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ON THE NUMBER OF BLOWING-UP SOLUTIONS
TO A NONLINEAR ELLIPTIC EQUATION
WITH CRITICAL GROWTH

ANNA MARIA MICHELETTI, ANGELA PISTOIA AND DANIELA VISETTI

ABSTRACT. In this paper we estimate the number of
solutions to

—Aw+ V(z)w = n(n — 2)wnt2/(n=2)=¢ i R
w >0 in R™
w € DH2(R™)

which blow up at a suitable critical point of the potential V'
as the parameter e goes to zero.

1. Introduction. Let us consider the problem

—Aw+ V(z)w=n(n— 2)w(n+2)/(n_2)_6 i R®
W w>10 in R"
w € DV*(R™)

where V' : R™ — R satisfies suitable conditions, n > 3 and ¢ > 0 is
a positive parameter. Here D12(R") is defined as the completion of
C§°(R") with respect to the norm [lull12 = ([g. [Vul[?)'/2 Tt is a
Hilbert space equipped with the inner product (u,v)12 = [z, Vu-Vo.
We refer the reader to the pioneering paper [3] on the critical Sobolev
exponent.

In the critical case, i.e., ¢ = 0, when V = 0 on R" it is well known
(see [1, 4, 15]) that problem (1) has the family of solutions

Us.y(z) = 6~ (=272 U(%) z € R",
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where d > 0, y € R™ and

1

YO = e

In [2] the authors consider the case when V is not identically equal
to zero and they prove the existence of a solution to (1), provided V
satisfies some suitable conditions. The slightly subcritical case was
firstly considered by Ding and Ni in [5], where the authors prove the
existence of ground states solutions to (1), provided V' belongs to a
suitable class of potentials. Successively in [14, 16] it has been shown
that the ground states solutions blow up at a global minimum point of
the potential V. More recently in [12] and in [10] the authors consider
a different class of potentials V', and they construct positive and sign
changing solutions blowing up at one or more suitable critical points
of V. Papers [10, 12] deal with both the slightly subcritical case and
the slightly supercritical case, i.e., € < 0. In particular, in [12], the
following existence result has been proved. Let V satisfy the following
assumptions.

(i) V € L"2(R™) N L=(R™),
( i) Ve CQ(R”) and 9V /0x;, 0*V /(0x;0x;) € L>(R"), for any
=1,

2.
iil) V(z )>Oforanyx€R"

( i)
(iv) IVl g2y < po, see Lemma 2.1.

Theorem 1.1. Let n > 7. Let yo be a “stable” critical point of the
function V. Then there exists a family of solutions u. to (1) blowing up
at the point yo as € goes to zero. More precisely there exist y. € R"™ and
de > 0 with ye — yo and 0 — 0 such that ue — Us_y. — 0 in DL2(RM)
as € goes to zero.

At this stage a natural question arises: how many solutions blowing
up at yo do there exist?

In this paper we give an answer by following some ideas introduced
by Grossi in [8]. In [8] the author studies the nonlinear Schrédinger
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equation

2) { —Aw+ W(z)w =wP in R"

w >0 in R”
where W : R" — R satisfies suitable conditions and p € (1, (n + 2)/
(n —2)), and he establishes the exact number of single-peak solutions
concentrating at a suitable critical point of the potential W as € goes
to zero. We would like to point out that, even if problems (2) and (1)

have very different features, the results we get are very similar to the
ones obtained in [8].

Let us mention our main results. Let yy be a fixed critical point of
V. We assume the following assumption on V in a neighborhood of yq.
There exist h; : R" — R C'—functions and R; : B(0,p) — R
and a; > 1 for i =1,...,n, such that

(Vio)

(i) OV /0zi(yo + 2) = hi(2) + Ri(z) for z € B(0, p),
(ii) |R;i(2)| < C|z|% for z € B(0, p) with 3; > ay,
(iil) hy(tz) = t*h;(z) for any z € R™ and t > 0,

(iv) hi(2) = 0 if and only if z = 0.

Moreover, assume

(3) a:=max{a; |i=1,...,n}<n-—4
Therefore we can introduce the function Hy, : R — R":

(4) (Hy, (y)), ::/ hi(z +y)U*(x)dx for i=1,...,n.

n

First of all we prove the following nonexistence result, see also
Example 3.3.

Theorem 1.2. If H, (y) # 0 for any y € R", then there is no
solution to (1) blowing up and concentrating at yo.

Secondly we prove the following multiplicity result.
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Let us introduce the set

(5) Zy, = {y € RY | y is a stable zero of Hy, } .

We need also to assume the following technical condition.

(6) a:=min{o; |[i=1,... ,n} <n—>5.

Theorem 1.3. If #Z,, < oo, then there exists g > 0 such that
for any e € (0,¢y) the number of the solutions of (1) blowing up and
concentrating at yo s greater than or equal to #2Z,y, .

Finally we prove a uniqueness result, see also Examples 4.1 and 4.2.
We need to assume the following further assumption on V:

(v) = - VV(z) € L®(R").

Theorem 1.4. Let 0 be a regular value of Hy,, i.e., det Jac Hy, (y) #
0 for any y € R™ such that Hy,(y) = 0. Then the number of solutions
of (1) blowing up and concentrating at yo is equal to #2Z,,.

We would like to quote the fact that computations in the critical case
are more technical and delicate than in the subcritical one, because of
both the decay of solutions, see Lemma 2.3, and the presence of the
concentration parameter, see Lemma 3.5.

Finally let us make some comments about the supercritical case, i.e.,
€ < 0. In [12] it was proved that if yo is a “stable” critical point of the
function V' with V(yp) < 0, then there exists a family of solutions wu.
to (1) blowing up at yo as € goes to 0. Also in this case one can ask
how many solutions are generated by 1o. A partial answer was given
in [11], where the authors consider a radial potential V with V(0) < 0.
They construct infinitely many solutions blowing up at the origin as €
goes to zero, which resemble a super-position of spikes centered at the
origin with different rates of concentration.

