ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 31, Number 2, Summer 2001

A GENERALIZATION OF A THEOREM
OF COHN ON THE EQUATION 23 — Ny? = 41

F. LUCA AND P.G. WALSH

1. Introduction. In [2], Cohn investigated the solvability of the
Diophantine equation

(1.1) 3 — Ny? = +1.
Improving upon previous work of Stroeker [5], Cohn proved the follow-

ing theorem.

Theorem A. Let N denote a squarefree positive integer with no
prime factor of the form 3k + 1. Then the equation z3 — Ny? = 1
has no solutions in positive integers, and the equation x3 — Ny? = —1
has no solutions in positive integers, unless N € {1,2}, in which case

(N,z,y) = (1,2,3) and (N, z,y) = (2,23,78) are the only solutions.

The interesting case in this theorem arises when the irreducible
quadratic factors of 23 + 1 take on values of the form 322, for otherwise
the result is an immediate consequence of quadratic reciprocity. Cohn
deals with this case in a very clever manner by determining all of the
integer solutions to the respective equations

2+ +1=322 z—1=3Nuw?
and

z? — x4+ 1 =322 r+1=3Nuw?,
which are equivalent respectively to

(1.2) 3N2w?* + 3Nw? + 1 = 22
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and
(1.3) 3N%w* — 3Nw? 41 = 22,

We reformulate Cohn’s theorem in terms of these Diophantine equa-
tions as follows.

Theorem B. If N is a squarefree integer not divisible by any prime
p=1 (mod 3), then (1.2) has no positive integer solutions (w, z), and
(1.3) has no positive integers solutions unless N € {1,2}, in which case
(N,w,z) =(1,1,1) and (N, w, z) = (2,2,13) are the only solutions.

The purpose of this paper is to exhibit a more general result concern-
ing integer points on a large class of elliptic curves, which includes the
particular curves considered by Cohn. Using a recent result of Bennett
and the second author [1], we prove the following theorem. If a positive
integer n is of the form n = ma? for some squarefree positive integer m
and an integer a, we refer to m as the squarefree class of n and denote
it by m = (n).

Theorem 1. Let d be a positive integer with d = 3 (mod 4), and
leteq=T+ Uvd > 1 denote the minimal solution to X2 —dY? = 1.
Assume that T is even. Let N denote a squarefree positive integer
which is not divisible by any odd prime p with (—d/p) = 1. Then the
Diophantine equation

(1.4) dAN?*w* + dUNw? + (T/2)? = 2*

has no solutions in positive integers (w,z). Also, the Diophantine
equation

(1.5) dN?w* — dUNw? + (T/2)? = 2?

has no solutions in positive integers (w, z), except only if N = (U), in

which case
(w,2) = <\/g T/2>
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is the only solution, and N = (2U), in which case

(w,2) = (T\/% T/ar-3)

is the only solution.

We remark that the special case of d = 3 in Theorem 1 is precisely
Theorem B. We also note that, if d in Theorem 1 is prime, then it
immediately holds that the corresponding integer T is even, and so the
assumption being made can be removed. To see this, suppose that T
is odd. Then T+ 1 = 2du® and T F 1 = 202, and hence u? — dv? = +1
for some positive integers v and v. Since d = 3 (mod 4), the only
possibility is u? — dv? = 1, and this contradicts the minimality of the
solution (T,U) to X2 —dY? = 1.

General algorithmic procedures for completely solving a given quartic
Diophantine equation of the form y? = f(x) have been developed. Such
methods are described explicitly in [6]. For a recent survey on quartic
Diophantine equations, the reader may wish to consult [7], while for
more applications of the results of [1], we refer the reader to [8] and
[9].

2. Preliminary results. Throughout the paper we will make
reference to the following notation. For a nonsquare positive integer d,
let T'+U+/d denote the minimal solution in positive integers to the Pell
equation X2 —dY? =1, and for k > 1, let T}, + UpvVd = (T + U/d)*.
We interchangeably use 77, respectively Uy, for T, respectively U, and
vice versa. For more details on properties of terms in Lucas sequences,
the reader is referred to [4].

The following was proved by Cohn in [3] and will be used to prove
Theorem 1.

Lemma 1. If T}, = z? for some integer x, then k = 1 or k = 2.
Moreover, if T and Ty are both squares, then T+U+/d = 169+4+/1785.

An immediate corollary to Lemma 1 and the previously cited work
in [1] is the following, which forms the basis to prove Theorem 1.
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Lemma 2. If Ty, /Ty = 2% for some positive integer x, then k = 1.

Proof. First note that, for T} /T1 to be an integer, k must be odd.
By Lemma 1, it follows that there are integers b, u,v with b > 1 and
squarefree, such that T, = bu? and T} = bv?. By the main result of
[1], this implies that k = 1.

Lemma 3. If p is an odd prime divisor of some term Ty, then
(=d/p) =1.

