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C*-ALGEBRAS OF DYNAMICAL SYSTEMS
OF QUASI ROTATIONS ON TORI

CARLA FARSI AND NEIL WATLING

ABSTRACT. In this note we determine the isomorphism
classes of the crossed product C*-algebras of affine (n, \) quasi
rotations of T".

1. Introduction. There have been considerable contributions
to the computation of K-theoretical and isomorphism invariants of
C*-algebras of dynamical systems on the n-torus T", which include
certain noncommutative tori [5], [3], [7]. Riedel [5] classified the
crossed products of C'(T™) by minimal rotations of T", i.e., minimal
transformations of T™ with degree matrix D(¢) = I,,. He showed that
the set of eigenvalues of ¢ is a complete isomorphism invariant. When
¢ is a minimal homeomorphism of T™ with quasi discrete spectrum,
Packer [3] computed the tracial range of Ko(C(T") x4, Z). For
n = 2, Rouhani [7] classified, by using K-theoretical invariants, the
isomorphism classes of the crossed product C*-algebras C(T?) x » L,
where ¢ is an (affine) irrational quasi rotation of T2. That is an (affine)
transformation that has a unitary eigenvalue A\ = > (@ irrational)
with a unitary eigenfunction f having degree matrix D(f) = [n,m] # 0,
where n,m are relatively prime and the degree matrix D(¢) satisfies
rankq(D(¢) — I2) = 1. The concept of quasi rotation admits a natural
generalization to an n quasi rotation for transformations ¢ : T — T™.
Roughly speaking, ¢ is now required to have n — 1 eigenvalues while
the degree matrix D(¢) still satisfies rankq(D(¢) — I,,) = 1. (See
Definition 2 and Lemma 3.)

Our main result, which generalizes the main theorem in [7] to T",
n > 3, is the characterization, using K-theoretical invariants, of the
isomorphism classes of crossed products C(T") x4, Z of T", where ¢
is an affine n quasi rotation, provided some additional conditions are
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also satisfied (cf. Theorem 12). More precisely, the K-theory groups
K.(C(T")xa,Z), * = 0,1, and the tracial range 2 (Ko(C(T™) Moy Z))

are shown to be complete isomorphism invariants.

Our results also generalize some of [3] to the broader contest of n
quasi rotations (in fact every n quasi rotation has topologically quasi
discrete spectrum [8]).

In detail, the contents of this note are as follows. In Section 2 we
consider affine transformations ¢ = a4, a € T", A € GL(n,Z), of T"
satisfying rankq(A — I,) = 1. By detailing the conjugacy classes in
GL(n,Z) of matrices A satisfying rankq(A — I,) = 1, we are able to
compute the K-theory of the crossed products C(T") X, Z, ¢ = aA,
rankq(A —I,,) = 1. The proof of the conjugacy classes lemma is rather
technical and is given in an Appendix at the end of this note. In
Section 3 we compute the tracial range of C(T") x4, Z, ¢ = a4,
rankq(A — I,) = 1, under the additional hypothesis that ¢ is an n
quasi rotation. Section 4 details further properties of n quasi rotations,
which are used in Section 5 where we state and prove our main result,
Theorem 12. The main step in its proof establishes that K-theory
and tracial range determine uniquely, up to isomorphism, a standard
C*-algebra isomorphic to C(T") x4, Z.

2. K-theory of C(T") x4, Z. In this section we compute the K-
theory of the crossed products C(T") x4, Z, where ay(f) = fo¢t
Here ¢(z) = aA(z), a € T", A € GL(n,Z), z € T", is an affine
transformation of T™ satisfying rankq(A — I,) = 1. Note that A is
acting on T™ by a group automorphism and that A has a topological
interpretation as the degree matrix, D(¢), of ¢.

