same. The way for

avoiding such cases will be through the characteristic determinant, to
be defined in Section 2.
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The formal operator [ together with the boundary conditions { By, Ba}
define an unbounded linear operator L in L!(«a, 3) known as the L!-
realization of the system:

Lu=1(u), D(L)={uecW?*(a,B): Bi(u) = Ba(u) = 0}

where W21 (a, 3) is the Sobolev space of order (2, 1). Our objective is to
determine the cases, depending on the boundary conditions, for which
L is the generator of an analytic semigroup of operators in L!(«, 3).

As is well known [6], sufficient conditions for assuring that L generates
an analytic semigroup of bounded linear operators are:

1. The resolvent set p(L) contains a sector of the form
Ysr={AeC:larg(A\—71)] <0, #r}

for some 6 € (7/2,7) and r € R.

2. There exists a constant M such that, for each A € X5, the
following bound holds:

M
D) < —
1RO D) €

where R(\ : L) = (A[—L)~! and the norm is the usual one for bounded
linear operators in L!(a, 3).

It is important to note that the semigroup generated by L is a Cp-
semigroup if and only if the domain D(L) is dense in L!(«, 3).

For inverting the operator AI — L we prove the existence of an
associate Green’s function G(x, s; A), so we can express each resolvent
operator in the form

B
R()\:L)f:—/ G(-, s\ f(s)ds, feL'Y(a,p).

[}

As the Green’s function can be given explicitly, this provides us with
suitable formulae for bounding R(A : L). The bounds on the resolvent
needed for assuring the generation of analytic semigroups will be
obtained for a certain class of boundary conditions that we will call
regular. The main result of the paper is Theorem 7.1, where we state
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the generation of analytic semigroups of analytic semigroups for regular
boundary conditions.

Similar constructions could be made in every space LP(«, 3), 1 < p <
0o, but we do not arrive to such precise results as in the L' case. We
will consider the LP case in Section 8.

We give a brief outline of the paper. In Section 2 we introduce the
characteristic determinant A()\), an entire function that characterizes
the spectrum of L, and the associated Green’s function G(z, s; \); this
allows us to express each resolvent operator R(A : L) in integral form.
Section 3 is devoted to give suitable formulae for A(X) and G(z,s; A)
that will be used in Section 4 for bounding R(A : L). Here several cases
are considered which are analyzed in Section 5; this analysis leads to the
definition of regular boundary conditions. In the analysis of cases it is
necessary to impose additional regularity conditions on the coeflicients
R; and S;; in Section 6 we will see that this regularity can be relaxed.
In Section 7 we state the main result of the paper: for regular boundary
conditions the operator L generates an analytic semigroup in L!(a, 3);
we also consider in this section some interesting examples. Finally, in
Section 8 we comment on some results in LP(a, 3).

2. Characteristic determinant and spectrum. Consider the
operator T given by Tu = v”, with domain D(T) = {u € W21(0,1) :
Bi(u) = Ba(u) = 0}. As is well known (see [4], [7]), we can restrict
ourselves to the study of the resolvent of T" without loss of generality.

Consider the problem

{u” —Au=f in (0,1)

with f € L'(0,1) and A € C. Let {uj,us} be a fundamental system
of solutions of the equation v’ — Au = 0. We define the characteristic
determinant A(X) to be

Bl(ul) Bl(’LLg)

(2.2) AN = ’BQ(ul) Bo(uz) |

It is straightforward to prove that the spectrum of T is given by

o(T)={ e C: AN =0}
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and this does not depend on the fundamental system chosen for con-
structing A(X).

As A(X) is an entire function, the spectrum of T will be at much
a denumerable set without finite accumulation points. As we are
interested in the case for which the resolvent is not void, we will
consider only the cases for which A(A) is not identically zero. This can
be interpreted as a kind of independence of the boundary conditions
Bi(u) =0 and By(u) = 0.

Let A € C be such that A(A) # 0 and consider the function
N :]0,1] x [0,1] — C defined as

up(x ug(x) gz, s;\)
(2.3) N(z,s;A) = |Bi(u1) Bi(uz) By

s}
~
8

(the notation B;(g), means that the boundary form B; is applied to
g(x, s; \) on the z variable). The function g(x, s; \) is defined as

1 up(x)us(s) — uy(s)ua(x)

(2.4) g(z,s;0) = + 2 ui(s)ua(s) — ur(s)ub(s)

where it takes the plus sign for z > s and the minus sign for x < s.

The above formulae are based on those of [1] for the case of non-
separated boundary conditions. It is not difficult to prove that

N(z,s; )

(2.5) G(z,s;\) = AV

is the Green’s function for problem (2.1). Thus, for A € p(T) we can
express the resolvent operator R(A : T') as a Hilbert-Schmidt one, as
follows:

(2.6) R()\:T)f:—/o G(-, s\ f(s)ds, feL*0,1).

3. Analysis of A(\) and N(z,s;A\). Given an arbitrary ¢ €
(m/2,m), define the sector X5 = {A € C : |arg(\)| < §,\ # 0}. For
A € X5, let p € ¥5/5 be the square root of A with positive real part. A
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fundamental system of solutions of " —Au = 0 is given by the functions
uy(x) = exp(—pzx) and us(x) = exp(pzx).

Evaluating the boundary forms B; in the functions u;, we obtain, for
1,7 = 1,2, the following expression:

By(uj) = a; + (=1)’bip + ¢ exp[(=1) p] + (=1)’ dip exp[(~1)’ p]
1
+/0 R;(t) exp[(—1)’ pt] dt + (— / S;(t) exp[(—1)7 pt] dt.

