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SINGULAR POINTS FOR TILINGS OF NORMED SPACES
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ABSTRACT. A point x in a normed space X is said to be
singular for a given tiling of X whenever each neighborhood
of x intersects infinitely many tiles. We show that, when X
is infinite-dimensional and all tiles are convex, special points
in the boundary of tiles (like extreme points or PC points, if
any) must be singular. Under the further assumptions that
X is separable and doesn’t contain c0, singular points abound
among the smooth points of any bounded tile. Finally, in any
normed space a tiling is constructed which is free of singular
points and whose members are both bounded and star-shaped;
this disproves the conjecture that Corson’s theorem might
apply to star-shaped bounded coverings.

Introduction. Throughout this paper, X denotes a normed space
over the reals.

A collection τ of subsets of X is a covering of X whenever each
element of X belongs to some member of τ . If n is a cardinal number,
a point x of X is said to be n-singular for τ if each neighborhood of
x meets at least n different members of τ . For simplicity, ℵ0-singular
points will be called singular points. We say that τ is locally finite at
x provided x is not a singular point for τ , and that τ is locally finite
when it is locally finite at each point of X. A subset of X is a body if
it is different from X itself and is the closure of its nonempty interior.
A covering of X by bodies is called a tiling of X whenever any two
different members of it have disjoint interiors. The elements of such a
covering are called tiles. When adjectives (like “bounded,” “convex,”
“star-shaped,” etc.) are applied to a collection τ of subsets of X, it
means that they apply to each member of τ .
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Bounded convex tilings are available in any normed space, as we
showed in [5]. The situation is completely different when looking
for bounded convex tilings that are also locally finite: in fact, the
availability of such tilings is severely restricted by the classical theorem
of Corson [1]. It asserts that, for any bounded convex covering τ of a
normed space that has an infinite-dimensional reflexive subspace, there
is a finite-dimensional (hence compact) parallelotope that intersects
infinitely many members of τ ; thus, τ cannot be locally finite. However,
locally finite bounded convex tilings can be produced in some (infinite-
dimensional) Banach spaces. For instance, it is an easy exercise to
verify that, in the space c0, the family of balls of radius 1/2 centered
at the points with integer coordinates actually provides such a tiling.
(Note that the tiling constructed in the same way in the space l∞ is
not even point-finite, in the sense that there are points, namely all the
vertices of the balls, that belong to infinitely (even uncountably) many
tiles.) More generally, in [3] it is proved that, for a separable Banach
space, admitting locally finite bounded convex tilings is equivalent to
being isomorphic to a polyhedral space. (A normed space is said to
be polyhedral if the unit ball of each finite-dimensional subspace is a
polyhedron.)

Basic references for studying tilings in general situations, and in
particular local finiteness and related concepts, are [7] and [8]. In
[6] the surprising (and to the best of our knowledge, the only known)
example is described of a tiling with pairwise disjoint tiles: such
a construction requires X to be a nonseparable space because of
Sierpinski’s classical theorem [12] on continua. The interesting notion
of index of a singular point x for a given convex tiling τ of a topological
linear space was introduced in [11] by Nielsen: roughly speaking, the
index of x turns out to be the “number of dimensions” required to
detect that τ is not locally finite at x.

The present paper deals with tilings of normed spaces: these are
assumed to be infinite-dimensional unless otherwise stated. The aims
of the paper are to show that:

(i) if a tiling is convex, then some boundary points of any tile that
are in a special position (like extreme points or PC points, if any) are
necessarily singular for it (Propositions 1 and 6 and Theorems 2 and
5);
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(ii) if a tiling of a separable Banach space not containing c0 is convex
and bounded, then in any tile “many” singular points for it can be found
among the smooth points (Theorem 7);

(iii) Corson’s theorem mentioned earlier does not apply to star-shaped
bounded tilings (Construction 8).

Throughout the paper the cardinality of a set Γ will be denoted by
|Γ|. For a subset A of a normed space, the symbols bdy (A), cl (A),
co (A) and int (A) denote respectively the boundary, closure, convex
hull and interior of A. For a normed space X, U(X) and S(X) denote
respectively the closed unit ball and the unit sphere centered at the
origin; X̂ denotes the completion of X.