The paper is organized as follows. In Section 2 we recall the Liapunov-
Schmidt procedure as performed in [12] and we prove a key result,
see Lemma 2.3, about the decay of solutions. In Section 3 we prove
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Theorem 1.2 and Theorem 1.3. In Section 4 we prove Theorem 1.4. In
the Appendix we prove a technical result, see Lemma 3.5.

2. Preliminary remarks. First of all we rewrite problem (1) in a
different way, see [12], namely

Here i* : L®?/(+2)(R?) — DL2(R™) is the adjoint operator of the
immersion i : DL2(R") — LEW/(=2)(R"), i.e.,

i"(u) =v <= (v,9)12 = / u(z)e(x)de, Yo e DV(RM).
Moreover f.(s) = n(n — 2)(sT) 2/ (n=2=¢ Ve (2) = V(6x + y) for
some § > 0, y € R".

The Banach space X = L*(R") N DM?(R") is equipped with the
norm |jul|x = max{[|ul|zs@mny,||ull1,2}. It is easy to verify that u(zx)
is a solution of (7) if and only if w(z) = §~2P~1=Vy((z —y)/d),
p=(n+2)/(n—2),is a solution of (1).

We also point out the following result, see Lemma 2.3 and Lemma
2.4 of [12].

Lemma 2.1. There exists a pug > 0 such that if |V pn2mn) < po,
then the operator —A +V s coercive, i.e., there exists a 6 > 0 such
that

/ (|Vu\2 + V(x)uQ) dx > 5\|u||%72, Vue D1’2(R").

In particular, if v € DY2(R™) is a nontrivial solution of (7), then
u(z) >0 for all x € R™.

In order to solve (7) we use a well-known Ljapunov-Schmidt proce-
dure, see, for example, [12]. More precisely, we look for a solution to
(7) of the form u§, (z) = U(x) + ¢§,(x), where the lower order term

¢5,,, belongs to the space K L defined as follows:

K = Span{’l/}Oa’lpla"'a'wn}
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and
Kr={uecX|(u,p)r2=0VpecK}.
Here the functions

n—2 n—2 1-—|z?

and

—(n=92) —— 1
AT

Yi(z)

— = 1=1,...,n,
3xi
are the solutions of the linearized problem, see [13, Lemma 4.2],

—~Ap=n(n+2)UY" Dy in R, ¢ € DV2(R™M).

We introduce the projections IT : X — K and II+ : X — K&,
Therefore (7) turns out to be equivalent to the following system

I {U + ¢ — i [fo(U + ¢) = 82 Vs, (U +¢)]} =0
TA{U+¢—i* [f(U+¢) =62 Vsy(U+¢)]} =0

The following proposition allows us to solve the first equation in
system (8) and to reduce problem (7) to a finite dimensional one, see
[12, Proposition 3.1 and Lemma 1.15].

Proposition 2.2. Let n > 7 and s € (n/(n—4),2n/(n —2)). There
exist eg > 0 and 09 > 0 such that for any e € (0,¢€p), 0 € (0,00) and for
any y € R" there exists a unique ¢f € K+ such that

85,4 ]x < C(0* +¢)
and

I {U + ¢, — i* [fe(U + ¢5,,) — 6° Vs, (U + 65,)] } = 0.

Moreover the map (6,y) — b5, 18 uniformly continuous.
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According to Proposition 2.2, there exist real numbers ¢;(¢, d, y) such
that u§, = U + ¢§, is a solution to

n
9) ug, — " [fe(uf;y) — & %)yutgy Z ci(ed, y)y
1=0

It is clear that, in order to solve the second equation in system (8),
we need to find for € small enough a parameter é. and a point y. such
that ¢;(€,d¢,y.) =0 for any i =0,1,... ,n

At this aim the next result plays a crucial role in our analysis.

Lemma 2.3. Let u§, € X be the solution to (9). For any compact
set K in R", there exist C > 0, §o > 0 and €y > 0 such that, for any
yeK,de (0,60) and € € (0, €)

‘ugy(x)‘ <CU(z), YxzeR™

Proof.

Step 1. For any G C R™ compact, there exist C(G) > 0, §p > 0 and
€o > 0 such that for any y € K, 6 € (0,dp) and € € (0, ¢)

‘ugy(:t)‘ <C(G), Vzed.

By contradiction we assume that there exist 6, — 0, €, — 0, Y — Yo
and z,, — xo such that |u§:§ . (:cm)| — 00. We write for simplicity
Uy, = uf;:: . and we have that u,, solves the equation

— Ay, + 62 o Vo ym (T)Um = n(n — 2) (u;)(ﬁl/(an))fem w,

n

- Z Ci(em; 5m, ym)sz

=0

Since u,, — U in DV?(R™), we get that for any 7 > 0 there exist R > 0
and mg > 0 such that, for m > my,

/ (it )<<4/<n—2>>—em>n/2 <
B(zm,4R)
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By Remark 2.4 we have that

—0 as m — oo.
Loc(Rn)

Z Ci(ema 5m7 ym)A@[}z
1=0

By the first claim of Lemma 2.5, we obtain (u)*/(n=2))=em ¢
LY?(B(xm,2R)) with ¢/2 = (2%)%2/(2(2* =2 — €,,)) > n/2.

Thus,

H (u+)(4/(7l—2))—€m

m

L(a/2)(B(wm ,2R)) < clfuml| Lo~ (B(zm.4R)) >

where ¢ depends only on R~! and n.

By the second claim of Lemma 2.5, we obtain

1/2
()] < sup |um<x>|<cm< / <1+|um|2>) .
) B(zm,2R)

B(zm,R

By Remark 2.4 and the fact that u,, — U in D»?(R"™) we get that the
sequences {(fB(m amy(L+ [t |?))Y/?} C, are bounded. This gives a
contradiction.

