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SMOOTH POINTS OF ESSENTIALLY BOUNDED
VECTOR FUNCTION SPACES

MANUEL FERNÁNDEZ AND ISIDRO PALACIOS

ABSTRACT. We characterize the smooth points of L∞(X),
where X is any normed space.

1. Introduction. Let X be a normed space and x, y ∈ X. The
one-sided derivatives at x �= 0 in the direction y �= 0 are

D±
X(x, y) = lim

h→0±

‖x+ hy‖ − ‖x‖
h

.

Both limits always exist and, if they have the same value, we write
DX(x, y) = D+

X(x, y) = D−
X(x, y). It is easy to see that this is

equivalent to saying: For every ε > 0 there exists δ > 0 such that
0 < h < δ implies ‖x+ hy‖+ ‖x− hy‖ < 2‖x‖+ εh.

We say that x �= 0 is smooth, if D(x, y) exists, for every y ∈ SX ,
where SX denotes the unit sphere of X, or equivalently, if there is a
unique norm-one functional x∗ ∈ X∗, the topological dual of X, such
that x∗(x) = ‖x‖ [1, page 179]. Since DX(tx, y) = DX(x, y) for t > 0,
we can restrict our attention to the smooth points of SX .

Deeb and Khalil [3] have characterized the smooth points of the
Lebesgue-Bochner spaces Lp(I,X), 1 ≤ p < ∞, when I has finite
measure and X has a separable dual. Cerda, Hudzik and Mastylo [2]
characterize the smooth points of the Köthe-Bochner space E(X), if X
is real with separable dual, E is order continuous, and the norm of E∗

is strictly monotonic. In this paper we characterize the smooth points
of L∞(X). In contrast to the Lp(I,X), 1 ≤ p <∞, it is worth noticing
that the smoothness of x ∈ L∞(X) does not imply the smoothness of
x(t) ∈ X for almost every t ∈ T .
Let (T,Σ, µ) be a complete, positive measure space and X a normed

space. The function x : T → X is said to be simple if there
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exist T1, . . . , Tn ∈ Σ, disjoint, and x1, . . . , xn ∈ X such that x =∑n
i=1 xiχTi

, where χTi
is the characteristic function of Ti. The function

x : T → X is defined as measurable if, for every finite measurable
set F , there exists a sequence of simple functions {sn}n∈N such that
xχF = limn→∞ sn almost everywhere [4]. The set of measurable
functions is a linear space.

A measurable set A is called an atom if µ(A) > 0 and, whenever B
is a measurable subset of A, we have either µ(B) = 0 or µ(A\B) = 0.

We use L∞(X) to denote the space of measurable equivalence classes
of functions x : T → X such that ess supt∈T {‖x(t)‖X} < ∞, where
ess sup denotes the essential supremum, i.e.,

ess sup
t∈T

{‖x(t)‖X} = inf {c : µ{t ∈ T : ‖x(t)‖X > c} = 0}.

It is a normed space, normed by ‖x‖ = ess supt∈T {‖x(t)‖X}.
If X = R, we write L∞(X) = L∞. To avoid confusion, from now on

we shall use ‖ · ‖ for the norm in L∞(X) and ‖ · ‖X for the norm in X.

We collect the following easy results in a lemma.

Lemma 1. (i) If the function x : T → X is measurable and A is a
finite-measure atom, then xχA is a constant function on A. If X = R,
the assumption “finite measure” can be removed.

(ii) Let x ∈ SL∞ , A be an atom and ‖xχT\A‖ < 1. Then |x(t)| = 1
for almost every t ∈ A.

(iii) Let x, y ∈ L∞, x ≥ 0 and y ≥ 0. If A is an atom, then
‖(x+ y)χA‖ = ‖xχA‖+ ‖yχA‖.

2. Smooth points in L∞ and L∞(X). We begin with the scalar
case.

Theorem 2. Let x ∈ SL∞ and A = {t ∈ T : |x(t)| = 1}. Then x is
smooth if and only if A is an atom and ‖xχT\A‖ < 1.

Proof. Suppose either A is non-atom with µ(A) > 0 or ‖xχT\A‖ = 1.
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We then prove the existence of P,Q ∈ Σ such that
(2.1)
P ∩Q = ∅, µ(P ) > 0, µ(Q) > 0 and ‖xχP ‖ = ‖xχQ‖ = 1.

If A is non-atom with µ(A) > 0, then obviously (2.1) holds. Let
‖xχT\A‖ = 1. Take 0 < r1 < r2 < · · · < 1 with limn→∞ rn = 1.
Define An = {t ∈ T\A : rn−1 < |x(t)| ≤ rn}. We claim that there
exists a subsequence (Ank

)k∈N with µ(Ank
) > 0 for every k = 1, 2, . . . .

Otherwise, we may suppose that µ(An) = 0 for every n ∈ N; thus,
µ(∪n∈NAn) = µ{t ∈ T\A : r1 < |x(t)|} = 0. Therefore, we have
the contradiction ‖xχT\A‖ ≤ r1 < 1. Now it is easy to check that
P = ∪k evenAnk

and Q = ∪k oddAnk
satisfy (1).

Let T+ = {t ∈ T : x(t) ≥ 0}, T− = {t ∈ T : x(t) < 0} and
y = χP∩T+ − χP∩T− .

For every h > 0, we have |x(t) + hy(t)| = |x(t)| + h, if t ∈ P
and |x(t) − hy(t)| = |x(t)|, if t ∈ Q. Thus 1 + h ≥ ‖x + hy‖ ≥
‖(x + hy)χP ‖ = ‖(|x| + h)χP ‖ = 1 + h and ‖x − hy‖ = ‖xχQ‖ = 1.
Therefore, D+

L∞(x, y) = 1 and D−
L∞(x, y) = 0.

