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C∗-ALGEBRAS OF DYNAMICAL SYSTEMS
OF QUASI ROTATIONS ON TORI

CARLA FARSI AND NEIL WATLING

ABSTRACT. In this note we determine the isomorphism
classes of the crossed product C∗-algebras of affine (n, λ) quasi
rotations of Tn.

1. Introduction. There have been considerable contributions
to the computation of K-theoretical and isomorphism invariants of
C∗-algebras of dynamical systems on the n-torus Tn, which include
certain noncommutative tori [5], [3], [7]. Riedel [5] classified the
crossed products of C(Tn) by minimal rotations of Tn, i.e., minimal
transformations of Tn with degree matrix D(φ) = In. He showed that
the set of eigenvalues of φ is a complete isomorphism invariant. When
φ is a minimal homeomorphism of Tn with quasi discrete spectrum,
Packer [3] computed the tracial range of K0(C(Tn) �αφ Z). For
n = 2, Rouhani [7] classified, by using K-theoretical invariants, the
isomorphism classes of the crossed product C∗-algebras C(T2) �αφ Z,
where φ is an (affine) irrational quasi rotation of T2. That is an (affine)
transformation that has a unitary eigenvalue λ = e2πiθ (θ irrational)
with a unitary eigenfunction f having degree matrixD(f) = [n,m] �= 0,
where n,m are relatively prime and the degree matrix D(φ) satisfies
rankQ(D(φ)− I2) = 1. The concept of quasi rotation admits a natural
generalization to an n quasi rotation for transformations φ : Tn → Tn.
Roughly speaking, φ is now required to have n − 1 eigenvalues while
the degree matrix D(φ) still satisfies rankQ(D(φ) − In) = 1. (See
Definition 2 and Lemma 3.)

Our main result, which generalizes the main theorem in [7] to Tn,
n ≥ 3, is the characterization, using K-theoretical invariants, of the
isomorphism classes of crossed products C(Tn) �αφ Z of Tn, where φ
is an affine n quasi rotation, provided some additional conditions are
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also satisfied (cf. Theorem 12). More precisely, the K-theory groups
K∗(C(Tn)�αφZ), ∗ = 0, 1, and the tracial range τφ∗ (K0(C(Tn)�αφZ))
are shown to be complete isomorphism invariants.

Our results also generalize some of [3] to the broader contest of n
quasi rotations (in fact every n quasi rotation has topologically quasi
discrete spectrum [8]).

In detail, the contents of this note are as follows. In Section 2 we
consider affine transformations φ = aA, a ∈ Tn, A ∈ GL(n,Z), of Tn

satisfying rankQ(A − In) = 1. By detailing the conjugacy classes in
GL(n,Z) of matrices A satisfying rankQ(A − In) = 1, we are able to
compute the K-theory of the crossed products C(Tn) �αφ Z, φ = aA,
rankQ(A−In) = 1. The proof of the conjugacy classes lemma is rather
technical and is given in an Appendix at the end of this note. In
Section 3 we compute the tracial range of C(Tn) �αφ Z, φ = aA,
rankQ(A − In) = 1, under the additional hypothesis that φ is an n
quasi rotation. Section 4 details further properties of n quasi rotations,
which are used in Section 5 where we state and prove our main result,
Theorem 12. The main step in its proof establishes that K-theory
and tracial range determine uniquely, up to isomorphism, a standard
C∗-algebra isomorphic to C(Tn) �αφ Z.

2. K-theory of C(Tn) �αφ Z. In this section we compute the K-
theory of the crossed products C(Tn) �αφ Z, where αφ(f) = f ◦ φ−1.
Here φ(z) = aA(z), a ∈ Tn, A ∈ GL(n,Z), z ∈ Tn, is an affine
transformation of Tn satisfying rankQ(A − In) = 1. Note that A is
acting on Tn by a group automorphism and that A has a topological
interpretation as the degree matrix, D(φ), of φ.