Step 2. There exist R > 0, C' > 0, dg > 0 and ¢y > 0 such that, for
any y € K, § € (0,9p) and € € (0, €)

|u§, (z)| < CU(x), Yz eR", |z|>R.

Let w§ , € DL2(R™) be the Kelvin transform of ug ,, see, for example,

[6]:
€ 1 € -T
Wiy (z) = |z[n—2 Us,y 22 )

We want to prove that there exist r > 0, C' > 0, Jg > 0 and ¢g > 0
such that for any y € K, § € (0,4¢) and € € (0, ¢€p)

lws ,(2)| < C, VzeR", |z <
We recall that w§ satisfies the equation

- Awg,y + a’g,y (1') wg,y = bg,y (LE) wg,y + Cg,y(l')a
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where
€ 52 X
a&y(x) = W %,y (W) ,
¢ 1 o
5,y($) =n(n-—2) WTQ) (w+)(4/(n 2)) ,

B 1 i T
csy(T) =~ EEa Zci(G, 8, y) At (x—|2>
i=0

It is possible to see that (1/(|x|"*2))Av;(z/|z|?) € L>=(B(0,1)) and
therefore by Remark 2.4 we have that |[c§ , [| L (5(0,1)) tends to zero for
e — 0 and 6 — 0 uniformly with respect to y € K. Moreover, since
u§,(z) — U(z) in X for e — 0 and § — 0, we can prove that for any
n > 0 there exist 0 < 79 < 1, o > 0 and ¢y > 0 such that for any
ye K, e (0,00) and € € (0, ¢)

||bf;’yHL(V,L/z)(B(oAm)) <.

Since uf,(z) — U(x) in X for e — 0 and § — 0, it is possible to see
that w§  (z) — U(z) in X for € — 0 and § — 0. At this point by the
first claim of Lemma 2.5 there exists a constant C5 such that, for any
ye K, 0 e (0,0) and € € (0,¢)

w5 4|l Lc22/2) 80,2000 < Cs-

Then we can verify that
b5, € LTV/2(B(0,2r)),

and there exists a constant Cy such that, for any y € K, 6 € (0,9g) and
€ €(0,€)

+
Hbg,yHL<<n+1>/2><B<o,2ro>> < Cal|ws, ||(ie((2*)2/2)(3(0«2ro))’

with ge = (2(n +1)/(n — 2))—€((n + 1)/2). Concluding, since w§ , (z) —
U(z) in X for e — 0 and § — 0, there exists a constant C5 such that,
for any y € K, § € (0,4¢) and € € (0, €)

(10) < Cs.

Hbg,y H L((n+1)/2)(B(0,2r))
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Now we can apply the second claim of Lemma 2.5 and, by (10), there
exists a constant Cg such that, for any y € K, § € (0,4¢) and € € (0, ¢)

sup |wg ,(7)| < Co.
B(O,To)

So we get the claim. O

Remark 2.4. The constants ¢;(e, 6, y) in equation (9) tend to 0 for
€ — 0 and 6 — 0 uniformly with respect to y in compact sets of R,
see Lemma 3.2 and Lemma 3.3 of [12].

For the sake of completeness, we recall the following well-known
result, see [6, 7, 9, 15].

Lemma 2.5. Let w € HY(Q) be a solution of equation
(11) — Aw + a(x)w = b(x)w + ()

where ¢ € L®(Q), a,b € L?(Q) and a(x) > 0. There exists g > 0,
depending only on n, such that if

1] L2 (B(Q2r)) < €0

for any @Q € R™, then

(12) ||UHL<(2*>2/2>(B(Q,T)) < ClHUHL?*(B(Q,zr))a

where Cy depends on n, ||c|p=), r and is a bounded function of
el Lo (-

Furthermore, if b € LY/?(B(Q,2r)) with ¢ > n, then

(13) sup u(z)] < C2< / a0 |w|2>)1/27

B(Q7”‘)

where Co depends on n, |[bll par2qys llclle=(q), r~1 and is a bounded
function of |[b|| La/2(q) and |[c||Le()-
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3. A lower bound on the number of solutions. In this section
we estimate the number of solutions to the second equation in system
(8). More precisely, we estimate, for e small enough, the numbers of
points y. and the corresponding parameters o, such that ¢;(e, de,y.) =0
for any i =0,1,... ,n, see (9).

Let us fix a critical point yg of V', and let us set
. . 1
(14) 6% = 6%(e) = doe + de*, with d € [n, —] for some n € (0,1),
n

and

(15) y = yo + 0y, with § € K for some compact set K in R".

Here a0
do = — >0
V(yo)
and f (log U) U7
n 108 0
ag =n(n—2)R 2"~ <.
0 ( ) fRn U1/)0
It is useful to point out that, with these choices, b5, = 217, see

Proposition 2.2.

Let us make the following expansion.

Lemma 3.1. Assume (V) with @ < n — 4, see (3). Then there
holds

ous
(16) (ufi,y =i [fe (ufy) = 0° Vay(@)us, ] 3£y>
i /1,2

1 o ~ g
= 5 (doe) /2 (H,, (7)), + o(e®H2/2),

Proof. 1t is easy to see that, for any y € R",

ous
(ug,y —i" [fe (ug,y) - 52 V;iy (f)ufiy} ’ 8;;?4 ) 1o

__ﬁ/ ov
o 2 RnaZi

dx+y
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By the hypotheses on the potential V', we obtain

/ ov
R" 0z;

Yo+ (z+7F)

oV
—I—/ 3 (uf;’y)Q dx
R™\B(=3,(p/8)) 9% lyo+6(a+§)

— 1+ I + Is.

Now we can write
h:6%/1h4x+wdﬂwfdx
o | hile + §)(U(2))? da
R™\B(—4,(p/9))
. - . c \2
+ 6 / hi(x +7) [2U¢57y + (¢5.4) } dx.
B(=13,(p/9))
Since @ < n — 4, we have that

e pOEPs [ e )

= o(1).