Singular points. For a normed space X, let tot (X) denote the total
character of X, that is, the smallest cardinal c such that a set W ⊂ X∗

exists with |W | = c, which is total on X. Moreover, let norm (X)
denote the norming character of X, that is, the smallest cardinal c
such that a norming set W exists for X with |W | = c. (Recall that a
set W ⊂ S(X∗) is called a norming set for X when, for some α ∈ (0, 1]
it happens that sup{|f(x)| : f ∈ W} ≥ α‖x‖ for every x ∈ X.) Finally,
let dens (X) denote the density character of X, that is, the smallest
cardinal c such that a set W ⊂ X exists with |W | = c, which is dense
in X. Trivially,

tot (X) ≤ tot (X̂) ≤ norm (X) ≤ dens (X)

for any normed space X. Whenever X is a WCG (infinite-dimensional)
normed space, then tot (X) = dens (X) (see [9, Proposition 2.2]). The
very simple case X = l∞(Γ), Γ any nonempty set, shows that norm (X)
can be strictly smaller than dens (X), even when Γ is finite, that is, X
is finite-dimensional; moreover, it can happen that tot (X) < tot (X̂),
and so tot (X) < norm (X) (see Example 1.1 in [5]), but it seems to be
an open question whether tot (X) = norm (X) for every Banach space
X.

From now on, τ always denotes a convex tiling of a normed space X
and C a member of τ . However, it will be obvious that all the state
results, except Theorem 7, remain valid in the following more general
context: τ is a convex covering of X and C is a member of τ which is
a body whose interior doesn’t meet any other member of τ .
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Our first result is of a purely “linear nature”, so it is meaningful even
for finite-dimensional X where it implies that any bounded tile must
contain dim (X)-singular points.

Proposition 1. Any extreme point of C, if any, is a tot (X)-singular
point for τ .

Proposition 1 and Theorem 2 below can be proved by the same
argument, so we’ll prove them at the same time.

Now we pass to consider points in the boundary of C that are in a
special position with respect to some topology on X which is strictly
weaker than the norm-topology. The relevant case of the weak topology
will be settled in Proposition 6.

Let λ be a Hausdorff topology consistent with the linear structure of
X and, for A ⊆ X, let (A, ‖ · ‖) and (A, λ) denote the set A equipped
with the norm-topology and λ, respectively. Suppose that the identity
map I : (X, ‖ · ‖) → (X,λ) is continuous while I−1 is not (that is, λ
is strictly weaker than the norm-topology). Given any set A ⊂ X, a
point x ∈ A is called a point of λ-continuity (in A) provided that the
map

I−1
|A : (A, λ) −→ (A, ‖ · ‖)

is continuous at x.

Under our notation the following holds.

Theorem 2. Any point in C of λ-continuity (in C) is a singular
point for τ when X is a Banach space. Even with X an incomplete
space, it is a tot (X)-singular point for τ provided the map I is a strictly
singular operator (that is, λ is strictly weaker than the norm-topology
when restricted to each infinite-dimensional subspace of X).

To prove Theorem 2, we need the following, possibly known, result.
We sketch its proof for the sake of completeness.

Lemma 3. Let (X, ‖·‖) and (X,λ) be as above with (X, ‖·‖) a Banach
space. Let L be a ‖ · ‖-closed subspace of X with codim (L) < ∞. Then
λ is strictly weaker than the ‖ · ‖-topology even when restricted to L.
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In case (X, ‖ · ‖) is not complete, the above conclusion may fail, even
when λ is generated by some (weaker) norm.

Proof. Suppose (X, ‖·‖) is a Banach space. Assume, for contradiction,
that λ agrees on L with the ‖ · ‖-topology. First we claim that, in this
case, L must also be λ-closed. In fact, let {xα} be a net in L that
λ-converges to some point x ∈ X. Since λ is consistent with the linear
structure of X, {xα} is a λ-Cauchy net in L and actually it turns out
to be a ‖ · ‖-Cauchy net. Then {xα} must ‖ · ‖-converge to some point
y ∈ L. But {xα} is λ-convergent to y too, and that implies y = x ∈ L.

