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A GENERALIZATION OF A THEOREM
OF COHN ON THE EQUATION x3 − Ny2 = ±1

F. LUCA AND P.G. WALSH

1. Introduction. In [2], Cohn investigated the solvability of the
Diophantine equation

(1.1) x3 − Ny2 = ±1.

Improving upon previous work of Stroeker [5], Cohn proved the follow-
ing theorem.

Theorem A. Let N denote a squarefree positive integer with no
prime factor of the form 3k + 1. Then the equation x3 − Ny2 = 1
has no solutions in positive integers, and the equation x3 − Ny2 = −1
has no solutions in positive integers, unless N ∈ {1, 2}, in which case
(N, x, y) = (1, 2, 3) and (N, x, y) = (2, 23, 78) are the only solutions.

The interesting case in this theorem arises when the irreducible
quadratic factors of x3±1 take on values of the form 3z2, for otherwise
the result is an immediate consequence of quadratic reciprocity. Cohn
deals with this case in a very clever manner by determining all of the
integer solutions to the respective equations

x2 + x + 1 = 3z2, x − 1 = 3Nw2

and

x2 − x + 1 = 3z2, x + 1 = 3Nw2,

which are equivalent respectively to

3N2w4 + 3Nw2 + 1 = z2(1.2)
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and

3N2w4 − 3Nw2 + 1 = z2.(1.3)

We reformulate Cohn’s theorem in terms of these Diophantine equa-
tions as follows.

Theorem B. If N is a squarefree integer not divisible by any prime
p ≡ 1 (mod 3), then (1.2) has no positive integer solutions (w, z), and
(1.3) has no positive integers solutions unless N ∈ {1, 2}, in which case
(N, w, z) = (1, 1, 1) and (N, w, z) = (2, 2, 13) are the only solutions.

The purpose of this paper is to exhibit a more general result concern-
ing integer points on a large class of elliptic curves, which includes the
particular curves considered by Cohn. Using a recent result of Bennett
and the second author [1], we prove the following theorem. If a positive
integer n is of the form n = ma2 for some squarefree positive integer m
and an integer a, we refer to m as the squarefree class of n and denote
it by m = 〈n〉.

Theorem 1. Let d be a positive integer with d ≡ 3 (mod 4), and
let εd = T + U

√
d > 1 denote the minimal solution to X2 − dY 2 = 1.

Assume that T is even. Let N denote a squarefree positive integer
which is not divisible by any odd prime p with (−d/p) = 1. Then the
Diophantine equation

(1.4) dN2w4 + dUNw2 + (T/2)2 = z2

has no solutions in positive integers (w, z). Also, the Diophantine
equation

(1.5) dN2w4 − dUNw2 + (T/2)2 = z2

has no solutions in positive integers (w, z), except only if N = 〈U〉, in
which case

(w, z) =
(√

U

N
, T/2

)
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is the only solution, and N = 〈2U〉, in which case

(w, z) =
(

T

√
2U

N
, (T/2)(4T 2 − 3)

)

is the only solution.

We remark that the special case of d = 3 in Theorem 1 is precisely
Theorem B. We also note that, if d in Theorem 1 is prime, then it
immediately holds that the corresponding integer T is even, and so the
assumption being made can be removed. To see this, suppose that T
is odd. Then T ± 1 = 2du2 and T ∓ 1 = 2v2, and hence u2 − dv2 = ±1
for some positive integers u and v. Since d ≡ 3 (mod 4), the only
possibility is u2 − dv2 = 1, and this contradicts the minimality of the
solution (T, U) to X2 − dY 2 = 1.

General algorithmic procedures for completely solving a given quartic
Diophantine equation of the form y2 = f(x) have been developed. Such
methods are described explicitly in [6]. For a recent survey on quartic
Diophantine equations, the reader may wish to consult [7], while for
more applications of the results of [1], we refer the reader to [8] and
[9].

2. Preliminary results. Throughout the paper we will make
reference to the following notation. For a nonsquare positive integer d,
let T +U

√
d denote the minimal solution in positive integers to the Pell

equation X2 − dY 2 = 1, and for k ≥ 1, let Tk + Uk

√
d = (T + U

√
d)k.

We interchangeably use T1, respectively U1, for T , respectively U , and
vice versa. For more details on properties of terms in Lucas sequences,
the reader is referred to [4].

The following was proved by Cohn in [3] and will be used to prove
Theorem 1.

Lemma 1. If Tk = x2 for some integer x, then k = 1 or k = 2.
Moreover, if T1 and T2 are both squares, then T +U

√
d = 169+4

√
1785.

An immediate corollary to Lemma 1 and the previously cited work
in [1] is the following, which forms the basis to prove Theorem 1.
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Lemma 2. If Tk/T1 = x2 for some positive integer x, then k = 1.

Proof. First note that, for Tk/T1 to be an integer, k must be odd.
By Lemma 1, it follows that there are integers b, u, v with b > 1 and
squarefree, such that Tk = bu2 and T1 = bv2. By the main result of
[1], this implies that k = 1.

Lemma 3. If p is an odd prime divisor of some term Tk, then
(−d/p) = 1.