/R"\B(—?L(p/ts))

By Lemma 2.3, choosing v > 0 small enough, we have because & < n—4
that

/ hilw +9) 2005, + (65,)°] dz
B(=4,(p/9))

S/ |z + 7

2—y\8/(s=7) w0/
<ol | [ (o i @@)*)

= o(1).

(U ())* 7l
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As regards the second integral, since @ < n — 4, we have
- c \2
I = / Ri(0(x + 7)) (u§,,)” dx
B(=,(p/9))

< o / 2 + 1% (U(x))? da
B(—19,(p/9))

= 0(0%).
Eventually
Iy < CIY Vileiney [ (U(2)? de = 05" 1),
R™\B(=1,(r/9))
and this completes the proof. o

By the previous result we deduce the following necessary condition.

Proposition 3.2. Assume that (V,,) with @ < n —4, see (3). Let
€k, di and gy be sequences such that € — 0, dy, — d > 0 and g — .
Ifup = U+ ¢S _ s a solution of (7), then Hy,(j) = 0.

k>

Yr

Proof. If uy, is a solution of (7), by Lemma 3.1 we have

1

(17 -5 (doek)<3+a”/2/ hi(x + i) (U ()2 da + o(l*H9/2) = 0.,

Since h; is of class C' and homogeneous of degree a; and @ < n — 4,

[ st ) = b ) )

< / Vhie + i + 66 — G| 1§ — Gl (U(2))? do
< Clj — 9kl . |z + Gk + 0 — 1) % (U(x))? da

= O(lg — vkl)

for k — oco. By (17), we can conclude that
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[ hite+ U@ dz + O~ ul) + o(1) = 0

which completes the proof. ]
Proof of Theorem 1.2. Tt follows from Proposition 3.2. o
The following nonexistence result holds, see also [8, Proposition 6.3].

Example 3.3. Let V(z+yo) ~ V(yo) +23 —a1 2023 +23+ 30, azl
for |z| small enough, where a; € R\ {0} and k; € N. Then there is no
solution to (1) blowing up and concentrating at yo.

Proof. 1t holds

(Hy(y)), = 3Ay; + 3B — Ayays,
(Hyo (y))g = — Ay1y3
(Hy,(y)3 = 3Ay3 + 3B — Ayyo,

where A := [5, U?(z)dx and B := [, 27U?(x)dz, so that equation

Hy,(y) = 0 does not have any solutions. Therefore, the claim follows
from Theorem 1.2. u]

In the following we will prove the converse of Proposition 3.2.

Definition 3.4. We say that y is a stable zero of H,, if y is an
isolated zero of H,, and there exists a neighborhood N of y such that
deg (HyoaNa 0) 7& 0.

Lemma 3.5. Assume that (Vy,) with o <n —5, see (6).
Then there holds

(18) (uf;y — i [fe (ufm) -4 sty(x)uf;y] ’w0)1,2

=< {Jv(yo) / Ut + A+ BU@)| +o(e),
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where

A= n(n—2)/ (log U)2 UPapy — M/ UP~2¢3 1o

n—2

+n(n—2)/n(1 +plogU) UP~ g ho + doV (0) - @0 o,

2 n 2
V) =T 3 goi ) [ @i mles+ 55) U

and B=1ifa>1and B=0 ifa=1.
Proof. See Appendix. O

Proposition 3.6. Assume that (V,,) with @ < n — 4, see (3) and
a <n-—2>5, see (6). Let § € Zy,, see (5). Then there exists g > 0
such that, for any € € (0,¢€q) there exist §. and de, with §. — § and
d. — d >0, such that u. := U + ¢25,ge is a solution of (7).

Proof. Using (14) and (15), the problem reduces to find for e small
enough d € R and § € R™ such that the constants c;(e,d,y) for
i=0,1,...,nin (9) are zero, i.e.,

7~ 1 € <% € €
Gg(d, J) = - (u(;’y —3 [fé (u&y) -6 ‘/;iy(l')u(;’y} ,7/10)1’2 =0,

2 € ok € 2 € augvy
= (doé)(3+ai)/2 <u6,y -1 [fs (ué,y) -4 %ﬂq(x)ué,y] ) (9.’1,'1‘ 1,2: Oa

fori=1,2,... ,n. By Lemmas 3.5 and 3.1, we have that

n

G(d,§) = (Jv<yo> | v +A+B¢(l7)) (1),

Gi(d) = [ hula+ DU@) do + o),
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We apply Lemma 3.7. If go is a stable zero of the vector field
H,,, see (4), then (do, 7o) is a stable zero of the vector field Gy =

(GY, G, .., Gf), where dy = —(A + Bu(§0))/(V (4o) [ Utbo). Using
the properties of Brouwer degree, for € small enough there exist d. and
7 such that

Gelde,§e) = (G2(der ), GHAer i), - G(derfi)) = 0.

We recall that 1
Gg(dea ge) = 6_2 00(67 67 y)

and, fori=1,2,... ,n,

Gi(de,§e) = — W%W {Ci(e,(s, y) + o(zn:cj(e, 3, y))]

=0

Therefore ¢;(e,d,y) =0 for alli = 0,1,... ,n. That proves our claim.
[}

Proof of Theorem 1.3. We use Proposition 3.6, so it remains only
to prove that two different stable zeros 7}, 72 generate two different
solutions. Let ug" e ug? 4., be the solutions of (7) generated

€1:Yeq egrYeg

respectively by ¢ and 2. For i = 1,2, let

€i _ s—2/(p—1—e) , € 2 Ye
w z) =19 U
6ei7yei( ) € Oe;\Ye; Se,

be the corresponding solutions of (1), where 62 = edy + de, €%, ye, =
Yo + Oc,Je, and J., — @5. It holds

- 1 —1—¢
l/(p=1=e) (do + qu) /(p ) w' (Ye,) = “371 (0) — U(0),

5611%1 €1:Yeq

S \V-1-a
L/ (p—1-¢) (do 4 deze) ug;’fpyg1 (Ye,)

=u? . e = e) = UG5 — 5) # U(0),
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because by standard regularity theory ugzye — U uniformly on

compact sets of R™. Finally, we deduce that, for e small enough,

1 2 C i
wgq’yel (Ye,) # w§€27y52 (Ye, ), which implies, using again the standard

regularity theory, that wS!