The K-theory of C(Tn) �αφ Z only depends on the conjugacy class
of A in GL(n,Z). The structure of the conjugacy classes of elements A
in GL(n,Z) having rankQ(A− In) = 1 is given in the following lemma,
the proof of which is given in the Appendix. See also [7] for a proof
when n = 2.

Lemma 1 (Conjugacy classes lemma). Let A ∈ GL(n,Z) with
rankQ(A− In) = 1. Then,
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(1) If det (A) = 1, then A is conjugate in GL(n,Z) to

1
. . .

1 0
M 1


 ,

where M ∈ Z \ {0}.
(2) If det (A) = −1, then A is conjugate in GL(n,Z) to


1
. . .

1 0
0 −1


 or



1
. . .

0 1
1 0


 .

We will refer to

1

. . .
1 0
M 1


 ,



1

. . .
1 0
0 −1


 and



1

. . .
0 1
1 0




as the standard form for A and write SM1 , S2 and S3, respectively.

Now we can compute the K-theory of C(Tn)�αφ Z, φ = aA, a ∈ Tn,
A ∈ GL(n,Z), rankQ(A− In) = 1.

By applying the Pimsner-Voiculescu sequence [1], we get

0 −→ Z2n−1
/
Im (1−φ0) −→ K0(C(Tn) �αφ Z) −→ Ker (1−φ1) −→ 0,

0 −→ Z2n−1
/
Im (1−φ1) −→ K1(C(Tn) �αφ Z) −→ Ker (1−φ0) −→ 0,

where φ∗ : K∗(Tn) → K∗(Tn), ∗ = 0, 1, is induced by αφ.

When det (A) = 1, A = SM1 and thus φ∗, ∗ = 0, 1, can be written as


[
1 0

−M 1

]⊗
I2n−3 0

0 I2n−2


 ,
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for n ≥ 3, so that

K∗(C(Tn) �αφ Z) ∼= Z3.2n−2 ⊕ Z2n−3

M , ∗ = 0, 1, n ≥ 3.

When det (A) = −1, if A = S2, then φ∗ =
[
I2n−2 0

0 −I2n−2

]
and therefore,

K∗(C(Tn) �αφ Z) ∼= Z2n−1 ⊕ Z2n−2

2 , ∗ = 0, 1, n ≥ 2.

If A = S3, then

φ∗ =




[
0 1
1 0

] ⊗
I2n−3 0 0

0 −I2n−3 0
0 0 I2n−3




and so,

K∗(C(Tn) �αφ Z ∼= Z2n−1 ⊕ Z2n−3

2 , ∗ = 0, 1, n ≥ 3.

3. The tracial range of K0(C(Tn) �αφ Z). As shown in [5] and
[7], K-theory groups isomorphism does not necessarily imply crossed
product C∗-algebra isomorphism. Indeed, Riedel showed in [5] that
the set of eigenvalues is a complete isomorphism invariant for crossed
products by minimal rotations. Moreover, for affine transformations
of T2, Rouhani [7] required the existence of a unitary eigenvalue
λ = e2πiθ (θ irrational) associated to a unitary eigenfunction f with
degree matrix D(f) = [n,m] �= 0, n,m relatively prime. (In this case,
rankQ(A− I2) = 1). He was thus able to compute the tracial range of
K0(C(T2) �αφ Z) and show that the tracial range together with the
K-theory groups are complete isomorphism invariants.

Generalizing Rouhani’s work to higher dimensions we will assume the
existence of n − 1 eigenvalues and thus complete the tracial range of
K0(C(Tn) �αφ Z).