Next we substitute the above formula in (2.2). For avoiding compli-
cated formulae we introduce the numbers

Ty = T1y2 — T2Y1
and the functions
Lup(t) = 21 F2(t) — 221 (1),
where 2,y € {a,b,¢,d} and F,G € {R, S}. We also define
Lr(t,§) = Ri(t)Ra(§)—Ru(§)Ra(t), Ts(t,€) = S1()52(£)—S1(£)S2(t)
e Lrs(t,§) = Ri(t)52(€) — Ra(t)S51(8)-

Thus, after a straightforward but long calculation we obtain from (2.2)
the following formula:

A(A) = 2(]-—‘ab + ch)ﬂ
+ (—dePQ + (Fad - Fbc)p + Fac)ep
+ (deﬂ2 + (Fad - Fbc)p - Fac)e_

1
+p/0 (PaS(t) + Pcs(l _ t) _ F)bR(t)
~Lup(1— ) +e ) di

/ (Par(t) = Ter(1 = D) (e — e~") dt

(3.1)

/ / (Ts(t, €)p* + (Trs(t, )
+Trs(&t)p + Tr(t,€))e’ ™Y de dt.
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Formula (2.4) can be written as

er(a=s) _ gpls—a)

1 ifx>s
) — P
g(x,5:0) = oPls—2) _ op(a—s)
if x <s.

4p
Thus, for 1 = 1,2, we have
Bi(9)x

ePs e~ Ps

= (a; —bip — cie”? + dipefp)g + (—a; — bip + cie? + d;pe’)

4p
+ </OS(Rz-(t) - p&(t))ept dt + /:(—Rz‘(t) +pSi(t))e””" df)iﬁ

0
+ <_ /OS(Rz-(t) +P5i(t)>ept dt + /Sl(Ri(t) + pSi(t))e?! dt)e;i_

p

Substituting in (2.3) the expressions obtained for B;(u;) and B;(9)s,
we have

(3.2)
N(z,s;\)
eP(T+s) )
= L)0('/137 53 A) + 2p [(dep - (Fad + Fbc)p + F0,0)67p

* / (Tos(6)p” = (Tas(t) + Dor(t)p + Tar(t))e " dt
+ /Os(—Fds(t)p2 + (Tes(t) + Tar(t)p — Ter(t))e P gt
s pl
+ [ ] st +Trs(e)~Trs(t. Do+ Ta(t )0 dear

o—pla+s)

+ 2p |:(dep2 + (Fad + Fbc)ﬂ + Fac)ep

1
+ [ (Cus@p + Cus(®) + o0+ Lan(t))e”
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T /OS —(Cas(t)p® + (Tes(t) + Tar(t))p + Ter(t))e’ ) at
—i—/os/ (Ts(t,€)p*+ (T rs(t,€) —Trs (&, 1) p+Tr(L,€))e” ) dé dt

where

</71(33,8;)\) ifx>s
3.3 ) =
(3:3) ol ) {(,02(33,8;)\) if x < s.

The functions ¢1(z, s; A) and @2(z, s; A) are defined as

ep(@—s)

®1 (:I;7 S5 )‘) = 2P |:(de/)2 + (Fad - Fbc)p - I‘ac)e_p + 2Fabp

+ [ (Pas)? + (Cas(t) — Torlt))p — Tar(t)e# dr
+ [ (Tis(0 + (Tas(t) = Tun(0)p + Tan(e)e” dt
+ [ CTasO+ (sl Tan(0)p 4 Ton0)e D at
" 01 | Ts00 + Trse)

+Trs(&,1)p+Tr(t,€))e’ S de dt
er(s—2)
2p
1

+ | D)+ (~Tas (04 Ton(0)p~Tan(t)e i

+ |:(de/)2+(_Fad+FbC)p_Fac)€p+2Fabp
+/()S(—Fb5(t)p2+(_FaS(t)+FbR(t))p+FaR(t))e/Jt dt
+/()S(_Fds(t)p2+(_FcS(t)+FdR(t))P+FcR(t))€p(1t) dt
+/0 /os(‘PS“’f)PQ — (Trs(t,€) + Trs(€, D)o

+Tg(t,€))e’t 9 d¢ dt}
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and

oz, 55 \)

epP(z—s) )
= 2p [(dep + (_Fad + I‘bc)p - Fac)ep - 2Pcdp

+ [ (as(0F + (“Tes(t) + Tan(®)p -+ Ten0)ert =)
1

+ / (Tos(t)p* + (—Tas(t) + Tor(t))p — Tar(t))e dt

* / (Pas(t)p? + (~Tes(t) + Tar(t)p — Ter(t))e” =V dt

/ / S(L, )0~ (Trs(t, )+ Trs (€, )p—Tr(t, €))er€) d dt

2P [(dep + (Fad - Fbc)p - 1—‘ac)e_p + 2chp

+ /0 (=Tas(t)p? + (Tes(t) — Tar(t))p + Ter(t))ert =1 dt
1

+ [ (Cus@)p + (Cus(®) = ()~ Lan(t)e "

+ / (PdS(t)P2 + (ch(t) - PdR(t))p — I‘CR(t))eP(l—t) dt

1 p1
+ /0 / (Ts(t, €+ (T rs(t,€) + Trs (&, ))p—Tr(t, €))e?9 de dt |

In the following we are going to bound |N(z, s; A)| from (3.2)—(3.3).
For the sake of simplicity we will denote with the same symbol || - || the
supremum norm in one and two variables, so

[1E@)] = sup{|F(#)] : 0 <t <1},
I1E(t, )| = sup{|F(t,£)[ : 0 <t,6 < 1}.

Also, let R(p) denote the real part of p. As p € Xj5/5, then R(p) > 0
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Using the triangle inequality and performing the resulting integrals,
we obtain

(3.4)
IN(z,5; M)

e 2 (s—1)R(p)
< ez, s M)+ ST (ITsdl|p|” 4 [Taa + Toellp| + Tacl)e

1 — e(s—DR(p)
R(p)
o(s=1R(p) _ o—R(p)
R(p)

1— e(6=DR() _ g=5R(p) L o—R(p)
+ (ITsl|p? + 2T rs|l|pl + |ITR
(ITsllpl™ + 2[Trsllol + T &) R(p)2
efI%R(p)

(=9
NP (Toallpl* + [Taa + Drellp] + [Tl 7

+ (ITes o> + |ITas + Torlllpl + ITarl)

+ (ITaslllp* + [Tes + Carlllpl + |Terl)

