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EXACT NUMBER OF SOLUTIONS FOR SINGULAR
DIRICHLET BOUNDARY VALUE PROBLEMS

ZHONGLI WEI

ABSTRACT. This paper establishes the exact multiplici-
ties and properties of positive solutions for singular Dirichlet
boundary value problems of second order ordinary differential
equations.

1. Introduction. In this paper we study the exact multiplicities
and properties of positive solutions of the following singular boundary
value problems

(1λ)

⎧⎨
⎩

−x′′(t) = λ(xq(t) + kx(t) + x−m(t)) t ∈ (0, 1),
x(t) > 0 t ∈ (0, 1),
x(0) = x(1) = 0

where λ is a parameter, k ≥ 0 is a constant and q, m satisfy either

(H1) 0 ≤ m ≤ 1/3, 1 < q < ∞; or

(H2) 1/3 < m < 1, and

1 < q < 1+
[

1 + m

2(3m−1)

] [
(3−5m) +

√
(3−5m)2 + 8(3m−1)(1−m)

]
.

By singularity we mean that the function f = λ(x−m(t) + xq(t) +
kx(t)) in (1λ) is unbounded at the end points t = 0 and t = 1. A
function x(t) ∈ C[0, 1] ∩ C2(0, 1) is called a C[0, 1] positive solution of
(1λ) if it satisfies (1λ). A C[0, 1] positive solution of (1λ) is called a
C1[0, 1] positive solution if x′(0+) and x′(1−) both exist.

Problem (1λ) comes from a problem raised by Agarwal and O’Regan
[1]. Agarwal and O’Regan proved the equation{

y′′(t) + δ(y−α(t) + yβ(t) + 1) = 0 0 < t < 1
y(0) = y(1) = 0 δ > 0 a parameter
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with 0 ≤ α < 1 < β, has a nonnegative solution for all δ > 0 small
enough.

Exact multiplicity results are usually difficult to establish, see, e.g.,
[6]. The exact number of solutions was studied earlier by many authors
for both elliptic and ordinary differential equations involving only
concave or convex nonlinearities or cubic polynomials, see [2 5, 10,
12, 14, 15]; the references [2 5, 10, 12, 14, 15] didn’t consider some
properties of solution. Liu in [7] and [8] considered the following two
point boundary value problem

(2)

⎧⎨
⎩

−v′′(t) = μ(vp(x) + vq(x) + kv(x)) a ≤ x ≤ b

v(x) > 0 x ∈ (a, b)
v(a) = v(b) = 0,

where 0 < q < 1 < p and k ≥ 0 are fixed given numbers and μ > 0
is parameter. He not only gave the exact number of solutions of (2)
but also many interesting properties of the solutions. The existence
of positive solutions for singular boundary value problems has been
investigated by many authors for both elliptic and ordinary differential
equations, see [9, 11, 13, 16] and the references therein.

In this paper we first give the exact multiplicity results of solutions
of (1λ) and some useful properties of the solutions. Then we will give
some several important lemmas. Finally, we will give the proof of the
main results.

2. The main result. Let us list the main results which are the
following theorems.

Theorem 1. Suppose either (H1) or (H2) holds. There exists a
number λ∗ with 0 < λ∗ < +∞ such that

(i) for λ > λ∗, (1λ) has no solution;

(ii) for λ = λ∗, (1λ) has exactly one solution xλ∗;

(iii) for 0 < λ < λ∗, (1λ) has exactly two solutions xλ, 1, xλ, 2 with
xλ, 1(t) < xλ, 2(t) in t ∈ (0, 1).

Moreover, if we denote xλ∗, 1 = xλ∗, 2 = xλ∗ , then the solutions of
(1λ) satisfy the following properties:
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(iv) for 0 < λ1 < λ2 ≤ λ∗ and 0 < t < 1, xλ1, 1(t) < xλ2, 1(t) ;

(v) for 0 < λ1 < λ2 ≤ λ∗ and 0 < t < 1 , xλ1, 2(t) >√
λ1/λ2 xλ2, 2(t); for 0 < λ1 < λ2 ≤ λ∗, ‖xλ1, 2‖ > ‖xλ2, 2‖;
(vi) xλ, 1 and xλ, 2 are continuous from (0, λ∗] to C1[0, 1];

(vii) for 0 < t < 1, limλ→0+ xλ, 1(t) = 0, limλ→0+ xλ, 2(t) = ∞.

