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CONSTANT-SIGN SOLUTIONS OF
A SYSTEM OF INTEGRAL EQUATIONS
WITH INTEGRABLE SINGULARITIES

RAVI P. AGARWAL, DONAL O’REGAN AND PATRICIA J.Y. WONG

ABSTRACT. We consider the following systems of Fred-
holm integral equations

ui(t) =

∫ 1

0

gi(t, s)fi(s, u1(s), u2(s), . . . , un(s)) ds,

t ∈ [0, 1], 1 ≤ i ≤ n

ui(t) =

∫ ∞

0

gi(t, s)fi(s, u1(s), u2(s), . . . , un(s)) ds,

t ∈ [0,∞), 1 ≤ i ≤ n

and the system of Volterra integral equations

ui(t) =

∫ t

0

gi(t, s)fi(s, u1(s), u2(s), . . . , un(s)) ds,

t ∈ [0, T ], 1 ≤ i ≤ n,

where the nonlinearities fi, 1 ≤ i ≤ n may be singular in
the independent variable and may also be singular at uj = 0,
j ∈ {1, 2, . . . , n}. Our aim is to establish criteria such that
the above systems have at least one constant-sign solution
(u1, u2, . . . , un), i.e., for each 1 ≤ i ≤ n, θiui ≥ 0 where
θi ∈ {1,−1} is fixed.

1. Introduction. In this paper we consider three systems of singular
integral equations. Specifically we are interested in the following
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systems of Fredholm integral equations

(F )
ui(t) =

∫ 1

0

gi(t, s)fi(s, u1(s), u2(s), . . . , un(s)) ds,

t ∈ [0, 1], 1 ≤ i ≤ n

(F )∞
ui(t) =

∫ ∞

0

gi(t, s)fi(s, u1(s), u2(s), . . . , un(s)) ds,

t ∈ [0,∞), 1 ≤ i ≤ n

and the system of Volterra integral equations

(V )
ui(t) =

∫ t

0

gi(t, s)fi(s, u1(s), u2(s), . . . , un(s)) ds,

t ∈ [0, T ], 1 ≤ i ≤ n

where T > 0 is fixed. The nonlinearities fi, 1 ≤ i ≤ n in the above
systems may be singular in the independent variable and may also be
singular at uj = 0, j ∈ {1, 2, . . . , n}.

By using Schauder and Schauder-Tychonoff fixed point theorems, we
shall develop existence criteria for a constant-sign solution of the above
systems. A solution u = (u1, u2, . . . , un) is said to be of constant sign
if, for each 1 ≤ i ≤ n, θiui(t) ≥ 0 for t in the respective domain; here
θi ∈ {1,−1} is fixed. Note that positive solution is a special case of
constant-sign solution when θi = 1 for all 1 ≤ i ≤ n.

There are only a handful of papers in the literature, see [1 10 and
the references therein] that tackle particular cases of (F ), (F )∞ and
(V ), namely, when n = 1, θ1 = 1, and the nonlinearity has the form
f(t, y) = y−a, a > 0. Thus, f is singular only in the dependent
variable y. For instance, in [8, 10], the following problem that arises in
communications, as well as in boundary layer theory in fluid dynamics,
is discussed

y(t) =
∫ 1

0

g(t, s)
1
y(s)

ds, t ∈ [0, 1].

Karlin and Nirenberg [6] have also studied a more general problem

y(t) =
∫ 1

0

g(t, s)
1

[y(s)]a
ds, t ∈ [0, 1]
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where a > 0 is fixed and g is a nonnegative continuous function on
[0, 1] × [0, 1].

Our present work uses a new approach to establish new results.
In particular, the restrictive conditions in [6], namely, (i) f(t, y) is
bounded as y → ∞, (ii) g is continuous and bounded, and (iii) g(t, t) >
0 for all t > 0 are not needed in our theorems. Moreover, we
have generalized the problems to (i) systems, (ii) general form of
nonlinearities fi, 1 ≤ i ≤ n that can be singular in both independent
and dependent variables, (iii) existence of constant-sign solutions,
which include positive solutions as a special case. The paper is outlined
as follows. In Section 2 we shall state the necessary fixed point
theorems. The existence results for systems (F ), (V ) and (F )∞ are
presented in Section 3.