(1-5)R(p) _ 1
e
+ (ITssllp* + ITas + Torlllpl + ITarl) ——5—~—

R(p)
Lol Do T . R(p) = =IR(p)
+ (Paslllpl” +Tes +Tarlllol + Perl) ——
) 1_ e(l,s)gﬁ(p),esfﬁ(P)Jre%(p)
+ (ITslllpl” + 2T rslllpl + [Tk
ITs]l ITrsllel + T BE

From (3.3) we have
o1z, s )] if x> s
. >\ =
(3.5) [, 5 M) {m(x,s;m ifz < s

where
(3.6)

lpr(z, 53 M)

em%(p)

< W (|de”P|2—|—|Fad—Fbc||p|_|_|]_"ac‘)e—(5+1)§ﬁ(p)+2‘1—wab||p|e_s§ﬁ(p)
1 — e~ (s+1)R(p)

+ F 102+ Fa _F P + Fa
(ITsslllpl® + ITas — Torlllpl + [Tarl]) ")
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(H |||P|2+||F — ||| |+|| ”) & (P — e (s+1)R(p)
IdS cS dRI||P I ¢R

1— e R(P) L e(s+1)R(p) _ —sR(p)

R(p)?

p)
+ W (ITaql |P|2—|—|1—‘ad—|—I‘bc| |p|+rac|)e(s+1)§n¢(p)

+(ITslllp*+2ITrslllol+ T &I

SR(p) ) e(s+1)R(p) _q
+2[Cap|lple*™” +([[Tos |l pl" +Tas —Torlllpl +Tarll) —57—~—

R(p)
S Ly RO R0
T _ B
+(ICas|l|p]*+|Tes =Tarlllp|+|ITerll) R(p)
1t e(sTDR() _ R(p) _ R(p)
+(IT sl +2(T ksl ol + T &)
([ITs]lf ITrs|llol+]Tr|l TBE
and
(3.7)
lp2(z, 85M)|
e"R(p) 9 (1-)R(p) —sR(p)
< W (|Pbd‘|P| +|Fad_1—‘bc”P‘ + |Fac|)e r +2|ch|\P\€ r
(ITssl1of + Tas — Torllpl + [Tarl)) e =1
+ ([Lss|lipl” + L as — Lorlllpl + [[Larll) —
R(p)
N oy €OTIRE) )
+ ([[Taslllpl” + ITes — Larlllpl + ITerll) R(p)
(I=s)R(p) _ o—sR(p) 1L o—N(p) _
e e +e 1
+ (|ITsllpl* + 2|Trsllo| + |ITr
([Ts ]l ol ITrs ol + [IT&I) BE
e_’”%(p) 2 (s—1)R(p) sR(p)
+w (ITeallpl* +ITaa+Toe|[p]+|Tacl e +2|Teql|ple

1 — o(s=1)R(p)
R(p)

+ (ITaslof + s — Tagllol + erl) e 2
R(p)

R(p) _ sR(p) 4 (s—1R(p) _ 1
R(p)?

+ (ITwslllp* + ITas = Torlllol + [ITarll)

€
+(ITsllpl* + 2T rs ol + [T &)
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4. Bounds in L'(0,1). Take an arbitrary 0 # f € L'(0,1) and
suppose that A(\) # 0. From (2.6) we have

1
||R<A:T>f||L1<o,1>s( sup / G(a:,s;A)|dx)||f|L1<o,1)

0<s<1
S0
(4.1)
IR :-T)| < sup/|st)\|dx sup/\Nxs)\|dac
0<s<1 | 0<s<1

It will then be necessary to bound fol |N(z, s; \)| dz appropriately.

From (3.4) we obtain, after performing the integrals, the following
inequality:

1 1
/ IN(z,s;0)|dx < / lo(z, s;\)| da

0 0

1
+ o | (Tudllpl* + [Tad + Tocllp| + Tac))
[pIR(p) {

- (sinh[sR(p)] + sinh[(1 — s)R(p)])
+ (ITsslllp* + [ITas + Torlllol + [Tarll)

_cosh[R(p)] — cosh[sR(p)] + cosh[(1 — 5)R(p)] — 2
R(p)

+ (ICaslllof? + [Tes + Tarllo] + [Terl)
~cosh[R(p)] + cosh[sR(p)] — cosh[(1 — 5)R(p)] — 2
R(p)
+2(|Tslllof* + 2T rslllpl + [Tl
_sinh[R(p)] — sinh[sR(p)] — sinh[(1 — 5)R(p)]
R(p)? '

In order to evaluate fol lo(z, s; A)| dz, from (3.5) we write

1 s 1
/Iso(x,S;A)\dff:/ |¢2<x,s;x>\dx+/ o1 (2, 5 )| da.
0 0 s
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From (3.7) and (3.6) we have, respectively,

/ lp2(x, 55 A)| dx
0

< i 2Tl sinhlsR(o)
+ (Iedllpl* + ITaa = Toellp| + [Tacl)
- (sinh[R(p)] — sinh[(1 — s)R(p)])
+ (ITsslllp* + [ITas — Torlllol + [Tarl)
~cosh[R(p)] — cosh[sR(p)] — cosh[(1 — s)R(p)] + 2
R(p)
+2(ITasll|o* + [ITes — Tarlllol + [Terll)
*cosh[R(p)] — coshl(1 — R(p)]
R(p)
+2(ITsllpl* + 2ITrs ol + ITxID)
_sinh[R(p)] — sinh[sR(p)] — sinh[(1 — 5)R(p)]

R(p)?
and
1
/ lp1(x, s; A)| dx
1 .
< iy |2l sinbl(n = 5G]

+ (Iedllpl* + ITaa = Toellp| + [Tacl)
- (sinh{R(p)] — sinh[sR(p)))
+2(I[Tos]llp® + Tas — Torlllol + [Tarl)
~cosh[R(p)] — cosh[sR(p)]
R(p)
+ (ITaslllpl* + [Tes = Tarlllpl + [ITerl)
_cosh[R(p)] — cosh[sR(p)] — cosh[(1 — s)R(p)] + 2
R(p)
+2(Islllpl* + 2| rslllo] + [T &)
_sinh[R(p)] — sinh[sR(p)] — sinh[(1 — 5)R(p)]
R(p)? '
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Adding up the inequalities above, we get