Theorem 2. Suppose either (H1) or (H2) holds. For 0 < λ1 < λ2 ≤
λ∗ and 0 < t < 1, we have xλ1, 2(t) > xλ2, 2(t) if one of the following
conditions is satisfied.

(i) (m + q)2 < 4 + 2(q − m) + 4
√

(1 + q)(1 − m);

(ii) (m + q)2 < 4 + 2(q − m) + [(2(1 − m2))/(q − 1)].

3. Several important lemmas. Denote f(t) = tq + kt + t−m,
F (t) = [(tq+1)/(q + 1)] + kt2/2 + [(t1−m)/(1 − m)]. Define a function
g : (0, +∞) → (0, +∞) as

g(s) =
∫ s

0

[F (s) − F (t)]−1/2 dt, s > 0,

that is,

(3) g(s) = s

∫ 1

0

[F (s) − F (st)]−1/2 dt, s > 0.

where

F (s)−F (st) =
sq+1(1−tq+1)

q + 1
+

1
2

ks2(1−t2) +
1

1−m
s1−m(1−t1−m).

Lemma 1. For 0 ≤ m < 1 < q < +∞, g(s) has continuous
derivatives up to the second order on (0, +∞), and

(4) g′(s) =
1
2

∫ 1

0

G1(s, t)[F (s)− F (st)]−3/2 dt,
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(5)
g′′(s) =

1
2

∫ 1

0

G2(s, t)[F (s) − F (st)]−3/2 dt

− 3
4

∫ 1

0

G3(s, t)[F (s) − F (st)]−5/2 dt.

where

G1(s, t) =
1 − q

1 + q
s1+q(1 − t1+q) +

1 + m

1 − m
s1−m(1 − t1−m)

G2(s, t) = (1 − q)sq(1 − t1+q) + (1 + m)s−m(1 − t1−m)
G3(s, t) =

[
sq(1 − t1+q) + s−m(1 − t1−m)

]
×
[(

1−q

1+q

)
s1+q

(
1 − t1+q +

(
1+m

1−m

)
s1−m(1 − t1−m)

)]
.

Proof. For 0 ≤ t ≤ 1, we have

1 − t ≤ 1 − tq+1 ≤ (q + 1)(1 − t),
1 − t ≤ 1 − t2 ≤ 2(1 − t),

(1 − m)(1 − t) ≤ 1 − t1−m ≤ (1 − t).

It follows that, for any 0 < s1 < s2 < +∞, there exists a positive
constant C depending only on p, q, s1 and s2 such that, if s1 ≤ s ≤ s2

and 0 ≤ t ≤ 1, the absolute value of each integrand in (3) (5) is less
than C(1 − t)−1/2. This implies that each singular integral in (3) (5)
converges uniformly with respect to s1 ≤ s ≤ s2. Therefore, g(s) has
continuous derivatives up to the second order on [s1, s2] and g′(s) and
g′′(s) have expressions (4) and (5), respectively. In view of the fact
that s1 and s2 are arbitrary, we get the result.

Lemma 2. For 0 ≤ p < 1 < q < +∞, we have

(i) lims→0+ g(s) = 0, lims→+∞ g(s) = 0;

(ii) There are two numbers 0 < s1 < s2 < +∞ such that g′(s) > 0
for 0 < s ≤ s1 and g′(s) < 0 for s ≥ s2.

Proof. Since

F (s) − F (st) ≥ s1−m(1 − t),
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and

F (s) − F (st) ≥ s1+q(1 − t)
1 + q

,

for s > 0 and 0 ≤ t ≤ 1, from the definition of g(s), we get that

g(s) ≤ 2s · s−(1−m)/2 −→ 0, s → 0,

and

g(s) ≤ 2(1 + q)1/2s(1−q)/2 −→ 0, s → ∞.

By 0 < p < 1 < q < +∞ and 0 ≤ m < 1 it is easy to see that, for
0 < t < 1,

1 − m

1 + q
(1 − t1+q) < 1 − t1−m < 1 − t1+q,

2
1 + q

(1 − t1+q) < 1 − t2 < 1 − t1+q.