2. Preliminaries.

Theorem 2.1 (Schauder fixed point theorem). Let D be a closed,
convex subset of a normed linear space E. Then every compact and
continuous map S : D → D has at least one fixed point.

Theorem 2.2 (Schauder-Tychonoff fixed point theorem). Let D be
a closed, convex subset of a Fréchet space E. Assume that S : D → D
is continuous, and S(D) is relatively compact in E. Then S has at least
one fixed point in D.

We also require compactness criteria in the various spaces that we
work in.

Theorem 2.3 (Arźela-Ascoli theorem). Let M ⊆ C[0, T ]. If M is
uniformly bounded and equicontinuous, then M is relatively compact in
C[0, T ].

Let BC[0,∞) be the space of bounded continuous functions on [0,∞),
and let

(2.1) Cl[0,∞) =
{
y | y ∈ BC[0,∞) and lim

t→∞ y(t) exists
}
.
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Theorem 2.4 [4, p. 62]. Let M ⊆ Cl[0,∞). Then M is compact in
Cl[0,∞) if (a) M is bounded in Cl[0,∞); (b) the functions in M are
equicontinuous on any compact interval of [0,∞); (c) the functions in
M are equiconvergent, i.e., given ε > 0, there exists T (ε) > 0 such that
|f(t) − f(∞)| < ε for any t ≥ T (ε) and f ∈M .

3. Main results. In this section we shall present existence results
for the systems of integral equations (F ), (F )∞ and (V ). Throughout
we shall denote u = (u1, u2, . . . , un), and for 1 ≤ j ≤ n,

(3.1) [0,∞)j =
{

[0,∞) if θj = 1,
(−∞, 0] if θj = −1.

System (F ). Our first three results are for the system of Fredholm
integral equations (F ), where the nonlinearities fi, 1 ≤ i ≤ n may be
singular at uj = 0, j ∈ {1, 2, . . . , n} and may also be singular in the
independent variable at some set Ω ⊂ [0, 1] with measure zero. Let
the Banach space B = {u | u ∈ (C[0, 1])n} be equipped with the norm
‖u‖ = max1≤i≤n supt∈[0,1] |ui(t)|.

Theorem 3.1. Let θi ∈ {1,−1}, 1 ≤ i ≤ n be fixed and integers p, q
be such that 1 ≤ p ≤ q ≤ ∞ and 1/p + 1/q = 1. For each 1 ≤ i ≤ n,
suppose the following conditions are satisfied :

(3.2)
{
gt

i(s) ≡ gi(t, s) ≥ 0 for all t ∈ [0, 1], a.e. s ∈ [0, 1] and
gt

i(s) > 0 for a.e. t ∈ [0, 1], a.e. s ∈ [0, 1];

(3.3)
{
gt

i(s) ∈ Lp[0, 1] for all t ∈ [0, 1] and
the map t→ gt

i is continuous from [0, 1] to Lp[0, 1];

(3.4)

⎧⎨
⎩
fi : [0, 1] × (R \ {0})n → R
with t→ fi(t, u) measurable for all u ∈ (R \ {0})n

and u→ fi(t, u) continuous for a.e. t ∈ (0, 1);

(3.5)

⎧⎪⎪⎨
⎪⎪⎩

for any ri > 0, there exists ψri,i : [0, 1] → R,

ψri,i(t) > 0 for a.e. t ∈ [0, 1],
ψri,i ∈ Lq[0, 1] such that for all |uj | ∈ (0, rj ], 1 ≤ j ≤ n,

θifi(t, u) ≥ ψri,i(t) for a.e. t ∈ [0, 1];
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(3.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for any ri > 0 with
∫ 1