Definition 2. Let φ = (φ1, . . . , φn) : Tn → Tn be a homeomor-
phism of Tn. Then φi(z1, . . . , zn) = z

ai,1
1 · · · zai,nn e2π

√−1Fi(z1,... ,zn),
where ai,j ∈ Z and Fi(z1, . . . , zn) is continuous and real valued. We
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say that φ is an n quasi rotation if there exist unitaries f1, . . . , fn−1 ∈
C(Tn), λ1, . . . , λn−1 ∈ T \ {1} such that

(1) D(φ) = [ai,j ]i,j=1,... ,n �= In,
(2) fi ◦ φ = λifi,

(3) gcd {all minors of size (n−1)× (n−1) of [D(fi)]i=1,... ,n−1} = 1.

Note that condition (3) above is equivalent to requiring that the
matrix [D(fi)] be completable (by adding another row) to a matrix
in SL(n,Z), thus generalizing Rouhani’s condition for n = 2 that
D(f1) = [n,m] �= 0, n,m relatively prime.

Affine transformations φ = aA : Tn → Tn, a ∈ Tn and A ∈
GL(n,Z), with A = SM1 , S2, S3 are n quasi rotations. In fact,
the ordered sets z1, . . . , zn−1, respectively z1, . . . , zn−2, zn−1zn, and
a1, . . . , an−1, respectively a1, . . . , an−2, an−1an, are a set of eigenfunc-
tions and eigenvalues for φ.

The following lemmas are an easy consequence of Definition 2.

Lemma 3. Let φ be an n quasi rotation with associated degree
matrices D(φ) and [D(fi)]. Then,

(1) D(fi) �= [0, . . . , 0] for all i = 1, . . . , n− 1,

(2) D(fi)(D(φ)− In) = 0 for all i = 1, . . . , n− 1,

(3) rankQ(D(φ)− In) = 1.

Lemma 4. Let φ be an n quasi rotation with associated degree
matrices D(φ) and [D(fi)]. Then, for any matrix Y ∈M((n−1)×n,Z)
such that Y (D(φ) − In) = 0, there exists a matrix Λ ∈ M(n − 1,Z)
such that Y = Λ[D(fi)].

Proof. First notice that for all K ∈ GL(n,Z), [D(fi)]K satisfies (3)
of Definition 2. This follows since, by (3), we can choose a matrix
R ∈M(1× n,Z) such that

det
[
[D(fi)]
R

]
= 1.
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So

det
[
[D(fi)]
R

]
K = det

[
[D(fi)]K
RK

]
= ±1.

If we write D(φ) = KSK−1, with S the standard form for D(φ), then
both Y K and [D(fi)]K are solutions of X(S−In) = 0. Since [D(fi)]K
also satisfies (3) of Definition 2 its rows span the left null space of S−In,
which implies Y K = Λ[D(fi)]K for some Λ ∈ M(n− 1,Z), and hence
Y = Λ[D(fi)].

Now, to compute the tracial range of C(Tn) �αφ Z, where φ is
an n quasi rotation, let [D(fi)] be the degree matrix relative to the
eigenfunctions fi associated to the eigenvalues λi = e2π

√−1θi, 0 < θi <
1, of φ. For a fixed i, define ρi : C(T) → C(Tn) by ρi(g) = g ◦ fi.
ρi induces a homomorphism between the rotation algebra Aλi and
C(Tn)�αφ Z. By the naturality of the Pimsner-Voiculescu sequence, it
follows that the image of the exponential of the Rieffel projection [6] in
K1(C(Tn)�αφ Z) is fi, [7]. By Lemma 4, [D(fi)] generates the kernel
of (ι− α∗φ) in H1(Tn,Z). Therefore, for any trace τφ on C(Tn)�αφ Z
([1, pp. 99 100], [4]),

τφ∗ (K0(C(Tn) �αφ Z)) = Z+ θ1Z+ · · ·+ θn−1Z.

4. Some properties of n quasi rotations. In this section we will
derive some additional properties of n quasi rotations, which we will
use in Section 5 in the proof of our main result.