Now, being a closed subspace of finite codimension, L is topologically
complemented both in (X, ‖ · ‖|) and in (X,λ) and, of course, the
complements are isomorphic having the same finite dimension. So we
get a contradiction, because both ‖·‖ and λ would agree with the same
product topology.

Finally, let (X, ‖| · ‖|) be any infinite-dimensional normed space and
let f be a ‖| · ‖|-noncontinuous linear functional on X. Consider the
normed space (X, ‖ · ‖) where ‖ · ‖ is the different norm on X given by

(1) ‖x‖ = ‖|x‖| + |f(x)|, x ∈ X.

Then ‖ · ‖ is strictly stronger than ‖| · ‖|, because f actually turns out
to be ‖ · ‖-continuous on X; therefore, L = ker (f) is a ‖ · ‖-closed
one-codimensional subspace of X. Clearly, ‖| · ‖| and ‖ · ‖ agree on L,
which completes the proof. (Note that norms, which are constructed
by starting from an initial norm as in (1), cannot give complete spaces
anymore, whether or not the space (X, ‖| · ‖|) is complete).

Proof of Proposition 1 and Theorem 2. Just to simplify notation,

let us denote int (U(X)) by
◦
U . Without any loss of generality, we

may assume that the origin is an interior point of C. Fix a point x
in bdy (C), and let ε be a positive number. Denote by {Cγ}γ∈Γ(ε)

the family whose elements are precisely those members of τ that are

different from C and meet x+ε
◦
U . For each γ ∈ Γ(ε), choose a functional

fγ ∈ X∗ separating Cγ from C in such a way that C ⊆ f−1
γ ((−∞, 1])
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and Cγ ⊆ f−1
γ ([1,+∞)). We claim that

(2) C ∩ (x + ε
◦
U) =

⋂
γ∈Γ(ε)

f−1
γ ((−∞, 1]) ∩ (x + ε

◦
U).

Indeed, take any point y in (x+ ε
◦
U)\C. There is a δ ∈ (0, 1) such that

δy ∈ (x + ε
◦
U)\C, so δy ∈ Cγ for some γ ∈ Γ(ε). Thus fγ(δy) ≥ 1,

hence fγ(y) > 1, which proves that y doesn’t belong to the set in the
right side of (2). The second inclusion is trivial.

Now consider the (possibly trivial) subspace of X

Lε =
⋂

γ∈Γ(ε)

ker(fγ)

equipped with the induced norm. From (2) we immediately get

(3) x + εU(Lε) ⊂ C.

Now assume that x is not a tot (X)-singular point for τ : for ε small
enough we have |Γ(ε)| < tot (X) which implies dim (Lε) ≥ 1, with Lε

infinite-dimensional when X is.

By (3), C must contain a nontrivial segment centered at x so x cannot
be an extreme point of C and that proves Proposition 1.

By (3) also, when X is infinite-dimensional and I is a strictly singular
operator, x cannot be a point of λ-continuity in C because any λ-
neighborhood of x, being ‖ · ‖-unbounded even along Lε, must actually
intersect x+εS(Lε). So the second claim in the statement of Theorem 2
is also proved.

To complete the proof of Theorem 2, it remains to settle the case in
which we only know that λ is strictly weaker than the ‖ · ‖-topology
on the whole Banach space X. Assume that x is not a singular point
for τ . This means that, for ε small enough, Γ(ε) is finite so codim (Lε)
is finite too. Then Lemma 3 applies and we conclude that λ is strictly
weaker than the ‖ · ‖-topology even when restricted to Lε. Reasoning
as above, we are done.

Remark 4. The above proof contains the following intuitive result
which might be useful to have stated separately.



SINGULAR POINTS 863

When x ∈ bdy (C) is not a tot (X)-singular point for τ , there is a
nontrivial affine subspace x + L of X through x such that bdy (C) ∩
(x + L) has nonempty relative interior in x + L. Indeed, x being a
boundary point of the convex set C, (3) really means

(4) x + εU(Lε) ⊂ bdy (C).