1
/ |N(x,s;\)| dz
0

< L (Dualo+ (Caal+ Dl 41Tl i)
+ |Tas||p| sinh[(1 — 5)R(p)] + |Tcallp| sinh[sR(p)]
+2(IToslllpl* + (ITasll + ITsrl)lol + [Tarl)
_cosh[R(p)] — cosh[sR(p)]

R(p)
+2(|[Taslllp* + (ITesll + [ITarl)lol + [Terl)
_ cosh[R(p)] — cosh[(1 — 5)R(p)]
R(p)
+3(Islllpl* + 2T rslllpl + L&)
_sinh[R(p)] — sinh[sR(p)] — sinh[(1 — 5)R(p)]
R(p)? '
Note that, as p € ¥s/2, we have R(p) > cos(d/2)|p|. Then, taking the

supremum and eliminating the negative terms, we obtain the following
inequality:

0<s<1

1
sup / [N (z,s;\)| dz
0
(p

PR

< -
= cos(3/2)o?
2% (0)

- T T 2

+ oz [(Tesl + ITas o
+ (ICasll+ITorll + [Tesll + [Tarl)lo] + ITarll + ITerll]

3%t (o)

" o5 (6/2) "

(ITsallpl* + (ITas| + ITaal + [Tl + [Teal)lpl + Tacl)

(ITslllpl* + 2 Trslllpl + 1T &)

Taking m := max[(1/ cos(6/2)), (2/ cos?(§/2)), (3/ cos®(6/2))] and, group-
ing the terms of the same order, we finally obtain

! H H
(4.2) sup / |G (z,8;\)|dx <m ([2)) =m H(p)
0<s<1Jo ol Al
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where
(4.3)
eR(p) )
P) = T bd||P ab ad be cd bS ds
H(p) INEY] Toallp]” + (ILas| +[Taal +[Toc|+[Teal +[Tos |+ Tas )

“|pl + (ITacl + [[Tasll + ITerll + |Tes|l + Tarll + [ITs])
Turll + ITerll + 2(T r
N ITarll + ITerl + 2[Trs || N | RQII
Ipl 1]

Now we must analyze the function H(p) in order to determine the cases
for which it is bounded in the sector X5 /5.

It will be convenient to write the formula (3.1) for the characteristic
determinant in a slightly different form, as follows:
(4.4)

A(N) =¢” {(—FWF + (Tag = Toe)p 4 Tae)
+ (Tpap® + (Tag — Toe)p — Tac)e 22 +2(Tap + Deg)pe ™"

1
+ p2/ (=Tps(t) + Tas(1 — t))(ep(t—l) _ e*p(t+1)) dt
0

1
+ p/ (Tus(t) + Tus(1 — t) — Tor(t)
0
—Tar(1 — 1)) (ePt=Y 4 7Pty gt

1
+ / (TCar(t) — Ter(l —t)) (et~ — =P+ gy
0

1 1
2
T /0 /0 (Ts(t,€)p + (Trs(t.€) + Trs(E,1))p
+TRr(t,6)erE D dg at|.

Note that the second line in the above formula can be made arbitrarily
small for |p| sufficiently large. We can then choose rq large enough so
that for

_ _ 1
(45) ‘(de/)2 + (Fad - Fbc)p - Fac)e 2 + 2(Fab + ch)Pe p| < W

holds for every p € ¥;5/5 with |p| > 0.
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It will also be necessary to know how the integral terms depend on
p. Using that R(p) > cos(§/2)|p|, it is easy to see that

1
(4.62) PQ/ (=Tos(t) + Las(1=1)) ("7 — e7P(HD) dt’
0
[Tes|| + [Tas||
< =7 =
cos(d/2) Pl,

(4.6b
1
'p/ (Tas(t) + Teg(1—t) — Tor(t) — Dar(l — t))(ePt= 4 e=r(t41) dt’
0
< ITor| + [ICarll + |Tas| + [ITes]
- cos(6/2) ’

(4.6¢) ‘ /OI(FaR(t) —Ter(1-1)) (=1 — e77(H1) gt

_ ITar] + [Ter]
cos(3/2)lp]

(4.64) / / (st €)p> + (Crs(t.€) + Trs(E,6)p + Tr(t,6))

ePE—t=1) d¢ dt’

T T
<|FS||+2|| RSH + H R|>

< - -
~ cos?(0/2) ol |pl?

5. Analysis of cases. We are now ready to analyze the function
H(p). In the following E(p) will denote a bounded function of p that
could differ from one case to another.

Case 1. Suppose that I'yg # 0. From (4.4) we can write the
characteristic determinant as

A(\) = Tpap?e?(~1 + E(p))
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for a certain function E(p). Using (4.5)—(4.6), we see that E(p) can be
bounded as

ITad — Tpel ITacl 1 ITssl + [ITas |
|E(p)| < 5 : 5T
ITvalpl Toallpl>  [Toallp*  cos(0/2)[Tpallpl
1

r r T, Tsl) —————
+ (Tl + ITarl + Pasl + ITesl) oo

ITar|l + IRl
cos(0/2)|Tpallp|?

ITsl o, ITrsl HFRH) 1
+ +2 +
( lol? ol lpl* ) cos?(6/2)[Fhal

so we can choose g sufficiently large for |E(p)| < 1/2if |p| > r¢. Thus,
for p € ro + ¥5/2, we have

T
AQ)] 2 [Duallp 22 (1~ |B(p))) > ol o2
Finally, from (4.3) we obtain

H(p) < (1475 " (ICa|+ Tadl+|Tec| +|Tcal + ITss |+ Tas )

19%1
+ 70 2(ICac| + ITasll + [ITsrll + ITes|l + [Tzl + ITs])
+ 75 (ITarll + [ITerll + 2| Tas|) + o *ITRI] =: Ho

which proves that H(p) is bounded by a constant Hy in the sector
ro + 25/2. O

From now on, we will suppose that ',y = 0; then, the dominant term
in H(p) will be [Uap| + [Taal + [Toc| + [Teal + [Tos || + [[Tas|l-

Case 2. Suppose that [['ap|+ [Taa| + [Toe| +[Teal + [ Tos || +[|Tas || # 0.
Taking into account (4.4) and (4.6a), we see that the dominant term
in A()) is

1 1
(ot — Too)p + 0 / / (—Tys(t) + Tas(1 — £))(e?=D — e=0(t+D) gy,
0 0
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In order to get appropriate bounds, we should give the above term
a more suitable form. For doing that we suppose that Si,S5: €
C1([0,1]; C) (eventually, we will see that this will not rest generality to
our results) and perform an integration by parts. Then the above term
can be written as

0| (Tag = Toe — Tys(1) + Tys(0)) + (Tgs(0) — Tps(1))e 2
+ 2(Fb5(0) — Fds(l))e_p +/O (Tps () (t) + Pdsl(l—t))
(D) 4 gmolth)) dt} .