From (4) we see that, if we let s1 = [(1 + m)/(q − 1)]1
/

(q+m), and

s2 =
[(

1 + m

1 − m

)(
q + 1
q − 1

)]1/(q+m)

,

g′(s) > 0 for 0 < s ≤ s1 and g′(s) < 0 for s ≥ s2.

Lemma 3. For 0 ≤ m < 1 < q < +∞, s > 0, and 0 < t < 1, we
have

(6) G(s, 0) < G(s, t) < G(s, 1).

where

G(s, 0) =
(
sq+1 + ks2 + s1−m

)/(
s1+q

1 + q
+

ks2

2
+

s1−m

1 − m

)
,

G(s, t) =
[
sq+1(1−t1+q)+ks2(1−t2)+s1−m(1−t1−m)

]
[F (s)−F (st)]−1,

G(s, 1) =
(1 + q)sq+1 + 2ks2 + (1 − m)s1−m

s1+q + ks2 + s1−m
.
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Proof. A direct computation shows that

∂G(s, t)
∂t

=
H1(s, t)

[F (s) − F (st)]2

where

H1(s, t) = −[(q + 1)sq+1tq + 2ks2t + (1 − m)s1−mt−m][F (s) − F (st)]
+ [sq+1(1 − tq+1) + ks2(1 − t2) + s1−m(1 − t1−m)]
× [sq+1tq + ks2t + s1−mt−m].

Compute H1(s, t) as

H1(s, t) = k
1 − q

2
sq+3(1 − t2) tq − m + q

1 − m
sq+2−m(1 − t1−m)tq

+ k
q − 1
q + 1

sq+3(1 − tq+1) t − k
m + 1
1 − m

s3−m(1 − t1−m)t

+
q + m

q + 1
sq+2−m(1 − tq+1) t−m + k

m + 1
2

s3−m(1 − t2)t−m,

that is,

H1(s, t) = k
(q − 1)
2(q + 1)

sq+3t
[
2 − (q + 1) tq−1 + (q − 1) tq+1

]
+

(q + m)
(q + 1)(1 − m)

sq+2−mt−m

× [(1 − m) − (q + 1) tq+m + (q + m) tq+1
]

+ k
(m + 1)
2(1 − m)

s3−mt−m
[−2tm+1 + (1 − m) + (1 + m) t2

]
.

Let

J1(t) = 2 − (q + 1) tq−1 + (q − 1) tq+1,

J2(t) = (1 − m) − (q + 1) tq+m + (q + m) tq+1,

J3(t) = −2tm+1 + (1 − m) + (1 + m) t2.

Then, for 0 < t < 1,

J ′
1(t) = −(q + 1)(q − 1) tq−2(1 − t2) < 0,

J ′
2(t) = −(q + 1)(q + m) tq+m−1(1 − t1−m) < 0,

J ′
3(t) = −2(m + 1) tm(1 − t1−m) < 0.



SOLUTIONS FOR BOUNDARY VALUE PROBLEMS 2119

It follows that Ji(t) > Ji(1) = 0, 0 ≤ t < 1, i = 1, 2, 3. Therefore,
(∂
/
∂t)G(s, t) > 0, and for s > 0 and 0 < t < 1,

G(s, 0) < G(s, t) < lim
t→1−

G(s, t),

which is just (6).

Lemma 4. If either (H1) or (H2) holds, and g′(s∗) = 0, then
g′′(s∗) < 0.

Proof. Assume that g′(s∗) = 0 for s∗ > 0. Then from (4) we see that

(7)
(

1 + m

1 − m

)
s1−m
∗

∫ 1

0

(1 − t1−m)
[F (s∗) − F (s∗t)]3/2

dt

=
(

q − 1
1 + q

)
s1+q
∗

∫ 1

0

(1 − t1+q)
[F (s∗) − F (s∗t)]3/2

dt,

that is,

(8) sm+q
∗ =

(
1 + m

1 − m

)(
q + 1
q − 1

)∫ 1

0

(1 − t1−m)
[F (s∗) − F (s∗t)]3/2

dt

/
∫ 1

0

(1 − t1+q)
[F (s∗) − F (s∗t)]3/2

dt.