Proposition 5. Let φ be an n quasi rotation with associated
degree matrices D(φ) and [D(fi)] (relative to the eigenvalues λi and
to the eigenfunctions fi). Let µi and gi (with degree matrix [D(gi)])
be another system of eigenvalues and eigenfunctions for φ satisfying
(1), (2) and (3) of Definition 2. Then µi =

∏n−1
j=1 λ

αi,j
j for some

Λ = [αi,j ] ∈ GL(n− 1,Z).

Proof. Since [D(gi)] = Λ[D(fi)], Λ = [αi,j ] ∈ M(n − 1,Z) with
[D(fi)] and [D(gi)] both satisfying (3) of Definition 2, it follows that
det (Λ) = ±1 since det (Λ) is a factor of all the (n−1)×(n−1) minors of
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[D(gi)]. By using the eigenvalue equations fi ◦φ=λifi and gi ◦φ=µigi,
we get hi ◦ φ = νihi, with hi =

∏n−1
j=1 f

αi,j
j gi and νi =

∏n−1
j=1 λ

αi,j
j µi

for i = 1, . . . , n − 1. Note that D(hi) = 0 and therefore hi(z) =
e2π

√−1Hi(z). So hi ◦ φ = νihi becomes e2π
√−1[Hi(φ(z))−Hi(z)] = νi or

Hi(φ(z)) −Hi(z) = ci for some constant ci and for all z ∈ Tn. Thus,
Hi(φk(z))−Hi(z) = kci for all k ∈ Z and for all z ∈ Tn. Hence, as the
lefthand side is bounded, ci = 0, that is, νi = 1 for i = 1, . . . , n− 1. So
we must have µi =

∏n−1
j=1 λ

αi,j
j .

Proposition 6. Let φ be an n quasi rotation with associated degree
matrices D(φ) and [D(fi)].

Let

λ̂ =


 λ1
...

λn−1


 and f̂ =



f1
...

fn−1


 .

Then, for any Λ ∈ GL(n− 1,Z) with

Λ =


 Λ1

...
Λn−1


 ,

Λif̂ ◦ φ = Λiλ̂Λif̂ , i = 1, . . . , n− 1.

Proof. Straightforward using fi ◦ φ = λifi.

Lemma 7. If φ = aA is an affine n quasi rotation with associated
degree matrices D(φ) = A and [D(fi)], then λi = D(fi)(a).

Proof. We can write fi(z) = D(fi)(z)e2π
√−1Fi(z), and using fi ◦ φ =

λifi obtain

D(fi)(a)D(fi)A(z)e2π
√−1Fi(φ(z)) = λiD(fi)(z)e2π

√−1Fi(z).

Now we observe that D(fi) = D(fi)A so e2π
√−1[Fi(φ(z))−Fi(z)] =

λiD(fi)(a). Repeating the same argument as that in the proof of
Proposition 5, we get λi = D(fi)(a).
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5. Complete isomorphism invariants of C(Tn)�αφZ. Now we
consider affine n quasi rotations, i.e., affine transformations φ = aA :
Tn → Tn, a ∈ Tn, and A ∈ GL(n,Z), which are also n quasi rotations.

As mentioned in Section 3, in the particular case A = SM1 , S2, respec-
tively S3, the ordered sets z1, . . . , zn−1, respectively z1, . . . , zn−2, zn−1

zn, and a1, . . . , an−1, respectively a1, . . . , an−2, an−1an, are a set of
eigenfunctions and eigenvalues for φ. The tracial range of C(Tn)�αφ Z
is completely determined by the eigenvalues λi of φ. To recover infor-
mation on crossed product C∗-algebra isomorphism classes from infor-
mation on the tracial range, we now restrict to quasi rotations with
IRRI eigenvalues, that is,

Definition 8. An affine n quasi rotation with IRRI eigenvalues
is an affine n quasi rotation φ with eigenvalues λi = e2π

√−1θi , i =
1, . . . , n − 1, such that θ1, . . . , θn−1, are irrational and rationally
independent (mod (1)).

