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HYPERSURFACES SINGULAR ALONG
SMOOTH NONLINEARLY NORMAL CURVES

E. BALLICO

ABSTRACT. Let X ⊂ Pn be a smooth curve and X(1) the
first infinitesimal neighborhood of X in Pn. Here we prove
that X(1) has maximal rank for several nonlinearly normal
embeddings X ⊂ Pn.

1. Introduction. Let X ⊂ Pn be a smooth curve and X(1) the first
infinitesimal neighborhood of X in Pn, i.e., the closed subscheme of Pn

with (IX)2 as the ideal sheaf. Thus X
(1)
red = X. A hypersurface Z of

Pn is singular along X if and only if it contains X(1). Thus the Hilbert
function of X(1), i.e., the string of integers h0(Pn, IX(1)(t)), t ≥ 0, is
a natural numerical invariant of X. A few papers were devoted to
the computation of the Hilbert function of X(1) when X is either a
canonically embedded curve or a linearly normal curve of genus g and
large degree, say degree d ≥ 2g + 3, [5 8]. Here we will consider the
case in which C is not linearly normal. Here are our results.

Theorem 1.1. Fix integers n, d and g, and set x := d + 1 − g − n.
Assume x ≥ 2, n ≥ x + 5, d − x − 1 ≥ 2g + 3, g ≤ n − x − 2 and
(n−x)(n−x−1)/2 ≥ 2(d−x−2)+1−g. Let X be a smooth connected
projective curve of genus g and L ∈ Picd(X). Then there is an embed-
ding j : X → Pn such that j∗(Oj(X)(1)) ∼= L and h1(Pn, Ij(X)(1)(k)) =
0 for every k ≥ 3. Furthermore, h0(Pn, Ij(X)(1)(2)) = 0 and j(X)(1)

has maximal rank.

For instance, if X ⊂ Pn is a genus two smooth curve of degree 25,
then Theorem 1.1 covers the cases 17 ≤ n ≤ 22.
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Theorem 1.2. Fix integers n, d and g, and set x := d + 1 − g − n.
Assume x ≥ 2, n ≥ x + 5, d − x − 1 ≥ 2g + 3, g ≤ n − x − 2 and
(n − x)(n − x − 1)/2 ≥ 2(d − x − 2) + 1 − g. Then, for the general
smooth curve Y ⊂ Pn with deg (Y ) = d and pa(Y ) = g, we have
h1(Pn, IY (1)(k)) = 0 for every k ≥ 3, h0(Pn, IY (1)(2)) = 0 and Y (1)

has maximal rank.

For several proofs in the quoted references ([5, 6, 8], second part of
[7]) the smoothness of X is essential. Our proofs of Theorems 1.1 and
1.2 will use a degeneration of X to a reducible nodal curve, union of a
linearly normal smooth curve C of degree d− x and a smooth rational
curve D such that deg (D) = x and D intersects quasi-transversally C
at exactly one point. However, we will apply [7, Corollary 3.10] to C
and hence, up to now, our method does not give independent proofs or
refinements of [7].

For every smooth curve X ⊂ Pn and every integer b ≥ 0, let X(b) be
the infinitesimal neighborhood of order b of X in Pn, i.e., the closed
subscheme of Pn with (IX)b+1 as ideal sheaf.

Conjecture 1.3. For all integers n, b and g such that n ≥ 3, b ≥ 0
and g ≥ 0, there is an integer d(n, g, b) ≥ 2g + n + 2b such that for all
integers d ≥ d(n, g, b) the curve X(b) has maximal rank, where X ⊂ Pn

is a general degree d embedding in Pn of a general smooth curve of
genus g.

2. The proofs. Let X ⊂ Pn be a smooth curve and IX its ideal
sheaf. Set d := deg (X) and g := 1−χ(OX). For all integers t we have
the exact sequences

(1) 0 −→ (IX)2(t) −→ IX(t) −→ IX/(IX)2(t) −→ 0

(2) 0 −→ IX/(IX)2(t) −→ OX(1)(t) −→ OX(t) −→ 0.

The sheaf IX/(IX)2 is a rank n − 1 vector bundle on X isomorphic to
the conormal bundle N∗

X of X in Pn. From the exact sequence

(3) 0 −→ N∗
X −→ ΩPn |X −→ ΩX −→ 0
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we obtain rank (N∗
X) = n−1 and deg (N∗

X) = −d(n+1)−2g+2. Thus,
χ(OX(1)(t)) = χ(NX∗(t))+χ(OX(t)) = −d(n+1)−2g+2+(n−1) dt+
(n − 1)(1 − g) + td + 1 − g = n dt − dn − d + (n + 2)(1 − g).