The K-theory of C(T") x4, Z only depends on the conjugacy class
of Ain GL(n,Z). The structure of the conjugacy classes of elements A
in GL(n, Z) having rankq(A — I,,) = 1 is given in the following lemma,
the proof of which is given in the Appendix. See also [7] for a proof
when n = 2.

Lemma 1 (Conjugacy classes lemma). Let A € GL(n,Z) with
rankq(A — I,) = 1. Then,
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(1) If det (A) =1, then A is conjugate in GL(n,Z) to
1

I
M 1
where M € Z\ {0}.
(2) If det (A) = —1, then A is conjugate in GL(n,Z) to

1 1
or
1 0 0 1
0 -1 1 0
We will refer to
1 1 1
' , B and B

1 0 1 0 0 1
M 1 0 -1 1 0

as the standard form for A and write SM, Sy and S3, respectively.

Now we can compute the K-theory of C(T") x4, Z, ¢ = aA, a € T",
A€ GL(n,Z), rankq(A—I,) = 1.

By applying the Pimsner-Voiculescu sequence [1], we get
0— Z**"/Im (1—¢y) — Ko(C(T") x4, Z) — Ker (1—¢1) — 0,
0— zz"’l/Ima—qsl) — Ky (C(T™) %4, Z) — Ker (1—¢p) — 0,
where ¢, : K*(T") — K*(T™), * =0, 1, is induced by a.

When det (A) =1, A = SM and thus ¢., * = 0,1, can be written as

1 0
|:—M 1:| ®12n—3 0
0 -
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for n > 3, so that

K (C(T") %, Z) = 2% " @273, ", +=0,1, n>3.

When det (A) = —1,if A = Sy, then ¢, = | 22 _&/_2 and therefore,

K(C(T") %0, Z) = 2% 022", +=0,1, n>2
If A= S5, then
[‘1) H ® Iyn-s 0 0
s = 0 —Ipns O
O O 127173
and so,
K (C(T") %, Z= 2% @273 ", +=0,1, n>3.

3. The tracial range of Ko(C(T") X4, Z). As shown in [5] and
[7], K-theory groups isomorphism does not necessarily imply crossed
product C*-algebra isomorphism. Indeed, Riedel showed in [5] that
the set of eigenvalues is a complete isomorphism invariant for crossed
products by minimal rotations. Moreover, for affine transformations
of T2, Rouhani [7] required the existence of a unitary eigenvalue
A = e?™ (@ irrational) associated to a unitary eigenfunction f with
degree matrix D(f) = [n,m] # 0, n, m relatively prime. (In this case,
rankq(A — I2) = 1). He was thus able to compute the tracial range of
Ko(C(T?) x4, Z) and show that the tracial range together with the
K-theory groups are complete isomorphism invariants.

Generalizing Rouhani’s work to higher dimensions we will assume the
existence of n — 1 eigenvalues and thus complete the tracial range of
Ko(C(T") Xq, Z).

Definition 2. Let ¢ = (¢1,...,¢,) : T® — T" be a homeomor-
phism of T™. Then ¢;(z1,...,2,) = 27" -z "2V 1210 020)
where a; ; € Z and F;(z1,...,2,) is continuous and real valued. We
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say that ¢ is an n quasi rotation if there exist unitaries fi,..., fn—1 €
C(T™), A1,...,Ap—1 € T\ {1} such that

(1) D(¢) = [aijlij=1,....n # In,

(2) fiod=Aifi,

(3) ged {all minors of size (n—1) x (n—1) of [D(fi)|i=1,... n—1} = 1.

Note that condition (3) above is equivalent to requiring that the
matrix [D(f;)] be completable (by adding another row) to a matrix

in SL(n,Z), thus generalizing Rouhani’s condition for n = 2 that
D(f1) = [n,m] # 0, n,m relatively prime.

Affine transformations ¢ = a4 : T" — T" a € T" and A €
GL(n,Z), with A = SM S, S3 are n quasi rotations. In fact,
the ordered sets zi,...,z,—1, respectively z1,...,2p—2,2n—12n, and
a1,...,0an_1, respectively ay,... ,a,_2,an_1a,, are a set of eigenfunc-
tions and eigenvalues for ¢.