Since [(1 − m)/(1 + q)](1− t1+q) < 1− t1−m < 1− t1+q, for 0 < t < 1,
it follows that

(9) sm+q
1 =

1 + m

q − 1
< sp+q

∗ <

(
1 + m

1 − m

)(
q + 1
q − 1

)
= sm+q

2 .

For the sake of brevity, we denote s∗ by s in the rest of the proof of
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this lemma. From (5) (9) we can estimate as follows

(10)

g′′(s) =
1
2

∫ 1

0

[
(1 + m)s−m(1 − t1−m) + (1 − q)sq(1 − t1+q)

]
× [F (s) − F (st)]−3/2 dt

− 3
4

∫ 1

0

[(
1 + m

1 − m

)
s−m(1 − t1−m) +

(
1 − q

1 + q

)
sq(1 − t1+q)

]

× [F (s) − F (st)]−3/2G(s, t) dt

<
1
2

∫ 1

0

[(
q − 1
q + 1

)
((1 − m) − (1 + q)) sq(1 − t1+q)

]

× [F (s) − F (st)]−3/2 dt

− 3
4

∫ 1

0

[(
q − 1
q + 1

)
sq(1 − t1+q)

]
[F (s) − F (st)]−3/2G(s, 0) dt

+
3
4

∫ 1

0

[(
q − 1
q + 1

)
sq(1 − t1+q)

]
[F (s) − F (st)]−3/2G(s, 1) dt

= sq

∫ 1

0

(1 − t1+q)[F (s) − F (st)]−3/2 dt × 1
4

(
q − 1
q + 1

)

× [−2(q + m) + 3(G(s, 1) − G(s, 0))] (use (7)).

Let
K = [2(q + m) − 3(G(s, 1) − G(s, 0))] .

Then
(11)

K =
k

2
sq+1

×
[
2(q+m)(q+3)−3(q−1)2

(q + 1)
+

2(q+m)(3−m)−3(m+1)2

(1 − m)
s−(q+m)

]

+
(q + m)

(q+1)(1−m)
sq−m

× [4−q−5m+2(1−m)sq+m + 2(q+1)s−(q+m)
]
+ k2(q+m)s2.
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Let

K1 =
2(q + m)(q + 3) − 3(q − 1)2

(q + 1)

+
2(q + m)(3 − m) − 3(m + 1)2

(1 − m)
s−(q+m),

K2 = 4 − q − 5m + 2(1 − m)sq+m + 2(q + 1)s−(q+m).

Then

K1 >
2(q + m)(q + 3) − 3(q − 1)2

(q + 1)
+

2(q + m)(3 − m) − 3(m + 1)2

(1 − m)

×
(

1 − m

1 + m

)(
q − 1
1 + q

)
=

1
(1 + m)(q + 1)

× [q2(5 − 3m) + 3q(1 − m2) + 16qm + 11m2 + 3m
]

> 0.

K2 > 2(1 − m)
(

m + 1
q − 1

)

+ 2(1 + q)
(1 − m)(q − 1)
(1 + m)(1 + q)

+ 4 − q − 5m

= 2(1 − m)
(

m + 1
q − 1

+
q − 1
1 + m

)
+ 4 − q − 5m = K3.

If (H1) holds, then K2 > K3 = 3 − 5m + [(q − 1)/(1 + m)](1 − 3m) +
[(2(1 − m)(m + 1))/(q − 1)] > 0.

If (H2) holds, let q = 1 + a. Then

K2 > 2(1 − m)
(

m + 1
a

+
a

1 + m

)
+ 3 − 5m − a =

1
a(1 + m)(−(3m − 1)a2 + (1 + m)(3 − 5m)a + 2(1 − m)(1 + m)2

)
> 0.

In either case, we have K2 > 0. Equations (10) and (11) imply that
g′′(s) < 0.

Lemma 5. If either (H1) or (H2) holds, there exists s∗ such that
g′(s∗) = 0, g′(s) > 0 for 0 < s < s∗, g′(s) < 0 for s > s∗.

Proof. Combining Lemmas 2 and 4 gives the results of this lemma.