Proof. As T — 1 = dU, it follows that there are positive integers
a,b,r, s such that T, — 1 = ra? and T}, + 1 = sb?, where either d = rs
and Uy, = ab, or 4d = rs and Uy, = 2ab. In either case, 2T}, = ra® + sb?,

and so if p is a prime factor of T}, then ra? = —sb?> (mod p). Since

ged (T, Uy) = 1, we have that ged (p,b) = 1 and so (ra(2°b)~1)% = —d
(mod p), where § € {0,1}, proving the lemma.

Lemma 4. For allk > 1, Usg41 — U = 2UTk41 and Uggy1 + Uy =
2T Uky1-

Proof. We prove the first equality, as the second is proved in the same
manner. Using basic properties of solutions to Pell equations, we have
the following

Uskt1 — Uy = Top Uy + T1 U2 — Uy
= (2T} — 2)Uy + 214 T1.Uy
= 2dUU; + 2Ty T Uy,
= Uy (2dU,U; 4 2T T},)
= 2U;Tj41-

3. Proof of Theorem 1. We first consider (1.4). Let s =
(dUy — 1)/2 and r» = (d 4+ 1)/4; then from (1.4) it is easily deduced,
with & = dNw? + s, that 22 +  + r = dz?, and hence

(22)? —d(%;— 1)2 —1.
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Therefore, U; = (2z+ 1)/d for some | > 1, and since T} = 2z, it follows
that [ is odd. Let [ = 2k + 1, then from the definition of s and of x,

dUspy1 —dU; =22+ 1 — 25 — 1 = 2(x — s) = 2dNw?,
and hence Usg1 — U = 2Nw?. By Lemma 4, this implies that
(31) Uka+1 = N’LU2.

Assume first that & is odd. In this case we claim that ged (Ug, Tip41) =
1. To see this, by the definition of the sequences {T}} and {Uj}, one
has the relation Uy, = U171 —Tx4+1U1, and so if p divides both Uy and
Ty+1, then p divides either Ug,q or p divides 73. The former case is
clearly not possible, and so p divides T7. Since T; divides Uy, p divides
ged (Ug, Uz) = Uged (k,2) = U, a contradiction proving the claim.

By our assumption on the prime factors of IV, together with Lemma 3,
(3.1) shows that Tjy1 = v? or Tyy1 = 2v? for some integer v. Since
k + 1 is even, Ty, is odd, and so only the case Ty, 1 = v? can occur.
By Lemma 1, k+ 1 = 2, and so T = v2. But T = 277 — 1, and so
v? —2T% = —1, forcing T} to be odd, contradicting the hypothesis that
T, is even.

Now assume that k is even, k = 2m. Then

2Nw? = Uy Tom+1 = Uz (Uam /U2)T1 (Torms1/Th)
= 21U (Uam /U2) T1 (Tom1/T1)

from which it follows that there is another integer y for which

Ny? = Uy (Ui /Us) (Toms1/Th).

In a manner similar to the above case, it is easy to show that
ged (Uy (U /Us), (Tom+1/T1)) = 1. Therefore, by the assumption
on the prime factors of N, together with Lemma 3, it follows that
Tom+1/Th = v? for some integer v. We deduce from Lemma 2 that
m = 0, hence kK = 0, and so U, = Uy = 0, which shows that w = 0.
Thus, (1.4) has no solutions in positive integers.

We now consider (1.5). Let s and r be defined as above; then with
x = dNw? — s, we find that (1.5) yields 22 — z + r = dz2, and hence

(22)? —d(%d_ 1)2 ~ 1.
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Therefore, Uz +1 = (22 — 1)/d for some k > 0. If k = 0, then dU; =
22—1, and from the definition of s this entails that dNw? = z+s = dUj,
that is, N = (Uy). It follows that w = \/U; /N and z = Ty /2.

Henceforth assume that £ > 1. From the definitions of s and =,
Usgi1 + U = 2Nw?, and so an application of Lemma 4 gives

(3.2) T U1 = Nw?.

Assume first that k is even; then, as argued above, ged (Tg, Ugy1) = 1.
By the assumption on the prime factors of N together with Lemma 1,
Lemma 3 and the fact that T is odd, we find that T, = v? for
some integer v. But this implies that 77 is odd, which contradicts
our hypothesis on Tj.

Assume now that k is odd. Then
Nw? = Ty (Ty/T1) 2T, U1 (U 41 /Us)
and it follows that
(3.3) N(w/T1)? = (Ti/T1)2U1 (Ug 11 /Us).

As argued in an earlier case ged ((Tx/T1), 2U1(Uk+1/U2)) = 1, and so
it follows from the assumption on the prime factors of N, together
with Lemma 3, that Ty /77 is a square. Therefore, we conclude from
Lemma 2 that & = 1. Thus, (3.3) becomes N(w/T})? = 2U;, from
which we obtain N = (2U;), w = T1/2U; /N, and z = (T1/2) (417 -3).
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