Proof. As T 2
k − 1 = dU2

k , it follows that there are positive integers
a, b, r, s such that Tk − 1 = ra2 and Tk + 1 = sb2, where either d = rs
and Uk = ab, or 4d = rs and Uk = 2ab. In either case, 2Tk = ra2 +sb2,
and so if p is a prime factor of Tk, then ra2 ≡ −sb2 (mod p). Since
gcd (Tk, Uk) = 1, we have that gcd (p, b) = 1 and so (ra(2δb)−1)2 ≡ −d
(mod p), where δ ∈ {0, 1}, proving the lemma.

Lemma 4. For all k ≥ 1, U2k+1 −U1 = 2UkTk+1 and U2k+1 + U1 =
2TkUk+1.

Proof. We prove the first equality, as the second is proved in the same
manner. Using basic properties of solutions to Pell equations, we have
the following

U2k+1 − U1 = T2kU1 + T1U2k − U1

= (2T 2
k − 2)U1 + 2T1TkUk

= 2dU2
kU1 + 2T1TkUk

= Uk(2dUkU1 + 2T1Tk)
= 2UkTk+1.

3. Proof of Theorem 1. We first consider (1.4). Let s =
(dU1 − 1)/2 and r = (d + 1)/4; then from (1.4) it is easily deduced,
with x = dNw2 + s, that x2 + x + r = dz2, and hence

(2z)2 − d

(
2x + 1

d

)2

= 1.
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Therefore, Ul = (2x + 1)/d for some l ≥ 1, and since Tl = 2z, it follows
that l is odd. Let l = 2k + 1, then from the definition of s and of x,

dU2k+1 − dU1 = 2x + 1 − 2s − 1 = 2(x − s) = 2dNw2,

and hence U2k+1 − U1 = 2Nw2. By Lemma 4, this implies that

(3.1) UkTk+1 = Nw2.

Assume first that k is odd. In this case we claim that gcd (Uk, Tk+1) =
1. To see this, by the definition of the sequences {Tk} and {Uk}, one
has the relation Uk = Uk+1T1−Tk+1U1, and so if p divides both Uk and
Tk+1, then p divides either Uk+1 or p divides T1. The former case is
clearly not possible, and so p divides T1. Since T1 divides U2, p divides
gcd (Uk, U2) = Ugcd (k,2) = U1, a contradiction proving the claim.

By our assumption on the prime factors of N , together with Lemma 3,
(3.1) shows that Tk+1 = v2 or Tk+1 = 2v2 for some integer v. Since
k + 1 is even, Tk+1 is odd, and so only the case Tk+1 = v2 can occur.
By Lemma 1, k + 1 = 2, and so T2 = v2. But T2 = 2T 2

1 − 1, and so
v2 −2T 2

1 = −1, forcing T1 to be odd, contradicting the hypothesis that
T1 is even.

Now assume that k is even, k = 2m. Then

2Nw2 = U2mT2m+1 = U2(U2m/U2)T1(T2m+1/T1)
= 2T1U1(U2m/U2)T1(T2m+1/T1)

from which it follows that there is another integer y for which

Ny2 = U1(U2m/U2)(T2m+1/T1).

In a manner similar to the above case, it is easy to show that
gcd (U1(U2m/U2), (T2m+1/T1)) = 1. Therefore, by the assumption
on the prime factors of N , together with Lemma 3, it follows that
T2m+1/T1 = v2 for some integer v. We deduce from Lemma 2 that
m = 0, hence k = 0, and so Uk = U0 = 0, which shows that w = 0.
Thus, (1.4) has no solutions in positive integers.

We now consider (1.5). Let s and r be defined as above; then with
x = dNw2 − s, we find that (1.5) yields x2 − x + r = dz2, and hence

(2z)2 − d

(
2x − 1

d

)2

= 1.
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Therefore, U2k+1 = (2x − 1)/d for some k ≥ 0. If k = 0, then dU1 =
2x−1, and from the definition of s this entails that dNw2 = x+s = dU1,
that is, N = 〈U1〉. It follows that w =

√
U1/N and z = T1/2.

Henceforth assume that k ≥ 1. From the definitions of s and x,
U2k+1 + U1 = 2Nw2, and so an application of Lemma 4 gives

(3.2) TkUk+1 = Nw2.

Assume first that k is even; then, as argued above, gcd (Tk, Uk+1) = 1.
By the assumption on the prime factors of N together with Lemma 1,
Lemma 3 and the fact that Tk is odd, we find that T2 = v2 for
some integer v. But this implies that T1 is odd, which contradicts
our hypothesis on T1.

Assume now that k is odd. Then

Nw2 = T1(Tk/T1)2T1U1(Uk+1/U2)

and it follows that

(3.3) N(w/T1)2 = (Tk/T1)2U1(Uk+1/U2).

As argued in an earlier case gcd ((Tk/T1), 2U1(Uk+1/U2)) = 1, and so
it follows from the assumption on the prime factors of N , together
with Lemma 3, that Tk/T1 is a square. Therefore, we conclude from
Lemma 2 that k = 1. Thus, (3.3) becomes N(w/T1)2 = 2U1, from
which we obtain N = 〈2U1〉, w = T1

√
2U1/N , and z = (T1/2)(4T 2

1 −3).
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