As Lemma 3 shows, the proof of the first claim in the statement of
Theorem 2 doesn’t work in incomplete spaces. This gap can be partially
filled by the following

Theorem 5. Suppose that for each B ∈ τ , B �= C, a λ-continuous
linear functional exists separating C from B. Then any point in C of
λ-continuity (in C) is a singular point for τ .

Proof. Let us use the same notation and agreements as in the proof of
Theorem 2. Suppose, for contradiction, that x is a point of λ-continuity
that is not singular for τ . Let ε be small enough such that (2) holds
with Γ(ε) a finite set. Of course, we can actually assume that the
linear functionals fγ , γ ∈ Γ(ε), are also λ-continuous. Let W be a
λ-neighborhood of x such that

(5) C ∩W ⊆ x +
ε

2
U(X).

We are done provided we show that W ∩ (x+Lε) is a norm-unbounded
set: in fact, in this case it would contain some point in x + εS(X),
contradicting (5). Suppose that W∩(x+Lε) is norm-bounded. Since its
λ-interior relative to x+Lε is clearly nonempty, we get that topology λ
agrees on Lε with the norm-topology. Because Γ(ε) is finite, codim (Lε)
is finite too so Lε, which is closed because of λ-continuity of the
functionals fγ , has a finite-dimensional topological complement in X.
Reasoning as in the first part of the proof of Lemma 3, we get that λ
must agree on the whole of X with the norm-topology, a contradiction.

When λ is the weak topology, we get of course a relevant setting for
Theorems 2 and 5; actually in this special case we can be more precise
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with the following proposition. Briefly call PC point (in C) any point
in C of weak-to-norm continuity (in C).

Proposition 6. Any PC point in C is a norm (X)-singular point
for τ .

Proof. Suppose that the origin is the point under investigation. Fix
any positive number δ; let fi ∈ X∗, i = 1, . . . , n for some n ∈ N, be
such that for the weak neighborhood W of the origin defined by

W =
n⋂

i=1

f−1
i ([−1, 1])

it is true that W ∩ C ⊂ int (δU(X)).

Consider the convex covering τ ′ of X given by

τ ′ = (τ\{C}) ∪ {W ∩ C} ∪ {f−1
i ((−∞, 1])}n

i=1

∪ {f−1
i ([1,+∞))}n

i=1.

Then τ ′ and the bounded body W ∩ C satisfy the assumptions of
Theorem 1.2 in [5] (in place of τ and C respectively). Now take into
account that what was really proved there is that (according to our new
symbols) any ball containing W ∩ C in its interior actually meets at
least norm (X) different members of τ ′. So our theorem follows, since
τ ′ and our initial tiling τ differ by only finitely many members.

At the present we have proved that, among the points in bdy (C) that
are singular for τ , we find all the extreme points (Proposition 1) and
all the PC points (Proposition 6); in particular, we find all the denting
points, because a point is denting if and only if it is both a PC and an
extreme point (see [10] also for definitions).

Recall that a Banach space X is said to have the point of continuity
property (PC property) provided each weakly closed bounded subset of
it contains a PC point. Any Banach space having the RN property (in
particular any reflexive space) has the PC property. If C is a weakly
closed bounded subset of a Banach space with the PC property, then
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C is a Baire space even with respect to the weak topology and the
identity map

I−1
|C : (C,w) −→ (C, ‖ · ‖)

is continuous at each point of some w-dense w-Gδ subset of C (see
[2, Proposition 3.9 and Theorem 3.13]). As a consequence, C has
uncountably many norm (X)-singular points.

Let us now investigate the separable case, showing that in many
“good” Banach spaces (including reflexive spaces) the subset of bdy (C)
consisting of the smooth points that are singular for τ must be uncount-
able.

Recall that a point x ∈ C is called a smooth point (of C) if exactly
one linear continuous functional f exists on X such that 1 = f(x) =
max f(C). The set of all the smooth points of C will be denoted by
sm (C). Consider the (possibly empty) set

ΦC = {x ∈ C : x ∈ B for some B ∈ τ\{C}}.
Each point x (if any) in bdy (C)\ΦC is a singular point for τ : in fact,
if not so, inf {dist (x,B) : B ∈ τ\{C}} would be strictly positive and
τ would not be a covering. The following theorem provides a sufficient
condition for the set bdy (C)\ΦC to be “big.”