5y # wS? . That proves our claim. o
€1:Yeq

662 sYeo

Lemma 3.7. Let gy be a stable zero of the vector field Hy,, v € R,
¥ :R™ — R be a continuous function and

dn = —7—¢(§0)
*" Vi) Jrn Utho’

Then (do,go) € R x R" is a stable zero of the following vector field
G:RxR"—=RxR™

G(d, ) == (h(d) +v(5), Hy, (3)),

where

h(d) = V(yo)ﬁi/ Utbo + 1.

n

Proof. Let H : [0,1] x R x R™ — R x R"™ be the homotopy defined
by
Ht,d, §) = (h(d) +1(F), Hy, (7))
It is easy to check that H(t,d,§) # 0 for any t € [0,1] and for any

(d,§) € d(I x N), where I and N are neighborhoods of dy and o,
respectively. By homotopy invariance of the degree, we get

deg (G,Ix N,0) =deg(h,1,0)-deg(Hy,,N,0) =deg (H,,,N,O0). O

4. Exact number of solutions.

Proof of Theorem 1.4. We apply Theorem 1.3, and it remains
only to prove the following uniqueness result. Let § be such that
H,, () = 0. By contradiction, assume that for some sequence ¢; — 0
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there exist two different solutions w; ; and ws ; to equation (1) such
that w; j — Us in DL2(R"™) where

i, Yi,j

(19) (5?73- = doej + CZ@J‘EJ‘ where dj — 0,
Yij = Yo+ 0i Y+ 0;;¥i; where ¢;; — 0.

We set, for i =1, 2,

(20) wij(x) = (doe;) "/ P77 w; ; ((doe;)* z + o).

They are solutions to equation

(21) - Aui,j + doe; V(doﬁj)l/ayo (CL‘) Ui,j = uf,;ej’

with the property u; j(z) — U(z — §) in DM?(R"). By (20) and by
Lemma 2.5 we deduce that, for some positive constant c,

1

(22) 0<wu;,(x)<c ——, VYazeR™
T g

We set

(23) vj(z) = uy;(@) — ug,;(x)

C fluny —uggllpre”
Then we have
(24) — Av; + doe; Vidoe,)1/2,0 (x)v; = pj(z)vj,

where

1
@) (o)== 65) [ ftung(e)+ (1 - uay )
0

By (22) we deduce that

1
26 0<pi(z) <e—————— VzeR™
(26) <) < e
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Up to a subsequence, we can assume that v; — v weakly in DL2(RM)
and almost everywhere in R™. Moreover, by (24) we deduce that v is
a solution to

(27) —Av(x) =pUP~Hz — j)v(z), =€R™
Then there exist real numbers vp,71,... ,7; such that
n ~
ou . 1—|z—g/?
(28) v(@)=) v @-9+rn—— 75
2 o (L+ [z —g2)""?

First of all we verify that 79 = 0. We multiply (21) by z - Vu,; ; +
((n —2)/2)u; ;, and we get for i = 1,2,

0=(n-1) /Rn \Vum-\Q(x) dx

1
— dOGj /Rn u%j(x) <Vv(d0€j)1/2,y0($) + 5 T - v‘/(doe]-)lp,yo (1’)) dx

n—2 n ptl—c;
— _ L= () d
(s ft o

and then
(29)
0= (n — 1) VUjV(ul,j + ’U,ij)

R”

1
— do; /R vj(unj +uz,5) (‘/(doej)l/z,yo tgo VV(doej)l/2,yo>

-2 e e
(1 _ n_ ‘ / (u;i-ij-l € ug:{j—l ej)
2 p+1—g¢; n

= Il —|—12 —|—13

By Hoélder’s inequality and (22), we get

2| < do€j||vjllLen /o2 lu,;+tuz jllLem /e (([V+z - VV]Le)

(30) — o))
and also
n—2 n
|I3| = - vj(w)pj(z)
(31) < 2 p+1—6j>/n

n—2 n R
\% g [0 L@ /-2 19 L@ /ovay = o(1),
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where, because of (22),

1
0<pio) = (p+1-65) [ (buny o+ (1= yuay )™
0
1

<c .
(1t | — g2 272

Since v; — v weakly in D2 and u; ; — U(z — §) strongly in D2, by
(28), (29), (30) and (31) we deduce

0= Vu(z)VU(z — §) de = / v(x) UP(z —g)dx
R’!L n

=% Yo(z) U (z) dz,
R’!L

which implies g = 0.
In the following we will show that, if the determinant of the Jacobian
matrix of Hy, is different from zero, then v, =--- =, =0.

We multiply (21) by Ou; ;j/dzy, and we get for i =1, 2,

ov

0= / ufj(x) prn ((doej)l/zx + yo) dx.
Rn

Then, using also assumption (V},,), we get

ov

0= / § Uj(ﬂi) (ULj (x) + u2,j(3;)) G—:Uk ((doéj)l/zx 4 yo) da

— (doe;) ™/ / vi () (un,j(x) + uz j(2)) hip() da
{lz|<R(doe;)=1/2}
+f 0y () (1) + 2 0) Rio)
{lz|<R(doe;) =1/}

+/ ’Uj(.I)(uLj(l') +UQ,]‘(I))
{lz|>R(doe;)~1/2}

oV
X a— ((doéj)l/2l' + yO) dx

T

— (doe;) ™/ [Q/nv(x) Uz — §)he(x) de + (1)) .
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Therefore, we have for any h=1,... ,n

0:/nv(x)U(x J)hi(z dxfz'yl /Rﬂ A (x—9) U(z—9)hi(x) dz,

which implies that vy =--- =, =0.