0

gi(t, s)ψri,i(s) ds ≤ ri

for t ∈ [0, 1], there exists hri,i : [0, 1] → R,

hri,i(t) ≥ 0 for a.e. t ∈ [0, 1],
hri,i ∈ Lq[0, 1] such that

for all |uj | ∈
[ ∫ 1

0

gj(t, s)ψrj ,j(s) ds, rj

]
, 1 ≤ j ≤ n,

θifi(t, u) ≤ hri,i(t) for a.e. t ∈ [0, 1];

(3.7)

⎧⎨
⎩

there exists Mi > 0 such that for t ∈ [0, 1],

Mi ≥
∫ 1

0

gi(t, s)hMi,i(s) ds ≥
∫ 1

0

gi(t, s)ψMi,i(s) ds.

Then, (F ) has a constant-sign solution u ∈ (C[0, 1])n with θiui(t) > 0,
almost every t ∈ [0, 1], 1 ≤ i ≤ n.

Proof. To begin, we define a closed convex subset of B = (C[0, 1])n

as

D =
{
u ∈ B

∣∣∣
∫ 1

0

gi(t, s)hMi,i(s) ds ≥ θiui(t) ≥
∫ 1

0

gi(t, s)ψMi,i(s) ds

for t ∈ [0, 1], 1 ≤ i ≤ n

}
.

Let the operator S : D → B be defined by

(3.8) Su(t) = (S1u(t), S2u(t), . . . , Snu(t)), t ∈ [0, 1]

where

(3.9) Siu(t) =
∫ 1

0

gi(t, s)fi(s, u(s)) ds, t ∈ [0, 1], 1 ≤ i ≤ n.

Clearly, a fixed point of the operator S is a solution of the system (F ).
Indeed, a fixed point of S obtained in D will be a constant-sign solution
of the system (F ).
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First we shall show that S maps D into D. Let u ∈ D. By (3.7) it is
clear that
(3.10)

Mi ≥
∫ 1

0

gi(t, s)hMi,i(s) ds ≥ θiui(t) ≥
∫ 1

0

gi(t, s)ψMi,i(s) ds > 0,

t ∈ [0, 1], 1 ≤ i ≤ n.

Hence, it follows from (3.5) that

θifi(t, u) ≥ ψMi,i(t), a.e. t ∈ [0, 1], 1 ≤ i ≤ n

and subsequently

(3.11)
θiSiu(t) =

∫ 1

0

gi(t, s)θifi(s, u(s)) ds ≥
∫ 1

0

gi(t, s)ψMi,i(s) ds,

t ∈ [0, 1], 1 ≤ i ≤ n.

Also, from (3.6) and (3.10) we have

θifi(t, u) ≤ hMi,i(t), a.e. t ∈ [0, 1], 1 ≤ i ≤ n

and so

(3.12) θiSiu(t) ≤
∫ 1

0

gi(t, s)hMi,i(s) ds, t ∈ [0, 1], 1 ≤ i ≤ n.

Having obtained (3.11) and (3.12), we have shown that S : D → D.

Next, we shall prove that S : D → D is continuous. Let {um} be
a sequence in D and um → u in B. Then, we find for t ∈ [0, 1] and
1 ≤ i ≤ n,

|Siu
m(t) − Siu(t)| ≤

∫ 1

0

gi(t, s)|fi(s, um(s)) − fi(s, u(s))| ds

≤
( ∫ 1

0

[gi(t, s)]p ds
)1/p

×
( ∫ 1

0

|fi(s, um(s)) − fi(s, u(s))|q ds
)1/q

.
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Since

∫ 1

0

|fi(s, um(s)) − fi(s, u(s))|q ds ≤ 2q

∫ 1

0

[hMi,i(s)]
q ds <∞,

1 ≤ i ≤ n,

together with (3.3) and (3.4), the Lebesgue dominated convergence
theorem gives for each 1 ≤ i ≤ n,

sup
t∈[0,1]

|Siu
m(t) − Siu(t)|

≤
(

sup
t∈[0,1]

∫ 1

0

[gi(t, s)]p ds
)1/p

×
( ∫ 1

0

|fi(s, um(s)) − fi(s, u(s))|q ds
)1/q

−→ 0

as m→ ∞, or ‖Sum − Su‖ → 0 as m→ ∞. Hence, S is continuous.