Conversely, let A be an atom, ‖xχT\A‖ = r < 1 and y ∈ SL∞ . We
prove that D+

L∞(x, y) = D−
L∞(x, y). If 0 ≤ h ≤ (1 − r)/2, then for

almost every t′ ∈ T\A and t ∈ A, we have by Lemma 1 (ii)

(2.2)
|x(t′)± hy(t′)| ≤ r + h|y(t′)| ≤ r + h ≤ 1− h

≤ 1− h‖yχA‖ ≤ 1− h|y(t)|
= |x(t)| − h|y(t)| ≤ |x(t)± hy(t)|.

Therefore ‖x ± hy‖ = ‖(x ± hy)χA‖. Set B = {t ∈ A : sgn x(t) =
sgn y(t)}, where sgn denotes the sign function. Then B ∈ Σ and

|x(t)±hy(t)| = (1±h|y(t)|)χB(t)+(1∓h|y(t)|)χA\B(t), for a.e. t ∈ A.

If µ(B) > 0, then µ(A\B) = 0. So ‖(x + hy)χA‖ = ‖(x + hy)χB‖ =
1+h‖yχB‖ and ‖(x−hy)χA‖ = ‖(x−hy)χB‖ = 1−h‖yχB‖. Then we
have D+

L∞(x, y) = ‖yχB‖ = D−
L∞(x, y). If µ(B) = 0, then µ(A\B) > 0

and we obtain D+
L∞(x, y) = −‖yχA\B‖ = D−

L∞(x, y).

Now the vectorial case.
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Theorem 3. Let x ∈ SL∞(X) and A = {t ∈ T : ‖x(t)‖X =
1}. Then x is smooth if and only if A is an atom, ‖xχT\A‖ < 1
and, for every y ∈ SL∞(X), there exists DX(x(t), y(t)) uniformly in
{(x(t), y(t)), for a.e. t ∈ A}.

Proof. Assume that A is an atom and ‖xχT\A‖ = r < 1. Changing
| · | to ‖ · ‖X in (2.2), we obtain

‖x(t′)± hy(t′)‖X ≤ ‖x(t)± hy(t)‖X ,

for a.e. t′ ∈ T\A, t ∈ A,
whenever 0 ≤ h ≤ (1 − r)/2. Therefore ‖x ± hy‖ = ‖(x ± hy)χA‖.
Since A is an atom and the functions ‖x(·) ± h(·)‖X are positive, by
Lemma 1 we have

‖x+ hy‖+ ‖x− hy‖ = ‖(x+ hy)χA‖+ ‖(x− hy)χA‖
= ess sup

t∈T
{‖(x(·) + hy(·))χA(·)‖X}

+ ess sup
t∈T

{‖x(·)− hy(·))χA(·)‖X}

= ess sup
t∈T

{‖(x(·) + hy(·))χA(·)‖X

+ ‖x(·)− hy(·))χA(·)‖X}.
Thus the existence of DL∞(X)(x, y) is equivalent to the existence of
DX(x(t), y(t)) uniformly in {(x(t), y(t)), for a.e. t ∈ A}.
Conversely, suppose that x ∈ SL∞(X) is smooth and write Z = {t ∈

T : x(t) = 0}. Let u(·) ∈ SL∞ and take w ∈ SX . The function
y(t) = (u(t)x(t)/‖x(t)‖X)χT\Z(t)+u(t)wχZ(t) belongs to y ∈ SL∞(X).
Moreover, for h ≥ 0,

‖x± hy‖ =
∥
∥
∥
∥

x(·)
‖x(·)‖X

(‖x(·)‖X ± hu(·))χT\Z(·)± hu(·)wχZ(·)
∥
∥
∥
∥

L∞

= ‖(‖x(·)‖X ± hu(·))‖L∞ .

Hence the existence of DL∞(X)(x, y) implies the existence of
DL∞(‖x(·)‖X , u(·)). By Theorem 2, A is an atom and
‖(‖x(·)‖X)χT\A‖L∞ < 1. Moreover, as we have already proved, the ex-
istence of DL∞(X)(x, y) is equivalent to the existence of DX(x(t), y(t))
uniformly in {(x(t), y(t)), for a.e. t ∈ A}.
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If µ is σ-finite, every atom has finite measure, and then each function
x ∈ L∞(X) is a constant on the atom. Consequently, we obtain

Corollary 4. Let µ be σ-finite. Then x ∈ SL∞(X) is smooth if and
only if A = {t ∈ T : ‖x(t)‖X = 1} is an atom, ‖xχT\A

‖ < 1 and x(t) is
smooth for almost every t ∈ A.

When (T,Σ, µ) is a discrete measure space, one has L∞ = l∞
and ess sup = sup. If {Xi}i∈I is a family of normed spaces, the
space of functions x : I → ∪i∈IXi, such that xi ∈ Xi for each
i ∈ I and (‖xi‖i) ∈ l∞ is a normed space endowed with the norm
‖x‖ = supi∈I ‖xi‖i. We denote it by l∞(Xi). Since, in this case, each
element of I is an atom of measure one, we get as a consequence of
Theorem 2 and Corollary 4:

Corollary 5. (i) x ∈ Sl∞ is smooth if and only if there exists j ∈ I
such that supi 
=j |xi| < 1.

(ii) x ∈ Sl∞(Xi) is smooth if and only if there exists j ∈ I such that
supi 
=j ‖xi‖i < 1 and xj ∈ Xj is smooth.
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