Let us prove that a contradiction arises. We multiply (24) by v; and,
taking into account that ||v;||p1.2 = 1 and also that V' > 0 in R, we

get
1 :/ |Vv;|?(z) d
RTL
= —do€; / Vidoe,) 172,50 (:v)vjz(x) dx +/ pj(x)vjz(a:) dx
R" R

< [ i

Rﬂ.
= / p; (a:)v?(ac) dx + / p; (a:)v?(ac) dx,

{lz|<R} {lz|>R}

for some R > 0. By (26) and Holder’s inequality, we deduce that there
exists an R > 0 such that, for any 7,

(32)

'IU2II l
(33) [ <

Moreover, since v; solves equation (24) and it is bounded in D2(R"),
by standard regularity theory we deduce that v; — 0 uniformly on
compact sets of R™, and so

(34) lim pj(x)vjz-(x) dx = 0.
7 J{|=|<R}

Finally by (32), (33) and (34) a contradiction arises. O
The following uniqueness result holds, see [8, Corollary 6.4].

Example 4.1. Assume that yy is a nondegenerate critical point
of V. Then there exists exactly one solution of (1) blowing up and
concentrating at yg.
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We give also the following example.

Example 4.2. Let V(x+yo) ~ V(yo)+azi+xi—brizd+a3+- - -+a2
for |z| small enough, with a € (0,1) and b € (6a,6). Then there exist
exactly three solutions of (1) blowing up and concentrating at yo. In
particular, if a € (0,1/9) and b € (6a,2+/a), there exist exactly three
solutions of (1) blowing up and concentrating at yo, which is a local
minimum point of V.

Proof. Tt is easy to check that

(Hy,(y), = 4a Ay} + 2B(6a — b)y1 — 2b Ay1 y3,
(Hy,(y))y = 4Ay5 + 2B(6 — b)y — 2b Ay} y»
(Hy,(y)); = 24y; if i=3,...,n,

where A := [, U?(z)dx and B := [g,2}U?(x)dz. Since a < 1
and b € (2a,2), a straightforward computation shows that Z,, =
{0,(¢,0),(=¢,0)}, where ¢ and —( solve the equation 2aA¢? = B(b —
2a). Finally, it is not difficult to prove that

n-2p2 b% — dab — 12a

det Jac Hy, (0) = 4(24) o #0
and
det Jac Hy, ((£¢,0)) = 4(24)"2B*(6a — b)(6 — b) # 0.
Therefore the claim follows from Theorem 1.4. O

APPENDIX

We recall the following result, see [12, Lemma 2.2 and Remark 2.9].

Lemma 6.1. Let s > (n/(n—2)). Ifu € LG/ (R") N
L)/ (n+28)(R™) | then i*(u) € L*(R™) N D“2(R™) and

i (u)l|x < C(n,s) ([|ull Loor/mrzs + [[ull pen/mie) .
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The following technical lemmas provide useful estimates.

Lemma 6.2. There exist ¢g > 0 and a constant C > 0 such that,
for any € € (0, ¢), there hold

er(U) - fo(U) + en(n — 2)(10g U) UpHL(2n)/(n+2)(Rn) = 0(6),

35
O £.0) = o) + enln — 2108 T) U7 | enrinsao gy = ol

for any s > 1 and

(36) IFEU) = foU)l s ey < Ce.

Proof. By the mean value theorem we get, for any x € R",

J(U)(@) = fo(U) () = = en(n — 2)(log U (x))(U())?
— en(n —2)(log U () (U (x))? [(U(x)) "% ~1],

for some 6, € (0,1). Estimate (35) follows since (logU)U? € L*(R"™)
for all + > (n/(n+2)) and, since |(U(x))~ % — 1] < clz|*t for &
small enough, (logU(z))(U(x))? [(U(z))~%<—1] € LYR") for all
t > (n/(n+2))+ ey for €5 small enough.

By the mean value theorem we get for any z € R"

S0 ) — f(0)(@)
— —en(n—2) [U""17(@) + (p — 0,6)(log U () UP~=<(a)]

for some 6, € (0,1). Estimate (35) follows since

Ur=1=0=c 4 (logU)UP~ 1% c LY(R") forall t>_-. O

VS

Lemma 6.3. There exist g > 0 and a constant C > 0 such that for
any € € (0,€0) and for any ¢ € DV2(R")

(37) [fe(U + ¢) = fe(U) = fe(U)¢] < Clo|.
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Proof. 1t is enough to point out that there exist ¢y > 0 and a constant
C > 0 such that, for any € € (0, ¢y) and for any z1, 22 € R,

[fe(wr) = fe(xa) = fl(wa) (21 —22)| < Clan —w2)P™". O

Lemma 6.4. Let d and jj be fized as in (14) and (15). Then we have
95y =€ (d0+05,),
where ¢g € K+ is the unique solution of

(38) — Ao — f4(U)do = —n(n—2)(log U) U2/ (=2) _ 3V (o) U.

Proof. By Proposition 2.2 we have

Moreover,

¢§~H — 0 as € goes to zero.
Yl X

I{¢5, —i" [fo(U)85,)] } = TL{i" [f(U + ¢5,) — fo(U) — fo(U)¢5,,
- 62 ‘/[S’y(U + (bg,y)] } .

For simplicity we write ¢ = e(qbo + gg) instead of ®5., = e(qbo + (;NSEM)
Substituting, we obtain

ent{[1d — " f5(0)) (60 + ) |
(39) = [fe(U + ¢) — fe(U) — fUU)] + 1" [fe(U) — fo(U)]
I {[UU) — fo(U)] 6} — € (do + de)ITi* [Vs , (U + 9)] .