If mg := max(||S1|lcc, ||S2]lc) and 7o is large enough, we have for
|p| > 7o that

1 p1
\(rad—rbc>p+p2 / / (—rbsu)+rds<1—t>><ep<f-1>—e-f’“*”)dt}
0JO

1 mo
< Ty Tpe— Tpg(1)4+ T UL
= |P|(| d b bS( )+ dS(O)| + |P|2 + COS(5/2)|p|>

‘We have two subcases to consider.

Case 2.1. Tyq — Tpe — Tps(1) + Tys(0) #£ 0. For |p| > 1o we have

|AN)| > [ple™ ) (Tag — Toe — Tos(1) + Tas(0)| — [E(p)])

where
2 Tue mg + [|[Cerl|l + ||Tarll + [|[Tasl| + ||Tes
|E(p)\§—2+| |Jr [Torl + [Tarll + [[Tas|| + [[Tes|l
14 Ipl cos(6/2)|p|
el Il L (Il gl )
cos(6/2)[p[?  cos?(6/2) \ |p| p|? pl?

This last term can be done less than %|Fad —The —Ths(1) + Tas(0)| by
choosing rg large enough. Thus, we have for |p| > ¢ that

AQ)] 2 2RO,y Ty~ Tys(1) + Tus(0)
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SO

2
= ITud — Tpe — Tos(1) + Tys(0)]
- [ITas| + ITad| + [Tec| + Teal + [Tosl + [ Tas]|
+ 70 (Tacl + ITor ]l + ITarll + Tas || + [Tes| + ITs])
+ 70 2(ITarll + ITerll + 2ITrsll) + o *[IT&ll76] =: Ho.

H(p)

This shows that H(p) is bounded in ro + X5 5. O

Case 2.2. Tyq — Tpe — Tps(1) + Tqs(0) = 0. Note that
AN < P |pE(p)]

where E(p) is the same function as in Case 2.1, and |pE(p)| can be
bounded by a certain constant ¢y > 0. Thus, we have

H(p) = ¢ ' | (Tap| + [Taal + [Toc| + Teal + [Tosl + [Tas])lol

+ (ITac| + ITyrll + ITarll + [ITas || + [[Tesll + [Ts])
Torll + ITerll + 2|IT T
n ITarll + |Terll + 2(|T RS n | R2H
o ol

which shows that H(p) is not bounded. o

In the following we will suppose that I'yp = Tog =Tpe =Tpg =Teqg =
0, I'ys = 0 and I'ys = 0. Now the behavior of H(p) depends on the
coefficient [Cac| + [[Tor |l + [[Tarll + [[Tasll + [[Fes || + [Ts]l-

Case 3. Suppose that [Cac|+|Torll+[[Tarl +[Tasll+[Tesl|+Ts] 7
0. Now the dominant term in A(X) is

Coc + p/o (Fas(t) + Tes(1 =) = Dyr(t) — Lar(1 — 1))

11
. (ep(t—l) + e—p(t+1)) dt + p2/ / ps(t,g)ep(ﬁ—t—l) d€ dt.
0Jo
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Asin Case 2, we must give to this term a more suitable form. Supposing
that also R; and Ry are in C'*(]0, 1]; C) and performing an integration
by parts, we can write the expression above in the following form:

Lo+ Las(1) + Tus(0) ~ Ton(1) = Tan(0) + Ts(0,1) + =2

where E(p) is a bounded function. We can rewrite the characteristic
determinant as

A= <Fac+ras(1)+rcs(0) —Iyr(1) —Tar(0)+T's(0, 1)+@>

with E(p) another bounded function. We must distinguish two sub-
cases.

Case 3.1. T'ye + Fag(l) + ch(()) — FbR(l) — FdR(O) + FS(O, 1) £ 0.
Choosing |p| > 1o large enough so that

‘@’ < % Tact Fas(1)+Tes(0) = Tor(1) = Tar(0)+ T's(0,1)]

we have

1
[AM)] = 5[Tac + Pas(1) + Les(0) = Tor(1) = Lar(0) + Ts(0, 1)]e™.
This shows that H(p) is bounded. O

Case 3.2. T'ye + Fas(l) + ch(O) — FbR(l) — FdR(O) + Fs(o, 1) =0.
We have that
a0 = 20 i) < 0w
lpl Ipl

for a certain constant cg > 0. Thus,

H(p) < 5" |(ITacl + ITorll + [ITarll + [Tasll + [ITes|| + [ITs )0l

I'r
T Tarll + ITerll + 2T s + LE2

ol
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so H(p) cannot be bounded. O

From now on, we suppose that I'ypy = Tpe = Tog = Tpe =Tpg =Teqg =
O, FbR = O, FdR = O, FaS = O, FCS = O, FbS = O, FdS =0 and FS =0.
Then H(p) and A(X) can be written in simplified form as

_ " (Tarll + [Terll + 2/ITrs] |, [Tl
p - + 2
AN ol I

and

1
AA) = e’ [/0 (Tar(t) — Tep(l — t))(ePt™1) — e=P(t+1) gy

1 p1
" /0 /0 (Crs(t.€) + Trs(E.6))p+ Tr(t, €)er€ D de dt]

Case 4. Suppose that |Tor| + [Terll + 2||ITrs|| # 0. The dominant
term in A(A) is, in this case,
1
/ (Tun(t) — Ten(1 - £))(e701) — e~ t+D) gt
0
11
0 [ [ Cast.&)+ Dasle,)ee - dg
0Jo

that, after an integration by parts, can be written as

?1) (Par(1) = Ter(0) + Trs(0,1) + Trs(1,0)) + E;“f )

where E(p) is bounded. Thus we have

We consider two subcases.