In the particular case A = SM1 , S2, respectively S3, φ has IRRI
eigenvalues if q1, . . . , qn−1, respectively q1, . . . , qn−2, qn−1 + qn, are
irrational and rationally independent. (Where aj = e2π

√−1qj , qj ∈ R,
j = 1, . . . , n.)

Our main result, Theorem 12, characterizes crossed products of affine
n quasi rotations with IRRI eigenvalues, provided λn−1 is fixed. We
will now state and prove some additional results needed in the proof of
Theorem 12.

Proposition 9. Let φ = aA be an affine n quasi rotation with IRRI
eigenvalues and KAK−1 = S be the standard form for A.

(i) φ is topologically conjugate to the affine n quasi rotation with
IRRI eigenvalues ψ = sS, where

s = K(a) =



K(a)1

...
K(a)n


 .
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(ii) ψ = sS, s =

[ s1
...
sn

]
, is topologically conjugate to ω = rS, with

r =



s1
...

sn−1

1


 if S = SM1 , S2

or

r =




s1
...

sn−2

sn−1sn
1


 if S = S3.

(iii) ω = rS is topologically conjugate to η = tS where t = L(r) for
any L ∈ GL(n,Z) commuting with S.

Proof. (i) If we define δ(z) = K(z), φ and ψ are topologically
conjugate via δ. It remains to show that ψ is an n quasi rotation
with IRRI eigenvalues. Put

X =


 1 0

. . .
...

1 0


 or X =


 1 0

. . .
...

1 1




according to S = SM1 , S2 or S3. Now XS = X and hence XKA = XK
so by Lemma 4, there exists Λ ∈ GL(n − 1,Z) such that Λ[D(fi)] =
XK. Moreover, by Proposition 6 and Lemma 7, XK(a) = Λ[D(fi)](a)
is an IRRI system of eigenvalues for φ. It is now straightforward to show
that XK(a) is an IRRI system of eigenvalues for ψ with eigenfunctions
z1, . . . , zn−1 or z1, . . . , zn−2, zn−1zn.

(ii) δ(z) = dIn(z) with

d =




1
...

dn−1

1


 ,
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dn−1 = s−1/M
n , s−1

n if S = SM1 , S3 respectively, or

d =




1
...
1
s
1/2
n




if S = S2 intertwines ψ and ω.

(iii) δ(z) = L(z) intertwines ω and η.

The previous proposition’s proof motivates the following definition
(cf. also [3]).

Definition 10. Let φ = aA and KAK−1 = S be the stan-
dard form of A. If S = SM1 , S2, respectively S3, we will call
the ordered sets z1, . . . , zn−1, respectively z1, . . . , zn−2, zn−1zn, and
K(a)1, . . . ,K(a)n−1, respectivelyK(a)1, . . . ,K(a)n−2,K(a)n−1K(a)n,
a standard set of eigenfunctions and eigenvalues for φ.

Definition 11. Let λ ∈ T \ {1}. We say φ is an affine (n, λ) quasi
rotation if φ is an affine n quasi rotation and there exists a standard
set of eigenvalues λ1, . . . , λn−1 for φ such that λn−1 = λ±1.

Theorem 12. Let φ = aA and ψ = bB be affine (n, λ) quasi
rotations with IRRI eigenvalues. Then the following are equivalent:

(i) C(Tn) �αφ Z ∼= C(Tn) �αψ Z.

(ii) K∗(C(Tn) �αφ Z) ∼= K∗(C(Tn) �αψ Z), ∗ = 0, 1, and for any
tracial state τφ on C(Tn) �αφ Z, respectively τψ on C(Tn) �αψ Z, we
have

τφ∗ (K0(C(Tn) �αφ Z)) ∼= τψ∗ (K0(C(Tn) �αψ Z)).

(iii) φ and ψ are topologically conjugate via an affine transformation.