2122 Z. WEI

4. The proof of the main result.

Proof of Theorem 1. Let x(t) be a solution of (1λ). Then it is well
known that x(t) takes its maximum at 1/2, x(t) is symmetric with
respect to 1/2, x′(t) > 0 for 0 ≤ t < 1/2 and x′(t) < 0 for 1/2 < t ≤ 1.
Hence, (1λ) is equivalent to the following problem defined on [0, 1/2]

(11λ)

⎧⎨
⎩

−x′′(t) = λ(x−m(t) + xq(t) + kx(t)) 0 < t ≤ 1/2,
x(t) > 0 0 < t ≤ 1/2,
x(0) = x′(1/2) = 0.

Multiply the first equality with x′(t) and integrate it from t to 1/2.
Then

(12λ) (x′(t))2 = 2λ [F (x(1/2)) − F (x(t))].

Denote x(1/2) by s, take the square root of (12λ), and then integrate
it from 0 to t. It follows that

(13λ)
∫ x(t)

0

[F (s) − F (ξ)]−1/2 dξ = (2λ)1/2t.

Choosing t to be 1/2 in (13λ), we get that

(14λ) g(s) =
∫ s

0

[F (s) − F (ξ)]−1/2 dξ = (λ/2)1/2.

Conversely, for a given λ, if s satisfies (14λ), then (13λ) defines a
function x(t) on [0, 1/2] satisfying (11λ) with x(1/2) = s, and it is easy
to see that x(t) is a solution of (11λ). Therefore the number of solutions
of (11λ) is equal to the number of s satisfying (14λ). According to
Lemma 5, there exists a number s∗ > 0 such that g′(s∗) = 0, g′(s) > 0
for 0 < s < s∗, and g′(s) < 0 for s > s∗. Denote λ∗ = 2(g(s∗))2.
From (i) in Lemma 2, we see that there is no s satisfying (14λ) for
λ > λ∗; there is exactly one s satisfying (14λ) for λ = λ∗ and there are
exactly two s satisfying(14λ) for 0 < λ < λ∗. Therefore, there is no
solution of (1λ) for λ > λ∗; there is exactly one solution xλ∗ of (1λ) for
λ = λ∗ and there are exactly two solutions, denoted by xλ, 1 and xλ, 2

of (1λ) for 0 < λ < λ∗. Without loss of generality, we can assume that
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‖xλ, 1‖ < ‖xλ, 2‖ for 0 < λ < λ∗ and denote xλ∗, 1 = xλ∗, 2 = xλ∗ .
Then these solutions have the properties that ‖xλ∗‖ = s∗, g′(‖x∗

λ‖) = 0,
‖xλ, 1‖ < s∗ < ‖xλ, 2‖, g′(‖xλ, 1‖) > 0, and g′(‖xλ, 2‖) < 0 for
all 0 < λ < λ∗. From Lemma 5 and the fact that sλ, 1 = ‖xλ, 1‖
and sλ, 2 = ‖xλ, 2‖ are the two numbers satisfying (14λ), we see that
‖xλ, 1‖ is a continuous and strictly increasing function on (0, λ∗]. While
‖xλ, 2‖ is a continuous and strictly decreasing function on (0, λ∗]. By
the condition 0 ≤ p < 1 < q < +∞, we have

0 <

∫ 1

0

(
(t(1 − t))−m + (t(1 − t))q + kt(1 − t)

)
dt < +∞.

In view of the main results in [9, 11, 16], we get xλ, 1 and xλ, 2 ∈
C1[0, 1]. By means of the continuous dependence on initial values and
parameters of the solutions of initial value problems, we see that xλ, 1

and xλ, 2 are continuous from (0, λ∗] to ∈ C1[0, 1]. By now, we have
obtained the results in (i) (iii) and (vi).

We claim that, for 0<λ1 <λ2≤λ∗, xλ1, 1(t) < xλ2, 1(t), 0 < t < 1.

For 0 < λ1 < λ2 ≤ λ∗, since ‖xλ1, 1‖ < ‖xλ2, 1‖, taking t = 0 in
(12λ), we have

1
2λ1

(
x′

λ1, 1(0)
)2 = F (‖xλ1, 1‖) < F (‖xλ2, 1‖) =

1
2λ2

(
x′

λ2, 1(0)
)2

.

This implies that there exists ε > 0 such that for 0 < t < ε,

(15) xλ1, 1(t) < xλ2, 1(t).