Finally, we shall check that S : D → D is compact. Let u ∈ D. Then,
by (3.12) and (3.7) we have

sup
t∈[0,1]

|Siu(t)| ≤ sup
t∈[0,1]

∫ 1

0

gi(t, s)hMi,i(s) ds ≤Mi, 1 ≤ i ≤ n

or ‖Su‖ ≤ max1≤i≤nMi. Further, using (3.12) and (3.3) we get for
t, t′ ∈ [0, 1] and 1 ≤ i ≤ n,

|Siu(t) − Siu(t′)| ≤
∫ 1

0

|gi(t, s) − gi(t′, s)|hMi,i(s) ds

≤
( ∫ 1

0

|gt
i(s) − gt′

i (s)|p ds
)1/p

×
( ∫ 1

0

[hMi,i(s)]
q ds

)1/q

−→ 0

as t→ t′. Now Theorem 2.3 guarantees that S is compact.

Hence, we conclude from Theorem 2.1 that S has a fixed point in D.
The proof is complete.
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Remark 3.1. In Theorem 3.1, the condition (3.6) can be replaced by
the following:

(3.6′)⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

for any ri > 0 with
∫ 1

0

gi(t, s)ψri,i(s) ds ≤ ri for t ∈ [0, 1], let

hri,i(t) = sup
{
fi(t, u) : |uj | ∈

[ ∫ 1

0

gj(t, s)ψrj ,j(s) ds, rj
]
, 1≤j≤n

}

and assume hri,i ∈ Lq[0, 1].

Remark 3.2. If fi, 1 ≤ i ≤ n are nonsingular, i.e., fi : [0, 1]×Rn → R,
then we can have a modified Theorem 3.1 with (3.5) (3.7) replaced by
the following conditions:

⎧⎪⎪⎨
⎪⎪⎩

for any ri > 0, there exists hri,i : [0, 1] → R,
hri,i(t) ≥ 0 for a.e. t ∈ [0, 1],
hri,i ∈ Lq[0, 1] such that for all |uj | ∈ [0, rj ], 1 ≤ j ≤ n,

0 ≤ θifi(t, u) ≤ hri,i(t) for a.e. t ∈ [0, 1];

there exists Mi > 0 such that for t ∈ [0, 1], Mi ≥
∫ 1

0

gi(t, s)hMi,i(s) ds

≥ 0.

Moreover, the conclusion of the modified Theorem 3.1 becomes:
system (F) has a constant-sign solution u ∈ (C[0, 1])n with θiui(t) ≥ 0,
t ∈ [0, 1], 1 ≤ i ≤ n.

Theorem 3.2. Let θi ∈ {1,−1}, 1 ≤ i ≤ n be fixed and integers p, q
be such that 1 ≤ p ≤ q ≤ ∞ and 1/p + 1/q = 1. For each 1 ≤ i ≤ n,
suppose (3.2) (3.5) hold and the following conditions are satisfied :

(3.13)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θifi(t, u) ≤ φi(t)[ρi(u) + τi(u)] for (t, u) ∈ [0, 1] × ∏n
j=1[0,∞)j ,

where φi : [0, 1] → R, φi(t) > 0 for a.e. t ∈ [0, 1],
ρi, τi :

∏n
j=1(0,∞)j → (0,∞) are continuous,

if |uj | ≤ |vj | for some j ∈ {1, 2, . . . , n},
then ρi(u1, . . . , uj , . . . , un) ≥ ρi(u1, . . . , vj , . . . , un) and
τi(u1, . . . , uj , . . . , un) ≤ τi(u1, . . . , vj , . . . , un);
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(3.14)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φi ∈ Lq[0, 1], and for any rj > 0, 1 ≤ j ≤ n,