Proof. As (3)⇒ (1) and (1)⇒ (2) are trivial, we only need to show (2)
⇒ (3). Since C(Tn)�αφZ and C(Tn)�αψZ have the sameK-theory, A
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and B are both conjugate to the same standard form S (see Section 2).
That is, there exist K1,K2 ∈ GL(n,Z) such that K1AK

−1
1 = S and

K2BK
−1
2 = S. Thus, by Proposition 9, φ is topologically conjugate to

ω1 = r1S, where

r1 =



λ1
...

λn−1

1


 ,

and ψ is topologically conjugate to ω2 = r2S, where

r2 =



µ1
...

µn−1

1


 ,

with λ1, . . . , λn−1, respectively µ1, . . . , µn−1, a standard set of eigen-
values for φ, respectively ψ. Note that φ and ψ are affine (n, λ) quasi
rotations so we can assume λn−1 = λ±1 = µ±1

n−1. As

τφ∗ (K0(C(Tn) �αφ Z)) ∼= τψ∗ (K0(C(Tn) �αψ Z)),

there exists Λ = [αi,j ] ∈ GL(n− 1,Z) such that

Λ


 λ1

...
λn−1


 =



µ1
...

µn−1


 .

Moreover, αn−1,j = 0 for j = 1, . . . , n − 2, αn−1,n−1 = ±1 because
λn−1 = µ±1

n−1 and the λi’s are IRRI. Thus,



µ1
...

µn−1

1


 =



α1,1 · · · · · · α1,n−1 β1

...
...

...
αn−2,1 · · · · · · αn−2,n−1 βn−2

0 · · · · · · ±1 0
0 · · · · · · 0 ±1






λ1
...

λn−1

1


 ,

β1, . . . , βn−2 ∈ Z.
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Finally, by Proposition 9(iii), ω1 is topologically conjugate to ω2 with
L the matrix above where we choose βi = 0, respectively βi = αi,n−1

for i = 1, . . . , n− 2 if S = SM1 or S2, respectively S3.

Remark 13. If φ = aA is an affine n quasi rotation with A having
standard form S2, the three conditions of Theorem 12 are equivalent
since

[
Λ 0

0 ±1

]
commutes with S2 for any Λ ∈ GL(n− 1,Z).

Appendix

Proof of Lemma 1. We will prove Lemma 1 using induction on the
size of A. For n = 2, the result was proved by Rouhani:

Lemma 14 [7]. Let A ∈ GL(2,Z) with rankQ(A− I2) = 1.

(i) If det (A) = 1, then A is conjugate in GL(2,Z) to
[

1 0

M 1

]
,

M ∈ Z \ {0}.
(ii) If det (A) = −1, then A is conjugate in GL(2,Z) to

[
1 0

0 −1

]
or[

0 1

1 0

]
.

Now suppose that for every matrix Ã ∈ GL(k,Z), k < n, Lemma 1
holds, and consider A = [ai,j ] ∈ GL(n,Z). Firstly, since det (A) = ±1,
rankQ(A − In) = 1, there is at least one nonzero off diagonal ele-
ment. By conjugating A with elementary matrices, we can assume
that an,1 �= 0. Let E1 = gcd (an,1, an,2) �= 0, choose t1, r1 such that

t1(an,1/E1)−r1(an,2/E1) = 1, and put B =
[
α β

γ δ

]
, with α = (αn,1/E1),

β = (αn,2/E1), γ = r1 and δ = t1. Define the matrix K ∈ GL(n,Z)
by K =

[
B 0

0 In−2

]
. Now KAK−1 is a matrix whose last row is

[E1, 0, an,3, an,4, . . . , an,n]. Conjugating again by the elementary ma-
trix e2,3 (which switches rows 2 and 3), we get that A is similar to a ma-
trix having as last row [E1, an,3, 0, an,4, . . . , an,n] so that by proceeding
as before and then conjugating by e2,4 etc., A is similar to a matrix hav-
ing as last row [E, 0, . . . , 0, an,n], where E = gcd (an,1, . . . , an,n−1) �= 0.
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Now, by using the fact that rankQ(A− In) = 1, we see that

A ∼




a′
1,1 0 · · · 0 a′

1,n

a′
2,1 1

. . .
.
.. a′

2,n

.