Case 4.1. T'yg(1)—T'¢r(0)+I'rs(0,1)+T rs(1,0) # 0. We can choose
ro sufficiently large so that
eR(p)

AN > Bl ITar(1) = Ter(0) + Trs(0,1) + Trs(1,0)]
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holds for |p| > ro, so

ITarll +Terll + 2Trs| + ITrllrg

H(p) <2 ITor(1) —=T:r(0) + Trs(0,1) + Trs(1,0)]

= HO
which shows that H(p) is bounded in the sector ro + X5/5. o

Case 4.2. T4r(1) —T'¢r(0)+Trs(0,1) +T'rs(1,0) = 0. We have that

eR(p)

E(P)‘ < co e

for a certain constant cg > 0. Thus,

ep
AN = 7

IPI TRl
H(p) = ITarll 4+ [[Terll + 2T Rs || + A

This shows that H(p) is not bounded. u]

Finally, we also suppose that I';g =0, I'.g =0 and I'gg = 0. Thus,

() 1l
1) = ITell gz AW = [ [ ot e dear

Integrating by parts, the characteristic determinant can be written as

AN = Z_'; (FR(O, 1)+ @)

for a certain bounded function E(p).

Case 5. Suppose that T'r(0,1) # 0. Then it is possible to take rq
large enough so that

8“‘T(P)

holds for |p| > r¢. Thus, H(p) can be bounded as

[Tkl

He) < 215, 10,1)

= HO



ANALYTIC SEMIGROUPS 853

in the sector rg + Xs/2. a

Case 6. Suppose that I'g(0,1) = 0. Then for some constant ¢y > 0,

we have
o £(P)
PE

eR(p)

|3

AN =

‘ < o
0

H(p) = c5 " [Trlllpl-
This shows that H(p) is not bounded. o

We have see that H(p) is bounded by a constant Hy > 0 in a sector of
the form rg + ¥;/2, only in the following five cases: 1, 2.1, 3.1, 4.1 and
5. This leads to the following definition (note that some redundancies
have been avoided):

Definition 5.1. Suppose that R;,S; € C([0,1];C) for i = 1,2.
The boundary conditions { By, B} are regular if they verify one of the
following conditions:

1. Ty # 0.
2. Tpg=0and I'yg — Tpe — Fbs(l) + Fds(O) 7é 0.
3. Ty =Tea=T4c=Tpq=Tcqg=0,Tps =0, 'ys =0 and

Toe + Fas(l) =+ ch(O) — FbR(l) — FdR(O) + Fs(o, 1) 79 0.

4. Top =Toe =Taqg =Tpe =Tpg =Teqg = 0, I'yg =0, T'qr = 0,
FaS = 0, FbS = 0, FcS = 0, PdS = 0, FS =0 and

FaR(l) — FCR(O) + FRS(O, 1) + FRs(l, 0) 7& 0.

5.a;,=b;=¢;=d;=0,5=0fori=1,2and I'g(0,1) # 0.

It is not difficult to see that Definition 5.1 does not depend on possi-
ble elementary simplifications on the boundary conditions or possible
integrations by parts.

From (4.1) and (4.2), we deduce that, in the case of regular boundary
conditions with C! coefficients, the sector rZ + X5 is contained in
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p(T) and there is a constant My := mHy such that ||[R(A : T)|| <
(Mo/|\]) for every A € r3 + 5. Defining r := (r2/sin(d)) and
M = My[1 + (1/sin(d))], we have that X5, =7+ 35 C p(T') and

(5.1) IR : T)|| < AE Vs,

M
A=r|’
As a consequence, in this case T is the generator of an analytic
semigroup of bounded linear operators in L!(0,1); in general, this
semigroup will not be a Cy-semigroup.

6. Approximation. At some point in the analysis of cases made in
the previous section, we needed to impose some regularity conditions
of the functions R; and S;, specifically, that they were of class C'. In
this section we will show that it is sufficient with supposing continuity.
The idea is to use the well-known approximation results of Kato ([5],
Chapter 9).

Suppose that boundary conditions {Bj, By} are regular (note that
we only suppose R;,S; € C([0,1];C) for i = 1,2). We can build two
sequences {R?} and {S"} in C'*([0,1]; C) such that

1. The sequences {R}'}, {SI}, {(R})'} and {(S")'} are uniformly
bounded.

2. {R?} and {SI"} converge uniformly to R and S, respectively.

3. R(0) = R(0), R?(1) = R(1), S(0) = S(0) and S*(1) = S(1) for
each n € N. If 5; =0 we take S} =0, and the same for R;.

For i = 1,2, consider the boundary conditions
Bl'(u) = aiu( +bu()+cz +du()
/ R (t)u(t) dt + / STt =0
and let T}, be the associated operator in L'(0,1), i.e

Tou=u", D(T,) ={uecW?>0,1): B}(u) = By (u) = 0}.

It is clear for construction that {B}, BY} verify the same regularity
condition as { By, Ba}. Thus, there exist constants 7, and M, such that
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the sector X5, is contained in p(T},) and ||(R(A : Tp,)|| < My /(JA—7n])
holds for every A € X5, . From 1-3 and the analysis of cases made in
Section 5, it is not difficult to see that the constants r,, and M,, can be
chosen in a uniform way. Thus we have constants r and M such that

(6.1) IR : T < A€ p(T,) C %sr, neN.

M
Pk

Let A, (A) and A(X) be the characteristic determinants associated to
T, and T, respectively. As A(A) has at most a denumerable number

of zeros, we can choose \g € X5, C p(T,) such that A(Xg) # 0 so
Ao E/KJU.

Take an arbitrary f € L'(0,1). Then we have
[R(Xo: Tn)f — R(Ao = T) flloro,n

1
s( o [ G(x,s;m—Gn<xvs;xo>|dx)||f|L1<0,1)
0

0<s<1

where G(z, s; \) and G, (z, s; ) are the Green’s functions associated to
T and T,,, respectively. Using formulae (2.2)—(2.5), it is easy to see that
the right member in the above inequality goes to zero as n — oco. This
proves that R(\g : Tp,) f converges to R(A: T)f in L1(0,1) as n — oo,
for every f € L(0,1).