φi(t)ρi

(
θ1

∫ 1

0

g1(t, s)ψr1,1(s) ds,

θ2

∫ 1

0

g2(t, s)ψr2,2(s) ds, . . . , θn

∫ 1

0

gn(t, s)ψrn,n(s) ds
)

∈ Lq[0, 1];

(3.15)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

there exists Mi > 0 such that for t ∈ [0, 1],

Mi ≥
∫ 1

0

gi(t, s)φi(s)
[
τi(θ1M1, θ2M2, . . . , θnMn)

+ ρi

(
θ1

∫ 1

0

g1(s, x)ψM1,1(x) dx, θ2
∫ 1

0

g2(s, x)ψM2,2(x) dx, . . . ,

θn

∫ 1

0

gn(s, x)ψMn,n(x) ds
)]

dx

≥
∫ 1

0

gi(t, s)ψMi,i(s) ds.

Then, (F ) has a constant-sign solution u ∈ (C[0, 1])n with θiui(t) > 0,
almost every t ∈ [0, 1], 1 ≤ i ≤ n.

Proof. We shall show that (3.6) and (3.7) are satisfied; then the
conclusion is immediate from Theorem 3.1. In view of (3.13), we obtain
for almost every t ∈ [0, 1], |uj | ∈ [

∫ 1

0
gj(t, s)ψrj ,j(s) ds, rj], 1 ≤ j ≤ n

and 1 ≤ i ≤ n,

(3.16) θifi(t, u) ≤

φi(t)
[
ρi

(
θ1

∫ 1

0

g1(t, s)ψr1,1(s) ds, θ2
∫ 1

0

g2(t, s)ψr2,2(s) ds, . . . ,

θn

∫ 1

0

gn(t, s)ψrn,n(s) ds
)

+τi(θ1r1, θ2r2, . . . , θnrn)
]
≡ hri,i(t).

Observe that we have picked hri,i(t) to be the right-hand side of (3.16).
Now, (3.6) is fulfilled since (3.14) ensures that hri,i ∈ Lq[0, 1]. Further,
(3.15) implies (3.7).
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As an application of Theorem 3.2, we consider a special case of system
(F ), viz.,

(3.17)
ui(t) =

∫ 1

0

gi(t, s)θiφi(s)[ρi(u(s)) + τi(u(s))] ds,

t ∈ [0, 1], 1 ≤ i ≤ n,

where θi ∈ {1,−1}, 1 ≤ i ≤ n are fixed.

Theorem 3.3. Let θi ∈ {1,−1}, 1 ≤ i ≤ n be fixed and integers p, q
be such that 1 ≤ p ≤ q ≤ ∞ and 1/p + 1/q = 1. For each 1 ≤ i ≤ n,
suppose (3.2) and (3.3) hold and the following conditions are satisfied:

(3.18)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φi : [0, 1] → R, φi(t) > 0 for a.e. t ∈ [0, 1],
ρi, τi :

∏n
j=1(0,∞)j → (0,∞) are continuous,

if |uj | ≤ |vj | for some j ∈ {1, 2, . . . , n},
then ρi(u1, . . . , uj , . . . , un) ≥ ρi(u1, . . . , vj , . . . , un) and
τi(u1, . . . , uj , . . . , un) ≤ τi(u1, . . . , vj , . . . , un);

(3.19)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φi ∈ Lq[0, 1], and for any rj > 0, 1 ≤ j ≤ n,

φi(t)ρi

(
θ1ρ1(θ1r1, θ2r2, . . . , θnrn)

∫ 1

0

g1(t, s)φ1(s) ds,

θ2ρ2(θ1r1, θ2r2, . . . , θnrn)
∫ 1

0

g2(t, s)φ2(s) ds, . . . ,

θnρn(θ1r1, θ2r2, . . . , θnrn)
∫ 1

0

gn(t, s)φn(s) ds
)