Proof of Theorem 1.1. Fix P ∈ X, and take a hyperplane H of
Pn. Since d − x ≥ 2g + 1 and n = d − x + 1 − g, there is a linearly
normal embedding i : X → H such that i∗(OH(1)) ∼= L(−xP ). Set
C := i(X). Since d − x ≥ 2g + 2, C is projectively normal in H.
Since d − x ≥ 2g + 3 we may apply [7, Corollary 3.10], to the curve
C and obtain that the first infinitesimal neighborhood C

(1)
H of i(X) in

H satisfies H1(H, I
C

(1)
H

(3)) = 0. Set Q := i(P ) ∈ C. Let D ⊂ Pn be
a general smooth rational curve of degree x passing through Q. Hence
D spans a linear space M of dimension x such that M ∩ C = {Q}
scheme-theoretically and D is a rational normal curve of M . By [3]
and the assumption n ≥ 4, there is a flat family of smooth projective
curves {Zt ⊂ Pn}t∈U , U smooth and connected affine curve, o ∈ U ,
such Zo = C ∪ D (scheme-theoretically), Zt embedded in Pn by a
linear subspace V ⊆ H0(X, L) with dim (V ) = n + 1. Since Zo

is a locally complete intersection, the family of all conormal bundles
{N∗Zt}t∈U is a flat family of vector bundles on the family of curves
{Zt ⊂ Pn}t∈U . By (2) we obtain that {Z(1)

t ⊂ Pn}t∈U is a flat family
of curves. Hence, by semi-continuity, to prove h1(Pn, I

Z
(1)
t

(3)) = 0,
and hence the case k = 3 of Theorem 1.1, it is sufficient to prove
that h1(Pn, I

Z
(1)
0

(3)) = 0, i.e., that h1(Pn, I(C∪D)(1)(3)) = 0. Since
C and D are quasi-transversal at Q and C ∩ D = {Q}, a local
calculation shows that (C ∪ D)(1) = C(1) ∪ D(1). A local calculation
shows that the residual scheme Res H(C(1) ∪ D(1)) of C(1) ∪ D(1)

with respect to the Cartier divisor H of Pn is C ∪ D(1). We have
(C(1) ∪ D(1)) ∩ H = C

(1)
H ∪ (D(1) ∩ H). Thus, for every integer t, we

have an exact sequence

(4)
0 → IRes H(C(1)∪D(1))(t−1) → IC(1)∪D(1)(t) → I(C(1)∪D(1))∩H,H(t)

→ 0

(Horace lemma). Hence, h1(Pn, I
Z

(1)
0

(3)) ≤ h1(H,(C(1)∪D(1))∩H,H (3))+

h1(Pn, IC∪D(1)(2)). Call T ⊂ Pn−x−1 the image of C by the linear
projection from M . By the generality of M with the only restriction
that Q ∈ M , the very ampleness of the line bundle L(−(x + 1)P ) and
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the assumption n − x − 1 ≥ 3, T is a smooth nondegenerate curve of
degree d − x − 1 corresponding to an embedding of X by a general
linear subspace W of H0(X, L(−(x + 1)P )) with dim (W ) = n − x. A
quadric hypersurface is singular along D if and only if M is contained
in its vertex. Hence h0(Pn, IC∪D(1)(2)) = h0(Pn−x−1, IT (2)). Since
2(d− x− 1) + 1− g ≤ (n− x + 1)(n− x)/2 = h0(Pn−x−1,OPn−x−1(2))
and g ≤ n−x−1, we have h1(Pn−x−1, IT (2)) = 0 ([3] for n−x−1 ≥ 4,
[2] for n − x − 1 = 3). Hence, we obtain h0(Pn, IC∪D(1)(2)) =
(n−x+1)(n−x)/2+g−1−2(d−x−1), i.e., h1(Pn, IC∪D(1)(2)) = 0. Now
we will check the vanishing of h1(H, I(C(1)∪D(1))∩H,H(3)). Since CH(1)

contains the first infinitesimal neighborhood of Q in H, (C(1)∪D(1))∩H

is the union of C
(1)
H and the union, A, of x− 1 general double points of

H. By [7, Corollary 3.10], and the assumption d−x ≥ 2g + 3, we have
h1(H, I

C
(1)
H

(3)) = 0. Let E be a hyperplane of H. As in the first part we
degenerate C to the union T of a linearly normal curve F ⊂ E, E ∼= X,
with deg (E) = d−x−1 and a line R meeting F at one point and general
with this property. We apply the first part of the proof to T (1) ∪ A.
The residual scheme of T (1) ∪ A with respect to the Cartier divisor E
of H is just T ∪R(1) ∪A. Since dim (〈R ∪Ared〉) = x + 1, we conclude
as in the first part. Now we check that h0(Pn, Ij(X)(1)(2)) = 0. Since
j(X) is nondegenerate and the singular locus of a quadric hypersurface
is a linear space, we have h0(Pn, Ij(X)(1)(2)) = 0. Fix an integer
k ≥ 4. By [7, Corollary 3.10], we have h1(Pn, IC(1)(k)) = 0 for
every k ≥ 4. Hence, using again the Horace lemma and (if x ≥ 2)
a further degeneration, to prove the vanishing of h1(Pn, Ij(X)(1)(k)),
it is sufficient to prove that h1(Pn, IC∪D(1)(k)) = 0. This is true by
Castelnuovo-Mumford’s lemma because h2(Pn, IC∪D(1)(k − 1)) = 0,
but it may also be proved degenerating D to a union of lines and then
applying the Horace method. Hence j(X)(1) has maximal rank.

Proof of Theorem 1.2. Take the curve C ∪ D as in the proof of
Theorem 1.2 but with C of general degree d − x embedding a general
smooth curve of genus g. Notice that T is a general smooth curve of
degree d−x− 1 and genus g in Pn−x−1. Instead of applying [3] or [2],
apply respectively [4] (case n − x − 1 ≥ 4) or [1] (case nx − 1 = 3).
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