If (15) does not hold for all t ∈ (0, 1), then there exists t∗ ∈ (0, 1/2)
such that xλ1, 1(t∗) = xλ2, 1(t∗). From (13λ), it follows that

√
2λ1 t∗ =

∫ xλ1, 1(t
∗)

0

[F (‖xλ1, 1‖) − F (ξ)]−1/2
dξ

>

∫ xλ2, 1(t
∗)

0

[F (‖xλ2, 1‖) − F (ξ)]−1/2 dξ

=
√

2λ2 t∗.

This implies λ1 > λ2, which is a contradiction. This proves (iv).
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We claim that, for 0 < λ1 < λ2 ≤ λ∗,

(16) xλ1, 2(t) >

√
λ1

λ2
xλ2, 2(t), 0 < t < 1.

Indeed, for 0 < λ1 < λ2 ≤ λ∗, since ‖xλ1, 2‖ > ‖xλ2, 2‖, taking t = 0
in (12λ), we have

1
2λ1

(
x′

λ1, 2(0)
)2 = F (‖xλ1, 2‖) > F (‖xλ2, 2‖) =

1
2λ2

(
x′

λ2, 2(0)
)2

.

This implies that there exists ε > 0 such that (16) is valid for 0 < t < ε.
If (16) is not true for all t ∈ (0, 1), then there exists t∗ ∈ (0, 1/2) such
that xλ1, 2(t∗) =

√
λ1/λ2 xλ2, 2(t∗). From (13λ), it follows that

√
2λ1 t∗ =

∫ xλ1, 2(t
∗)

0

[F (‖xλ1, 2‖) − F (ξ)]−1/2 dξ

=
√

λ1

λ2

∫ xλ2, 2(t
∗)

0

[
F (‖xλ1, 2‖) − F

(√
λ1

λ2
ξ

)]−1/2

dξ

<

√
λ1

λ2

∫ xλ2, 2(t
∗)

0

[F (‖xλ2, 2‖) − F (ξ)]−1/2 dξ

=
√

λ1

λ2

√
2λ2 t∗ =

√
2λ1 t∗,

which is contradiction. This proves (v).

Now we prove (vii). By Lemmas 2(i) and 5, it is easy to prove that

(17) lim
λ→0+

‖xλ, 1‖ = 0, lim
λ→0+

‖xλ, 2‖ = +∞.

The first limit in (vii) is true according to the first limit in (17).

Note that every solution of (1)λ is a concave function. Then we have

(18)
{

xλ, 2(t) ≥ [t/(1/2)]‖xλ, 2‖ 0 ≤ t ≤ 1/2,
xλ, 2(t) ≥ [(1 − t)/(1/2)]‖xλ, 2‖ 1/2 ≤ t ≤ 1,

which, combined with (17), implies the second inequality in (vii).
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Proof of Theorem 2. In order to prove the conclusion: xλ1, 2(t) >
xλ2, 2(t) for 0 < λ1 < λ2 ≤ λ∗ and 0 < t < 1, we study the
monotonicity of the function λF (‖xλ, 2‖).

From (12)λ, we see that

(19)
(
x′

λ, 2(0)
)2 = 2λF (xλ, 2(1/2)) = 2λF (‖xλ, 2‖).

From (14)λ, we have

(20) (g(‖xλ, 2‖))2 = λ/2.

Denoting ‖xλ, 2‖ by sλ, 2 and differentiating (20) with respect to λ, we
get that

(21)
dsλ, 2

dλ
=

1
4g(sλ, 2)g′(sλ, 2)

=
g(sλ, 2)

2λg′(sλ, 2)
.