∈ Lq[0, 1];

(3.20)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

there exists Mi > 0 such that for t ∈ [0, 1],

Mi ≥
∫ 1

0

gi(t, s)φi(s)
[
τi(θ1M1, θ2M2, . . . , θnMn)

+ρi

(
θ1ρ1(θ1M1, θ2M2, . . . , θnMn)

∫ 1

0

g1(s, x)φ1(x) dx,

θ2ρ2(θ1M1, θ2M2, . . . , θnMn)
∫ 1

0

g2(s, x)φ2(x) dx, . . . ,

θnρn(θ1M1, θ2M2, . . . , θnMn)
∫ 1

0

gn(s, x)φn(x) dx
)]

ds

≥ ρi(θ1M1, θ2M2, . . . , θnMn)
∫ 1

0

gi(t, s)φi(s) ds.
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Then (3.17) has a constant-sign solution u ∈ (C[0, 1])n with θiui(t) >
0, almost every t ∈ [0, 1], 1 ≤ i ≤ n.

Proof. Taking ψri,i(t) = φi(t)ρi(θ1r1, θ2r2, . . . , θnrn), the conclusion
follows immediately from Theorem 3.2.

Example 3.1. Consider (3.17) where, for each 1 ≤ i ≤ n,

(3.21)
θi = 1, ρi(u) = |ui|−αi , τi(u) = Ai|ui|βi +Bi,

0 < αi < 1, 0 ≤ βi < 1, Ai, Bi ≥ 0,

(3.22) gi fulfills (3.2) and (3.3), φi satisfies (3.18) and (3.19).

Then, (3.20) reduces to

(3.23)

Mi ≥
∫ 1

0

gi(t, s)φi(s)
[
AiM

βi

i +Bi+M
α2

i
i

( ∫ 1

0

gi(s, x)φi(x) dx
)−αi

]
ds

≥M−αi
i

∫ 1

0

gi(t, s)φi(s) ds, 1 ≤ i ≤ n,

which is satisfied for large Mi. Thus, by Theorem 3.3 the system (3.17)
with (3.21) and (3.22) has a constant-sign solution u ∈ (C[0, 1])n with
θiui(t) > 0, almost everywhere t ∈ [0, 1], 1 ≤ i ≤ n.

System (V). Next, we shall investigate the system of Volterra integral
equations (V ), where the nonlinearities fi, 1 ≤ i ≤ n, may be
singular at uj = 0, j ∈ {1, 2, . . . , n}, and may also be singular in
the independent variable at some set Ω ⊂ [0, T ] with measure zero. Let
the Banach space B = {u | u ∈ (C[0, T ])n} be equipped with the norm
‖u‖ = max1≤i≤n supt∈[0,T ] |ui(t)|.

Theorem 3.4. Let θi ∈ {1,−1}, 1 ≤ i ≤ n be fixed, and let integers
p, q be such that 1 ≤ p ≤ q ≤ ∞ and 1/p+1/q = 1. For each 1 ≤ i ≤ n,
suppose the following conditions are satisfied :

(3.24)
{

for all t ∈ [0, T ], gt
i(s) ≡ gi(t, s) ≥ 0 for a.e. s ∈ [0, t] and

for a.e. t ∈ [0, T ], gt
i(s) > 0 for a.e. s ∈ [0, t];
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(3.25)

gt
i(s) ∈ Lp[0, t] for all t ∈ [0, T ] and sup

t∈[0,T ]

∫ t

0

[gt
i(s)]

p ds <∞;

(3.26)
for any t, t′ ∈ [0, T ],∫ min{t,t′}

0

|gt
i(s) − gt′

i (s)|p ds −→ 0 as t→ t′;

(3.27)

⎧⎨
⎩
fi : [0, T ] × (R \ {0})n → R with
t→ fi(t, u) measurable for all u ∈ (R \ {0})n

and u→ fi(t, u) continuous for a.e. t ∈ (0, T );