..
. . . 0

.

..

a′
n−1,1 0 · · · 1 a′

n−1,n

E 0 · · · 0 an,n




∼




1 a′
2,1 0 · · · 0 a′

2,n

0 a′
1,1 0 · · · 0 a′

1,n

0 0 1
. . .

...
...

.

..
.
..

. . .
. . . 0

.

..

0 a′
n−1,1 0 · · · 1 a′

n−1,n

0 E 0 · · · 0 an,n




.

Since det (A) = ±1, it follows that det (Ã) = ±1, where

Ã =




a′1,1 0 · · · 0 a′1,n

0 1
. . .

...
...

...
. . . . . . 0

...
a′n−1,1 0 · · · 1 a′n−1,n

E 0 · · · 0 an,n


 .

Suppose now that det (A) = det (Ã) = 1. Either rankQ(Ã− In−1) =
1, so by the induction hypothesis there exists K ∈ GL(n − 1,Z) such
thatKÃK−1 is in standard form or rankQ(Ã−In−1) = 0 and Ã = In−1.
Therefore,

[
1 0
0 K

]
A

[
1 0
0 K

]−1

=



1 a′′1,2 · · · a′′1,n
0
... KÃK−1

0


 .

Conjugating by 


0 0 0 · · · 0 1 0
0 0 1 · · · 0 0 0
...

...
. . . . . .

...
...

...

0 0
. . . 1 0 0

0 1 0 · · · 0 0 0
0 0 0 · · · 0 0 1
1 0 0 · · · 0 0 0



,
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we have

A ∼




1 0 · · · · · · 0

0 1
. . .

...
...

. . . . . . . . .
...

M · · · 0 1 0
a′′1,n−1 · · · · · · a′′1,n 1


 , M ∈ Z.

If M �= 0, then a′′1,j = 0 for j = 2, . . . , n − 2, n. Now choose t and r
such that t(M/F ) − r(a′′1,n−1/F ) = 1, where F = gcd (M,a′′1,n−1) and

put B =
[
α β

γ δ

]
with α = (a′′1,n−1)/F , β = −M/F , γ = t and δ = −r.

Conjugating by [
In−2 0
0 B

]
,

we have

A ∼

 1

. . .
F 1


 ∼ SF1 .

If M = 0, without loss of generality, we can assume that a′′1,n−1 �= 0.
We can then proceed as in the first part of the proof to obtain

A ∼

 1

. . .
F 1


 ∼ SF1 ,

with F = gcd (a′′1,j), j = 2, . . . , n.

Finally, suppose that det (A) = det (Ã) = −1. By the induction
hypothesis, there exists K ∈ GL(n − 1,Z) such that KÃK−1 is in
standard form. Therefore,

A ∼



1 a′′1,2 · · · a′′1,n

0 1
. . .

...
...

. . . . . . 0
0 · · · 0 X


 ,
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where

X =
[
1 0
0 −1

]
or

[
0 1
1 0

]
.

Since rankQ(A − In) = 1, we have a′′1,j = 0 for j = 2, . . . , n − 2 and
a′′1,n−1 = 0 or −a′′1,n, respectively. In the first case, conjugation by
e1,n−1 gives

A ∼



1

. . .
1 a′′1,n
0 −1


 .

But, by Lemma 14, [
1 a′′1,n
0 −1

]

is conjugate to [
0 1
1 0

]
or

[
1 0
0 −1

]
.

Thus A is conjugate to S2 or S3. In the second case, conjugation by



1 a′′1,n

. . .
1




gives A ∼ S3.
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