From [5], Chapter 9, we deduce that X5, C p(T) and R(\ : T},)
converges to R(A : T') strongly in L'(0, 1) as n — oo, for every A € 3s ..
This implies that (6.1) holds for the operator T

We can resume this section with the following result:

Proposition 6.1. Suppose that the boundary conditions {Bi, Ba}
are regular. Fixz an arbitrary 6 € (w/2,7). Then there exist constants
r € R and M > 0 such that the sector ¥s, is contained in p(T) and
the following bound holds:

M
T < ——
IR Dl < 5=y

for every A € ¥s5,. As a consequence, the operator T generates an
analytic semigroup of bounded linear operators in L*(0,1).
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7. Generation of analytic semigroups. As we commented in
Section 2, it is possible to extend Proposition 6.1 to the more general
operator L by means of some standard transformations, (see [4] or [7]
for the details). It is a simple exercise to show that the regularity of
the boundary conditions is not affected by such transformations.

We can now state the main result of this paper:

Theorem 7.1. Consider the second-order differential system

{l(u) =u" 4+ q(x)u + go(x)u  in (o, 5)
Bl(u = BQ(U) =0

where ¢ € CY([o, 8];C) and qo € C(la, B];C). For i = 1,2, the

boundary conditions are mized non-separated and integral ones:
Bi(u) = au(a) + b/ (@) + c;u(B) + di/ (B

)
+/5 R;(t)u(t) dt+/ﬁ Si(t)u'(t) dt = 0,

where a;,b;,¢;,d; € C and R;,S; € C([a, B];C). Suppose that the
boundary conditions are regular, i.e., their coefficients verify one of the
following conditions:

1. Tpa # 0.
2. T'pg =0 and Tuqg — Tope — Tos(B) + Las(a) # 0.
3. Tap =Taa=Tbe =Tta =Tca =0, I's =0, I'ys =0 and

FPac +Tas(B) + Tes(a) =Tyr(B) — Tar(a) + s, B) # 0,
4. Fab = Fac = Fad = Fbc = de - ch = 07 FbR = 07 FdR = 07
Ils=0,T4ys=0,T.s=0,T35=0,Ts =0 and

Lor(B) —Ter(a) + Trs(a, B) + Trs (B, ) # 0.

5. a;,=b;=c¢;=d;=0,8;,=0 for i =1,2, and Tr(a, ) # 0.
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Consider the L'-realization of the differential system, that is, the
unbounded linear operator L : D(L) C L'(a,8) — L'(a,3) defined
as

Lu=u"4 q(z)u + q(z)u
with domain D(L) = {u € W?(a, 8) : Bi(u) = Ba(u) = 0}. Then
L is the generator of an analytic semigroup {e'*};>¢ of bounded linear
operators in L'(a, 3). When the domain D(L) is dense in L'(a, ),
the analytic semigroup is a Cy-semigroup.

If the domain D(L) is not dense in L'(c, 3), it is possible to obtain
a Co-semigroup on a subspace of L!(a, 3). Define X; as the closure of
D(L) in L' (v, B). Let Lo be the part of L in Xg, that is, D(L¢) = {u €
D(L) : Lu € Xo} and Lou = Lu for u € D(Lg). Then the operator Ly
verifies the hypotheses of Theorem 7.1 and its domain D(Lg) is dense
in Xy. Thus Ly generates an analytic Cy-semigroup {etLO}tZO on X,
and the following relation holds:

etboy = etfu, uwe Xy, t>0.

We conclude this section with some interesting cases of regular mixed
boundary conditions.

Example 7.1 (Non-separated boundary conditions). Consider the
conditions

{ Bi(u) = aru(a) + by (@) + cru(B) + div'(8) = 0
Bs(u) = asu(a) + bou! (a) + cou(B8) + da2u/(8) = 0,
which are supposed to be linearly independent. The regularity condi-
tions are, in this case,
1. Tpq # 0.
2. Tpg=0and I'yg — Ty # 0.
3T =Tw=Tp.=T4pg=Tcq=0and 'y #0.

In all cases the domain D(L) is dense in L!(a, 3), so the analytic
semigroup generated by L is a Cy-semigroup.

Regular conditions { By, By} are known as Birkhoff-regular boundary
conditions, and they were introduced by Birkhoff in his early paper
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[1] for obtaining asymptotic expansions for the eigenvalues of the
associated operator. The spectral theory of non-separated boundary
conditions has been widely investigated: see [7] and the references
therein. In our paper [4] we stated that it is also possible to obtain
generation of analytic semigroups in every space LP(a, (), 1 <p < o0
(see Section 8).

Classical examples of Birkhoff-regular boundary conditions are the
separated and periodic ones:

{alu(a)—i—blu’(a):g and {u(a)= r£0.

cou(B) + dot/ (B) =
As an example of Birkhoff-irregular boundary conditions, we can con-
sider the initial value conditions: u(a) = u'(a) = 0; it is not difficult

to prove that in this case we do not obtain generation of analytic semi-
groups. o

Example 7.2 (Integral boundary conditions). Consider the condi-
tions

B1(u) = /ﬂ Rl(t)u(t) dt + /ﬁ Sl(t)u/(t) dr=0
/ﬁ Ry (t)u(t) dt + /B So(t)u'(t) dr =0,

®
n
£

I

with R;,S; € C([o, 8];C), i = 1,2. These kinds of integral boundary
conditions have been widely studied in our paper [3], the main results
of which can be considered as special cases of Theorem 7.1.

The conditions for regularity are

1. Ps(a,ﬁ) 75 0.

2. Ts =0 and T'gs(e, 8) + Trs(8,a) # 0. This condition can be
separated into two subcases:

(a) S1 =0 and Rl(a)Sg(ﬂ) + Rl(ﬁ)SQ(OZ) # 0.
(b) S2 =0 and Ra(a)S1(8) + Ra(8)S1(a) # 0.
3.51=0,5 =0and I'g(a,B) #0.
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The domain D(L) could not be dense in L'(a,3). To see that,
consider the following examples:

B g
/ elu(t)dt =0 / u(t)dt =0
(o7 d «

al

/jtu'(t)dt:O /ju(t) dt-i—/jtu’(t) dt = 0.