Now by Lemma 6.1, (37) and using interpolation, we get

|7 [fe(U + @) = fe(U) = fLU)P] |12
(40) S CONfU + @) = fe(U) = fA(U)Bl| Lzmr it mm)
< ClloP~ N pem/mrn@mny < Cllol%
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bezaulse ((2n)/(n+2)(p—€) € (s,(2n)/(n —2)) for e small enough,

|7 [fe(U + ¢) = fe(U) = fAU)P] | Lsmr)
(41) SOfe(U + @) = f(U) = FAU)B| Lsmrrintze) (mmy
< COloP™ N pem/mrzn@mny < Cllolls

because ((sn)/(n+2s))(p —¢€) € (s,(2n)/(n — 2)). Therefore, by (40)
and (41) we deduce that

(42) i [fe(U + ¢) = £ (U) = ££U)] |l x < Cliollk "
By Lemma 6.1 and (35) we get

1 [fe(U) = fo(U) + en(n=2)(logU) U] |12

(43) <O fe(U) = fo(U) + en(n—2)(log U) Up||L<2n)/<n+2>(Rn)
= o(e),
[2* [fe(U) = fo(U) + en(n—2)(log U) U] ||+ (rn)
(44) SCO|fe(U)= fo(U) +en(n—2)(logU) Up||L<sn>/(n+2s)(Rn)
= o(e).

Therefore, by (43) and (44) we deduce that
45)  [li" [fe(U) = fo(U) + en(n—=2)(log U) U] x = o(e).

By Lemma 6.1 and (36) we get

(46)
[ [(fe(U) = f6(U)) @Il 2 < CNSEV) = f6(U)) @Ml pemrscnsnr ey
< Ce|9llLem/m-2@mny

and also
(47)

18 [(FET) = So(@)) Gl ey < CHST) = fo(U)) Dl Lsmrsnsony memy

< Ce |l Lsmn).-
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Therefore, by (46) and (47) we deduce that
(48) 1 [(fEU) = fo(U)) dlllx < Celléllx-

Finally, by the fact that U € L("/(+2)(R"), U € L7/ On+29)(Rn)
for s > (n/(n—4)), U(z)|z|?> € LE/ (2 (R™), U(x)|z|? € L™/ (v+29)
(R™) for s > (n/(n—4)), and since

V(yo+6(x+7))
A%
81:1-81;1»

1
=V(yo) + 3 5

i,5=1

(z+19); (x+79),
Yo+05(z+7)

with 6 € (0, 1), we get

(49)

i [(do+ de)V (yo + 8(x + 7)) (U + ) — doV (o) U} HX = o(1).

Concluding, by (39), (42), (45), (48) and (49),
¢o —i" fo (U)o = i" [n(n—2)(log U) U” — doV (y0) U],

¢ — Z*fé(U)¢ = Ye>

where 7. depends on d, §, ¢, but ||ve||x = o(1). Here we used the fact
that
i*[=n(n—2)(logU)UP —doV(yo) Ul € K*. ©

Proof of Lemma 3.5. We point out that Lemma 6.4 plays a crucial
role in the proof. By summing and subtracting, using definition of dy,
we can write

(U5~ Fe (48,) — Vo5, ) i),
= [ 1(0) = £0) = enln = 2)(1080) U)o
= [ 1+ 05,) — 1) = 2055, ) o
= [0 = B 65,00+ [ 52 Vi — edaV ()] U

n

+ 52/ Vsy®5yto =D +Ix+ I3+ Iy + I5.
Rn
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Let us write for simplicity in this proof ¢§ , = ¢ = e(¢0 + d)).
(I) By the Taylor formula, we have

(50) I =¢é n(n—2)/ (log U)*> UP 9o + o(€?).

n

(IT) The integral

I = —n(n—2) / ) { [(U + ¢)+}’H —UP~ —(p— e)UP—l—eqb} Yo

can be divided into two integrals: one on the set D, = {x € R" |
U(z)+ ¢(x) > 0} and the other on the complement R™\ D.. We prove
that

/ é { (o] —vr -0 Up“sb} o
= P [ Ui ole),

X / [—UP = (p—e) UP 0] ¥o = o(€?).
R"\D,

As regards the second equation, since, for any = € R™ \ D., we have
U(z) < |¢(x)], and since ¢o(z) < CU(x) for some C' > 0, we obtain

<c [ Jota)pr

+1-
< C"ll%T

[ Err g

with C’, C" positive constants. This, using Lemma 6.4, completes the
evaluation, as max{s,2} < p+1— e < 2* for e sufficiently small.
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For the first equation, we evaluate

[ Awror-e—vreep- guri-cshpe- ¢ HE [ g,
+ [Hwrore—vremp-gui
D

_ (p_ 6)(}72_ 1— 6) Up—2—e¢2}¢0

+/D€ {(p—é)(];—l—t?) Up_2_6¢2—62 p(p2_ 1) Up_2¢3}¢0

-1

_epe—l) / UP=2¢2pg = Ay + Ay + As.
2 R”\D,

Since there exists a constant C' > 0 such that

A= =1 =90 - -1- 0| <Cl.

for any t > —1, we have

p—e
al=| [ o {(1+5) -1-6-0F

(- 9p-1-¢ ()’ "
2 U 0
3 3
_ 1”4l
p—e _
SCLEU ¢O_C/D€U3_p+6.
Choosing a constant 0 < v < 1 and using Lemma 2.3 and the fact

that |1o(x)| < CU(x) for any € R™ and for some constant C' > 0, we
obtain

¢[? o'
|A1] < Cy /Rn UL_LJFE = § 6>+ %

e 2
<O T UPTI T < Gyl Lo ey, = O(€277),
RTI,

4
U
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provided that € and ~ are sufficiently small. Let us write

to= [ 0= 10—t D)0 0ty

G T
1
g ) po- DU (6 - oo,

By the Taylor formula and Lemma 6.4, one immediately finds that
there exists 0 < # < 1 such that

/D (0= —1— ) — plp— 1)] VP> wo'

< C€H¢||i(2n)/<n—2>(Rn) =0(e),

D, De

< C€||¢||%<2n>/<n—2>(m) =0(e),

:62

/D UP=2 (62— 262 o

/D U2 (2600 + 8) o

< 052 ("5“L(2vl)/(vlz)(va)+ HQNSHi(zm/(n2>(R"))
—o(e?).