The following lemmas are an easy consequence of Definition 2.

Lemma 3. Let ¢ be an n quasi rotation with associated degree
matrices D(¢) and [D(f;)]. Then,

(1) D(f;) #1[0,...,0] foralli=1,... ,n—1,
(2) D(fi)(D(¢) —I,) =0 foralli=1,... ,n—1,
(3) rankq(D(¢) — I,) = 1.

Lemma 4. Let ¢ be an n quasi rotation with associated degree
matrices D(p) and [D(f;)]. Then, for any matrizY € M((n—1)xn,Z)
such that Y (D(¢) — I,,) = 0, there exists a matric A € M(n — 1,7Z)
such that Y = A[D(f;)].

Proof. First notice that for all K € GL(n,Z), [D(f;)]K satisfies (3)
of Definition 2. This follows since, by (3), we can choose a matrix
R € M(1 x n,Z) such that
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ao [P g [P =,

If we write D(¢) = KSK ™!, with S the standard form for D(¢), then
both YK and [D(f;)]K are solutions of X (S —1I,,) = 0. Since [D(f;)]K
also satisfies (3) of Definition 2 its rows span the left null space of S—1I,,,
which implies YK = A[D(f;)]K for some A € M(n —1,Z), and hence
Y =A[D(f)]. o

Now, to compute the tracial range of C(T") x,, Z, where ¢ is
an n quasi rotation, let [D(f;)] be the degree matrix relative to the
eigenfunctions f; associated to the eigenvalues \; = 2V 0 < g, <
1, of ¢. For a fixed ¢, define p; : C(T) — C(T™) by pi(g9) = go fi.
pi induces a homomorphism between the rotation algebra A, and
C(T") Xq, Z. By the naturality of the Pimsner-Voiculescu sequence, it
follows that the image of the exponential of the Rieffel projection [6] in
Ki(C(T") Xa, Z) is f;, [7]. By Lemma 4, [D(f;)] generates the kernel
of (1 — ) in H'(T", Z). Therefore, for any trace 7¢ on C(T") X,,, Z
([1, pp. 99-100], [4]),

T (Ko(C(T") %o, Z))=Z+ 61 Z+ -+ 0,1 Z.

4. Some properties of n quasi rotations. In this section we will
derive some additional properties of n quasi rotations, which we will
use in Section 5 in the proof of our main result.

Proposition 5. Let ¢ be an n quasi rotation with associated
degree matrices D(¢) and [D(f;)] (relative to the eigenvalues \; and
to the eigenfunctions f;). Let u; and g; (with degree matriz [D(g;)])
be another system of eigenvalues and eigenfunctions for ¢ satisfying
(1), (2) and (3) of Definition 2. Then p; = H;l:ll NG for some
A= [OLZ‘,]‘] S GL(n -1, Z)

Proof. Since [D(g;)] = AD(fi)], A = [o;;] € M(n — 1,Z) with
[D(f;)] and [D(g;)] both satisfying (3) of Definition 2, it follows that
det (A) = %1 since det (A) is a factor of all the (n—1) x (n—1) minors of
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[D(g;)]. By using the eigenvalue equations f;0¢=M\;f; and g; 0= p,g;,
we get h; o ¢ = vih;, with h; = [[/2] {5 and v; = [[}2) A7/ 7
for i = 1,...,n — 1. Note that D(h;) = 0 and therefore h;(z) =
e2™V=1Hi(2) Gq h; o ® = v;h; becomes e2™V=IHi(¢(2)—Hi(2)] — v; or
H;(¢(=)) — Hi(2) = ¢; for some constant ¢; and for all z € T™. Thus,
H;(¢*(2)) — Hi(2) = kc; for all k € Z and for all z € T™. Hence, as the
lefthand side is bounded, ¢; = 0, that is, »; = 1fori=1,... ,n—1. So

—1 o4
we must have p; = [[jZ) A} o

Proposition 6. Let ¢ be an n quasi rotation with associated degree
matrices D(¢) and [D(f;)].