In both cases the conditions are regular. In the first one the domain
D(L) is not dense in L!(a, 3), so the semigroup generated by L is not
a Cy-semigroup. However, the second example can be written as

{u(a) —u(B)=0
au(a) — pu(B) =0

so D(L) is dense in L'(a,3) and the analytic semigroup is a Cp-
semigroup. ]

8. The LP? case. Consider the case of non-separated boundary
conditions

{ Bi(u) = aru(a) + v/ (@) + cru(B) + diu/(8) = 0
Bs(u) = asu(a) + bou! (a) + cou(B) + da2u/(8) = 0.

For 1 < p < o0, consider the linear operator L, : LP(«, §) — LP(«, 3)
defined as Lyu = l(u), D(L,) = {u € W?P(a, 3) : Bi(u) = Ba(u) =
0}. In our paper [4] we proved that, for Birkhoff-regular boundary
conditions (see Example 7.1), the operator L, is the generator of an
analytic semigroup in LP(«, 8) (if p # oo the semigroup is also a Cp-
semigroup). For proving this result we obtained bounds of the form
M /|| for the resolvent operators R(\ : L), both in the spaces L' («, 8)
and L*°(a, (); then, by interpolation, we deduced the same kind of
bounds in all the scale of spaces LP(a, 3), 1 < p < co. The case p =1
can be viewed as a particular case of Theorem 7.1.

A natural question arises: is it possible to generalize Theorem 7.1 to
the LP setting, as in the case of non-separated boundary conditions?
We will give a partial answer.

Consider the LP-realization L, with mixed boundary conditions
{Bj, Bz} as in Theorem 8.1. Of course, a direct approach for bound-
ing R(A : L) from formulae (2.2)—(2.6) is not possible if 1 < p < oo.
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Instead, we should try to bound the resolvent in L*°(«, ) in order to
interpolate. However, even for regular boundary conditions we do not
arrive to bounds of the form M/|\| for R(A : L), as the following
example shows:

Example 8.1. Consider the boundary conditions

that verify condition 4 of regularity. Note also that the coefficients are
of class O, so we have stronger conditions than mere regularity.

Fix M > 0 and take fo = 1. If A = p? € 5, with r sufficiently large,
we have

IR = Too)[| Z [R(A = Too) foll Lo 0,1) = Sup [R(A : Too) fo ()]

= sup
0<z<1

= sup
0<z<1

1
/ G(z,s;)\)ds
0

The characteristic determinant is, in this case,
ple+ (e = 1) — (e = 1)(e +1)].

After some calculations, we obtain

e’ —1

P —1) [-p(1+e™ ")+ (1 —e?)]

/lN(x,s;)\)ds—(e—l)
0

SO

Y N(z,s;0)
o | [ SR
’ (e=1(e” =11 -e?)—p(l+e?)]
~plem? =1D)p(1 +e)(er — 1) — (e — 1)(er + 1)] |
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The second member can be made greater than M/|p|?, taking |p| > r
large enough.

We have seen that, for every M > 0, we can take r > 0 such that

M M
IR(A: Too)|| > Pt A€ X,
A = '
so T, cannot be the generator of an analytic semigroup. ]

What can be then said in the L> case? First of all, note that sections
2-4 are valid in every space LP(«, ), with the obvious modifications.
Thus, for the operator T, we have that

IR(N: Two) \< sup / |G (z, 85 \)| ds

sup/\NJ;s/\|ds

|A( >\ | 0<w<1
m

< H. (p
< eele)

The function Hy(p) is obtained from (3.4)—(3.7) after a long calcula-
tion:
eR(p) )
Help) = i | (Foal sl + IEas o

+ (ITab| + [Tadl + [Toe| + [Teal + [Tasl|

+ITsrll + ITes | + [ITarll + [Ts() ol
Tk

ol

(Observe that Hoo(p) is not the same function H(p) obtained in the
L' case.) Making an analysis of cases similar to that in Section 5, we
obtain that Hu(p) is bounded in ro 4+ 5,2 only in the following three
cases:

1. Thy # 0.
2. de = 0, Fad - Fbc 7é 0 and FbS = FdS =0.

3. Tap =Tag =T =Thg =Tcqg =0, Ivg =Tgr = Tlos = Tps =
chEFdsErsEOand Fac#o.

+ |Fac| + HPaRH + ||F
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We say that the boundary conditions {B;, Bo} are L*-regular if they
verify one of the conditions above.

The first case I'pg # 0 corresponds to both regular and L°°-regular
boundary conditions. Then, by means of the Riesz-Thorin interpolation
theorem [2], we obtain the following result:

Theorem 8.1. If the mized boundary conditions verify I'yqg # 0,
then the operator L, generates an analytic semigroup of bounded linear
operators in LP(«, 3) for every 1 < p < oo.

What happens with cases 2 and 3 of L*°-regular boundary conditions?
It is clear that they are particular cases of regular boundary conditions;
however, they are not well-defined, as the following example shows:

Example 8.2. Suppose («,3) = (0,1) and consider the boundary

conditions
Bi(u) =u(0) —u(l) =0
Bay(u) = u'(1) + fol elu(t)dt =0,

that verify condition 2 of L®-regularity. But condition B; could be
written as:

By (u) E/O u'(t)dt =0,

which leads to L*-irregular boundary conditions. This shows that the
definition of L°°-regularity is not consistent. ni

Example 8.3. In the case of non-separated boundary conditions, the
function Hoo(p) is exactly the same as H(p), so the analysis of cases
made in Section 5 is valid also in L*(a, 3). We have the following
result:

Theorem 8.2. Let {By,B2} be Birkhoff-regular non-separated
boundary conditions. Then, for 1 < p < oo, the operator L, gener-
ates an analytic semigroup in LP(c,B). If p # oo, the semigroup is
also a Cy-semigroup.

The above theorem was previously proved in our paper [4]. |
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