Finally,

—1 _
Ag=—¢€ p—(p2 ) / UP=2¢54bo = o(€?) ,
R"\D.

because the measure of the set R™ \ D, tends to zero for e — 0. So

~ 2n(n+2)

(51) Iy=— =

/n UP=2¢8 o + o(€?) .
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(II1) By the Taylor formula we have, for some 6 = 6(z,¢€), 0 < 6 < 1,

(52)
F1U) — fy(U) = n(n—2>{— UM (14 p log )

1
+e 5 2 UP~ 1% 1og U [24 (p — fe) log U] }
By (52) and Lemma 6.4 we conclude that

(53) I3 =ée*n(n— 2)/ (L4 p logU) UP™ ¢g g + o(€?) ;

n

in fact, (1 + ploglU)UP~ 14y, UP~ = %logU[2 + (p — Oe)log Uy €
L(2n)/(n+2)(Rn),

(IV) There holds

Ii= [ [ Vi — cdoV )] Ui

AV (o) / Uiy + 62 / Wiy (2) — V(50)] Uo.

n n

We consider for the moment the case @ > 1. By assumption (V) on
the potential V', the first integral gives

cda | [Viao+ 8Lz + ) = V)] Uty

— esdy / V(o + 60z + §)) - (& + ) Ut

_ ast/ > " hi(05(x + ) (i + i) Utbo
{z€R"|05|z+§|<p} j—1

n

4 esdy / > Ri(00(x + §)) (i + §:) Utho
{zeR"|05|z+7[<p} ;=1

+ eddy / YV (yo + 08(x + §)) - (z + ) Utho
{2€R7|05]a+§1>p}

= By + By + Bs,
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with 0 < 6 < 1. There exist constants C, C’ > 0 such that if « <n—5,

n

/ > (98] + gl
{z€R"(05|z+7|<p} j—1
< ( T+

|z + 9|

|Bl| = 65d0

<)

) (@i + 5:)Utho

Ota‘,JrlUle'

n
< eaHacZ/ |z 47
=1 .
< B2 00 — ().

Analogously |Bs| = o(€?). We observe now that the following set
inclusions hold

{r e R" [ 00|z +y| = p} C {w € R" | b|z + 9| = p}

55
%) C {z e R"| | > '}

for some p’ > 0. Therefore, we have

|Bs| < 65do\|VVHLoo(Rn)/ &+ §Uo| = O(en=272).
{zeR"|d]z|>p'}

Concluding, if @ > 1, we have

(56) I = e%iV(yo)/ Ut + o(€?) .

n

Let us consider now the case @ = 1. Then, for z € B(0,p),
it holds V(yo + 2) = V(yo) + H(2) + o(z), where H is homoge-

nous of degree 2 and |o(z)] < ¢|z|Y with 2 < 5 where v :=
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min{f;+1, a;+1]i=1,... ,n, o; #1}. Then we get

cdo [ (Vo + 8o +5) = V(o) U
/ V(oo + 00+ 5)) = V)] Uy
{zeRm|S]a+7|<p}

+ed / V(o + 8z + 5)) — V(yo)] Utho
{zeR"|8|z+§|>p}
dy ~~ 0%V
_ 2% gy
=€l 5 _ZZl 9z:0; (o)

+6d0/ 0(5($+27))U1/10
{zeR"|S|z+7|<p}

/ (zi + i) (zj + 75) Utho
{w R |3la-+7]<p}

+ edo / V(o + 6(z + 7)) — Vi(yo)] Utho
{zeR"[S|z+7|>p}
=D1+ Dy + D3

We have

d oV . -
=et® 2 Z oz 8% / (@i +9:)(x; + 95) Utho
4,j=1

d oV
2 O
€ Z 02,01 ; 81"]

pdj x~ OV
= 20 Z_lm(yo)/n(xi‘i‘?ji)(l'j+gj)U¢0—|-0(62).

/ (@i + 95)(z; + 75) Utbo
{zeR"|S|z+g|>p}

Moreover, the second term gives
D2| < cdo | 5+ D) Ul
{zeR"|d]|z+7|<p}

Now, since v > 2, we can write v = 2 4+ 1 + 72 with v1,72 > 0 and we
obtain

Do < 6™+ dg / [+ G247 o7 Ulgho] < OO/ = o),

n
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provided 7 is small enough. Finally, D is o(e?), analogously to the
previous Bs. Finally, if @ = 1, we have

(57) L = dV(y) / Udo

RN A _ _
+e 2 ey _(yo)/, (i + §i) (2 + 5;) Uto + 0(€?) .
~ .

(V) We have

I =5z/nv(yo+5($+ﬂ))¢1/}o

2
=Vl [ suwnrat [ 3T (4 D)o+ )6 v

R” i 8.731' 8.Tj

yo+0(z+7)

=e*doV (yo) ¢ o +o(e?).
Rﬂ,
Indeed, by Lemma 6.4,

5V (yo) - P b0 = €2doV (yo) - doto +o(€?) .

Moreover, using the inequality |¢(z)| < ¢U(z) proved in Lemma 2.3,
given s for v small enough, we have

0*V

v
8xi8x]—

(z+79)i(r+7);0 %0

yo+0(z+7)
[ 16l 0ol (1P + 1)
e

Ls/(st'y)) = 0(67) .

< ¢ max
]

< eallligs (> U4

Lo/ + U Tk

By (50), (51), (53), (56), (57) and (58) we obtain our claim. m
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