Let
At fi
A= : and f =
An-1 Jn—1
Then, for any A € GL(n — 1,7Z) with
Ay
a=| |,
Any

Nifod=MNINF, i=1,...,n—1.

Proof. Straightforward using f; o ¢ = A, f;. O

Lemma 7. If ¢ = aA is an affine n quasi rotation with associated
degree matrices D(¢) = A and [D(f;)], then X\; = D(f;)(a).

Proof. We can write f;i(z) = D(f;)(2)e2™V=1Fi(*) and using f; o ¢ =
i fi obtain

D(fi)(@)D(fi) A(2)e*™Y 7O = iD(f) ()71,
Now we observe that D(f;) = D(f;)A so e2™V-1Fi(6(z)=Fi(=)]

XiD(f;)(a). Repeating the same argument as that in the proof of
Proposition 5, we get A; = D(f;)(a). O
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5. Complete isomorphism invariants of C(T") x,,Z. Now we
consider affine n quasi rotations, i.e., affine transformations ¢ = aA :
T" — T", a € T", and A € GL(n,Z), which are also n quasi rotations.

As mentioned in Section 3, in the particular case A = S| Sy, respec-
tively Ss3, the ordered sets z1,. .. , z,_1, respectively z1,... ,2n—2, Zn—1
Zn, and ai,...,an_1, respectively ay,...,Gn_2,an_1a,, are a set of
eigenfunctions and eigenvalues for ¢. The tracial range of C(T™) x4, Z
is completely determined by the eigenvalues \; of ¢. To recover infor-
mation on crossed product C*-algebra isomorphism classes from infor-
mation on the tracial range, we now restrict to quasi rotations with
IRRI eigenvalues, that is,

Definition 8. An affine n quasi rotation with IRRI eigenvalues
is an affine n quasi rotation ¢ with eigenvalues \; = 627’\/’_19’7, i =
1,...,n — 1, such that 6;,...,60,_1, are irrational and rationally
independent (mod (1)).

In the particular case A = S{VI ,So, respectively S3, ¢ has IRRI
eigenvalues if ¢p,...,qn_1, respectively ¢i,...,Gn—2,qn-1 + qn, are
irrational and rationally independent. (Where a; = 2V =14 , 47 €R,
ji=1...,n)

Our main result, Theorem 12, characterizes crossed products of affine
n quasi rotations with IRRI eigenvalues, provided A,_; is fixed. We
will now state and prove some additional results needed in the proof of
Theorem 12.

Proposition 9. Let ¢ = aA be an affine n quasi rotation with IRRI
eigenvalues and KAK ' = S be the standard form for A.

(i) ¢ is topologically conjugate to the affine n quasi rotation with
IRRI eigenvalues ¥ = sS, where
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s1
(ii) ¥ = 89, s = [ ], is topologically conjugate to w = rS, with

S1
e if S =SM, S,
Sn—1
L 1
or
T
r=1| s, | #S5=5
Sn—15n
L 1

(iil) w = rS is topologically conjugate to n = ¢S where t = L(r) for
any L € GL(n,Z) commuting with S.

Proof. (i) If we define 6(z) = K(z), ¢ and ¢ are topologically
conjugate via 4. It remains to show that v is an n quasi rotation
with IRRI eigenvalues. Put

1 0 1 0
1 0 11
according to S = SM S5 or S3. Now XS = X and hence XKA = XK
so by Lemma 4, there exists A € GL(n — 1,Z) such that A[D(f;)] =
XK. Moreover, by Proposition 6 and Lemma 7, X K (a) = A[D(f;)](a)
is an IRRI system of eigenvalues for ¢. It is now straightforward to show
that X K (a) is an IRRI system of eigenvalues for 1) with eigenfunctions
Zlyees 32n—10I Z1,... ,2n—2,2n—1%n-

(ii) 6(2) = dI,,(2) with
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Aoy =50 ™ 571 S = SM  S3 respectively, or

’r n

1
d=| -
1
1/2
if S =55 intertwines ¢ and w.
(iii) 6(z) = L(z) intertwines w and 7. u]

The previous proposition’s proof motivates the following definition
(cf. also [3]).