Then, by (20) and (21),

(22)

d

dλ
(λF (sλ, 2)) = F (sλ, 2) + λf(sλ, 2)

dsλ, 2

dλ

= F (sλ, 2) + f(sλ, 2) · g(sλ, 2)
2g′(sλ, 2)

=
1

g′(sλ, 2)
[
F (sλ, 2)g′(sλ, 2) + f(sλ, 2)g(sλ, 2)

/
2
]
,

which can be rewritten as, by (3) and (4),

(23)
d

dλ
(λF (sλ, 2)) =

s2
λ, 2

2g′(sλ, 2)

∫ 1

0

H(sλ, 2, t)

[F (sλ, 2) − F (sλ, 2t)]
3/2

dt,

where

(24)

H(s, t) =
1

(1 + q)
sq(1 − t1+q)

×
(

2
1 + q

sq +
k

2
(3 − q)s +

2 − (q + m)
1 − m

s−m

)

+
1

(1 − m)
s−m(1 − t1−m)

×
(

2 + q + m

1 + q
sq +

k

2
(3 + m)s +

2
1 − m

s−m

)

+
k

2
(1 − t2)s

(
sq + s + s−m

)
.
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For 0 < t < 1, since 1 − t1−m > [(1 − m)/(1 + q)](1 − tq+1), 1 − t2 >
[2/(1 + q)](1 − tq+1),

(25)

H(s, t) >
1

(1 + q)
sq(1 − tq+1)

[
2

1 + q
s2q +

2
1 − m

s−2m

+
(

2 − (q + m)
1 − m

+
2 + q + m

1 + q

)
sq−m

+
k

2
(5 − q)s1+q +

k

2
(5 + m)s1−m + k2s2

]
.

Let

f1(s) =
k

2
(5 − q)s1+q +

k

2
(5 + m)s1−m + k2s2,

(26)

f2(s) =
2

1+q
s2q+

2
1−m

s−2m+
(

2−(q+m)
1−m

+
2+q+m

1 + q

)
sq−m.

(27)

Then, from (9), we have

(28)

f1(s) ≥ k

2
s1−m

[
(5−q)

(
1+m

q−1

)
+ (5+m)

]
=

2k(q+m)
q−1

s1−m ≥ 0,

(29)

f2(s) =
1

(1+q)(1−m)
sq−m

[
(q + 1)(2 − m − q) + (1 − m)(2 + q + m)

+ 2(1 − m)sq+m + 2(q + 1)s−(q+m)
]

≥ 1
(1 + q)(1 − m)

sq−m

×
[
4 + 2(1 − m) − (q + m)2 + 4

√
(q + 1)(1 − m)

]
.

For case (i), (m + q)2 < 4 + 2(q − m) + 4
√

(1 + q)(1 − m) and from
(24) (29) we have H(s, t) > 0 for all s > 0 and 0 < t < 1. Note that
g′(sλ, 2) < 0 for 0 < λ < λ∗. From (23) and (19), we see that, for
0 < λ < λ∗,

d

dλ
(λF (sλ, 2)) < 0,

d

dλ
(x′

λ, 2(0)) < 0;
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therefore x′
λ1, 2(0) > x′

λ2, 2(0) for 0 < λ1 < λ2 ≤ λ∗. If the result of
Theorem 2 were not true, then there would be 0 < λ1 < λ2 ≤ λ∗

and t∗ ∈ (0, 1) which is the minimum of all t ∈ (0, 1) satisfying
xλ1, 2(t) = xλ2, 2(t). At the point t∗, we have on one hand

0 < x′
λ1, 2(t

∗) ≤ x′
λ2, 2(t

∗).

But on the other hand, by (12)λ,

[
x′

λ1, 2(t
∗)
]2 = 2λ1[F (sλ1, 2) − F (xλ1, 2(t∗))],[

x′
λ2, 2(t

∗)
]2 = 2λ2[F (sλ2, 2) − F (xλ2, 2(t∗))].

Since λ1F (sλ1, 2) > λ2F (sλ2, 2) and xλ1, 2(t∗) = xλ2, 2(t∗), we have
[x′

λ1, 2(t
∗)]2 > [x′

λ2, 2(t
∗)]2. This is a contradiction.

For case (ii), (m+ q)2 < 4+2(q−m)+ [(2(1 − m2))/(q − 1)] and 0 <
λ1 < λ2 ≤ λ∗. In this case (9) implies that, if s > s∗, then H(s, t) > 0.
By (23) (29) and the fact that sλ, 2 ≥ s∗, (d

/
dλ)(λF (sλ, 2)) < 0 for

0 < λ ≤ λ∗. Then by the same argument as in case (i), we get that
xλ1, 2(t) > xλ2, 2(t) for 0 < λ1 < λ2 ≤ λ∗ and 0 < t < 1. The proof of
Theorem 2 is complete.
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