Theorem 7. Let X be a separable Banach space that doesn’t contain
(isomorphically) c0. If C is bounded, then the set sm (C)\ΦC

(i) is w-dense in C and

(ii) cannot be covered by the union of countably many w-closed subsets
of bdy (C).

Proof. Without any loss of generality, we may assume that the origin
is an interior point of C. For each B ∈ τ\{C}, let fB denote a linear
functional separating C from B in such a way that

sup fB(C) ≤ inf fB(B).

(i) Suppose, on the contrary, that for some point x ∈ C and for
some w-neighborhood W of x it happens that

(6) W ∩ sm (C) ⊆ ΦC .
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Of course, we can confine ourselves to the case of x being an interior
point of C so that we may assume that x is the origin and that, for
some n ∈ N and {fi}n

i=1 ⊂ X∗,

W =
n⋂

i=1

f−1
i ([−1, 1]).

Clearly

bdy (W ∩ C) ⊂
n⋃

i=1

f−1
i ({±1}) ∪ (bdy (C) ∩W )

so

sm (W ∩ C) ⊆
n⋃

i=1

(f−1
i ({±1}) ∩ C) ∪ (W ∩ sm (C)).

Put

Ω = {f ∈ X∗ : max f(W ∩ C) = 1 and
f−1({1}) ∩ sm (W ∩ C) �= ∅}.

Then (6) implies

Ω ⊆ {±fi}n
i=1 ∪

{
fB

sup fB(C)
: B ∈ τ\{C}

}
.

τ being countable (since X is separable), Ω is countable too.

Now it is well known that

(7) sm (W ∩ C) = {x ∈ W ∩ C ∩ f−1({1}) : f ∈ w∗- exp((W ∩ C)0)}

where w∗- exp((W ∩ C)0) denotes the set of all the w∗-exposed points
of the polar set of W ∩C (that is the set of those elements g ∈ X∗ such
that g|W∩C ≤ 1 and there is x ∈ X such that g(x) > h(x) for each
h ∈ X∗ with h|W∩C ≤ 1, h �= g).

Then w∗- exp((W∩C)0) actually coincides with Ω and turns out to be
countable. Thus, Theorem 3 in [4] applies and we get the contradiction
that X would contain c0 (to apply it, note that any countable subset
of X∗ is “thin” in the sense of Section 1 in [4]).
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(ii) For each B ∈ τ\{C}, consider the w-closed (possibly empty)
subset ΓB of bdy (C) defined by

ΓB = {x ∈ C : fB(x) = sup fB(C)}.
Clearly

ΦC ⊆
⋃

B∈τ\{C}
ΓB

so our claim immediately follows from Theorem 2 in [4].

We conclude by constructing a locally finite bounded tiling that is
available in any normed space and is, in some sense, special. In fact,
each member of it is star-shaped, thus disproving the conjecture that
Corson’s theorem also applies to star-shaped bounded coverings.

Construction 8. The construction is really simple. Let (X, ‖ · ‖) be
any normed space and H any closed half-space of it such that bdy (H)
is a (closed) hyperplane through the origin. Let z be any norm-one
interior point of H, and let π denote the continuous linear projection
of X onto bdy (H) through the line Rz. For fixed H and z, consider
the renorming ‖| · |‖ of X given by

‖|x|‖ = ‖π(x)‖ + ‖x− π(x)‖, x ∈ X.

Let B denote the closed unit ball with respect to the new norm centered
at the origin. Let us set

T1 = B ∩H, Tn = cl (nB\(n− 1)B) ∩H, n = 2, 3, 4, . . . .

Clearly the family {±Tn}∞n=1 provides a bounded locally finite tiling
of X. Tile T1 is convex, while, for each fixed n ≥ 2, tile Tn is star-
shaped from any point in the segment [(n − 1)z, nz]. In fact, for any
real σ ∈ [n− 1, n], any real λ ∈ [0, 1] and any y ∈ Tn trivially we have

n ≥ ‖|(1 − λ)y + λσz|‖ = (1 − λ)‖|y|‖ + λσ ≥ n− 1.
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