Definition 10. Let ¢ = aA and KAK~! = S be the stan-
dard form of A. If S = SM S, respectively S3, we will call
the ordered sets zi,...,2z,_1, respectively z1,...,2n_2,2n_12n, and
K(a)y,...,K(a)n—1, respectively K(a)1,...,K(a)p—2, K(a)n—1K(a)n,
a standard set of eigenfunctions and eigenvalues for ¢.

Definition 11. Let A € T\ {1}. We say ¢ is an affine (n, \) quasi
rotation if ¢ is an affine n quasi rotation and there exists a standard
set of eigenvalues A1, ..., A,_1 for ¢ such that \,_; = A*L.

Theorem 12. Let ¢ = aA and v = bB be affine (n,\) quasi
rotations with IRRI eigenvalues. Then the following are equivalent:
(i) C(T") Xa, Z = C(T") Xq, Z.
(ii) K. (C(T™) %q, Z) = K.(C(T") Xa, Z), * = 0,1, and for any
tracial state 7% on C(T") x4, Z, respectively 7% on C(T™) x4, Z, we
have

7L (Ko(C(T") %0, Z)) = 77 (Ko(C(T") %4, Z)).

(iil) ¢ and ¢ are topologically conjugate via an affine transformation.

Proof. As (3) = (1) and (1) = (2) are trivial, we only need to show (2)
= (3). Since C(T") ¥4, Z and C(T") x4, Z have the same K-theory, A



C*-ALGEBRAS 949

and B are both conjugate to the same standard form S (see Section 2).
That is, there exist K7, Ko € GL(n,Z) such that KlAKfl = S and
KgBK{l = S. Thus, by Proposition 9, ¢ is topologically conjugate to
w1 =115, where

At

1231
o = : )
Hn—1
1
with A1,..., A\p_1, respectively p1,...,pn—1, a standard set of eigen-

values for ¢, respectively ¥. Note that ¢ and ¢ are affine (n, ) quasi
rotations so we can assume A, ; = A = 4Fh . As

¢ (Ko(C(T") %o, Z)) = 7 (Ko(C(T") %a, Z)),
there exists A = [o; ;] € GL(n — 1,Z) such that
A1 M1
An—l Hn—1

Moreover, ap—1; = 0 for j =1,... ,n =2, ap_1n—1 = £1 because
Ap—1 = ,ufil and the \;’s are IRRI. Thus,

11 g1 et A1n—1 B1 A
' |l ap—21 - o Qp_2p—1 Pn—2 . )
””1—1 0 cee 11 0 An—1
0 el 0 1

ﬂla"' a/Bn—Z €Z.
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Finally, by Proposition 9(iii), w; is topologically conjugate to wo with
L the matrix above where we choose 3; = 0, respectively 5; = &; n—1
fori=1,...,n—2if S = SM or Sy, respectively Ss. a

Remark 13. If ¢ = aA is an affine n quasi rotation with A having
standard form Ss, the three conditions of Theorem 12 are equivalent

since {g fl} commutes with Sy for any A € GL(n —1,7Z).

APPENDIX

Proof of Lemma 1. We will prove Lemma 1 using induction on the
size of A. For n = 2, the result was proved by Rouhani:

Lemma 14 [7]. Let A € GL(2,Z) with rankq(A — I;) = 1.

(i) If det (A) = 1, then A is conjugate in GL(2,Z) to [1\14(1)}’
M e Z\ {0}.

(i) If det (A) = —1, then A is conjugate in GL(2,Z) to [1 31] or

0
)
10]°
Now suppose that for every matrix A € GL(k,Z), k < n, Lemma 1
holds, and consider A = [a; ;] € GL(n,Z). Firstly, since det (A) = +1,
rankq(A — I,,) = 1, there is at least one nonzero off diagonal ele-

ment. By conjugating A with elementary matrices, we can assume
that a,1 # 0. Let By = ged (an,1,an2) # 0, choose t1,71 such that

t1(an,1/E1)—r1(an2/E1) = 1,and put B = [: g} , with o = (apn,1/E1),

B = (an2/E1), vy =11 and § = t;. Define the matrix K € GL(n, Z)

B 0

by K = {0 Infz}' Now KAK~' is a matrix whose last row is

[E1,0,0n,3,Gn4, .. ,0nn). Conjugating again by the elementary ma-
trix eg 3 (which switches rows 2 and 3), we get that A is similar to a ma-
trix having as last row [E4, a4y 3,0,0n.4, - .. ,@p ) so that by proceeding
as before and then conjugating by eg 4 etc., A is similar to a matrix hav-
ing as last row [E,0,...,0,ay ], where E = ged (an,1,- -+ 5 ann-1) # 0.
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Now, by using the fact that rankg(A — I,) = 1, we see that

d 0 0 a, M1 a’271 o --- 0 a’Q’n 7
0 afy; 0 0 a,
/ . : ’
a1 1 co A3 n :
A~ i ' ) - 0 0 1
0 - 0
!
an;;l,l 8 (1) Ap_1,n a’lrlfl,l 0 1 a’nﬂ,n

dn,n L0 E 0 -+ 0 ann

Since det (A) = +£1, it follows that det (A) = £1, where

all,l 0 0 all,n
~ 0 1
A= : 0
a;z—l,l 0 1 a;z—l,n
FE 0 0 ann

Suppose now that det (4) = det (A) = 1. Either rankg(A — I, 1) =
1, so by the induction hypothesis there exists K € GL(n — 1,Z) such
that K AK ! is in standard form or rankQ(fl—In,l) =0and A=1,_ ;.
Therefore,

L, e,
[1 O]A[l 0] _ (_) ~
0 K 0 K : KAK-!
0
Conjugating by
[0 0 O 0 1 0]

s}
jan}
=
- O
(@)
(@)

o

_ o O O
o o= O
jan}

S o o
O O OO
o= OO
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we have
1 0 0
0
A~ : . , MeZ
M 0 1 0
Wy e a1

If M # 0, then af ; = 0 for j =2,...,n —2,n. Now choose ¢ and r
such that t(M/F) —r(af,,_,/F) = 1, where F' = ged (M, af,,_;) and
put B = {:?] with a = (af,,_1)/F, 3 =—-M/F,y =t and § = —r.
Conjugating by

" 5]
0 B’
we have

1

F 1

If M = 0, without loss of generality, we can assume that a7, _; # 0.
We can then proceed as in the first part of the proof to obtain

1
A~ L Nsﬂ
F 1

with F' = ged (af ), j =2,... ,n.

Finally, suppose that det (A) = det(A) = —1. By the induction
hypothesis, there exists K € GL(n — 1,Z) such that KAK~! is in
standard form. Therefore,

1 1
1 aro 0 Q1n

A~ |0

o
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where
1 0 0 1
X = {0 _1} or L O] .

"

Since rankq(A — I,,) = 1, we have af ; = 0 for j = 2,...,n — 2 and

ai,—1 = 0 or —af,,, respectively. In the first case, conjugation by

€1,n—1 gives

But, by Lemma 14,

is conjugate to

o) e o 5

Thus A is conjugate to Se or Ss. In the second case, conjugation by

1 a’l/m
1
gives A ~ Sj.
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