(3.28)⎧⎨
⎩

for any ri > 0, there exists ψri,i : [0, T ] → R, ψri,i(t) > 0
for a.e. t ∈ [0, T ], ψri,i ∈ Lq[0, T ] s.t. ∀ |uj | ∈ (0, rj ], 1 ≤ j ≤ n,

θifi(t, u) ≥ ψri,i(t) for a.e. t ∈ [0, T ];

(3.29)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

for any ri > 0 with
∫ t

0

gi(t, s)ψri,i(s) ds ≤ ri for t ∈ [0, T ],

∃hri,i : [0, T ] → R, hri,i(t) ≥ 0 for a.e. t ∈ [0, T ], hri,i ∈ Lq[0, T ]

s.t. for a.e. t ∈ [0, T ] and all |uj | ∈
[ ∫ t

0

gj(t, s)ψrj,j(s) ds, rj

]
,

1 ≤ j ≤ n, θifi(t, u) ≤ hri,i(t);

(3.30)

⎧⎨
⎩

there exists Mi > 0 such that for t ∈ [0, T ],

Mi ≥
∫ t

0

gi(t, s)hMi,i(s) ds ≥
∫ t

0

gi(t, s)ψMi,i(s) ds.

Then, (V ) has a constant-sign solution u ∈ (C[0, T ])n with θiui(t) > 0,
almost every t ∈ [0, T ], 1 ≤ i ≤ n.

Proof. Define a closed convex subset of B = (C[0, T ])n as

D =
{
u ∈ B

∣∣∣
∫ t

0

gi(t, s)hMi,i(s) ds ≥ θiui(t) ≥
∫ t

0

gi(t, s)ψMi,i(s) ds

for t ∈ [0, T ], 1 ≤ i ≤ n

}
.
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Let the operator S : D → B be defined by

Su(t) = (S1u(t), S2u(t), . . . , Snu(t)), t ∈ [0, T ],(3.31)

where

Siu(t) =
∫ t

0

gi(t, s)fi(s, u(s)) ds, t ∈ [0, T ], 1 ≤ i ≤ n.(3.32)

Clearly, a fixed point of S obtained in D will be a constant-sign solution
of the system (V ).

Following a similar argument as in the proof of Theorem 3.1, we can
show that S maps D into D.

Next, we shall prove that S : D → D is continuous. Let {um} be
a sequence in D and um → u in B. Then, we have for t ∈ [0, T ] and
1 ≤ i ≤ n,

|Siu
m(t) − Siu(t)|

≤
∫ t

0

gi(t, s)|fi(s, um(s)) − fi(s, u(s))| ds

≤
( ∫ t

0

[gi(t, s)]p ds
)1/p( ∫ T

0

|fi(s, um(s)) − fi(s, u(s))|q ds
)1/q

.

Noting that

∫ T

0

|fi(s, um(s)) − fi(s, u(s))|q ds ≤ 2q

∫ T

0

[hMi,i(s)]
q ds <∞,

1 ≤ i ≤ n

and also (3.25) and (3.27), the Lebesgue dominated convergence theo-
rem yields for each 1 ≤ i ≤ n,

sup
t∈[0,T ]

|Siu
m(t) − Siu(t)|

≤
(

sup
t∈[0,T ]

∫ t

0

[gi(t, s)]p ds
)1/p( ∫ T

0

|fi(s, um(s)) − fi(s, u(s))|q ds
)1/q

−→ 0

as m→ ∞, or ‖Sum − Su‖ → 0 as m→ ∞. Hence, S is continuous.
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Finally, we shall show that S : D → D is compact. Let u ∈ D. Then,
by (3.29) and (3.30) we have

sup
t∈[0,T ]

|Siu(t)| ≤ sup
t∈[0,T ]

∫ t

0

gi(t, s)hMi,i(s) ds ≤Mi, 1 ≤ i ≤ n

or ‖Su‖ ≤ max1≤i≤nMi. Further, in view of (3.25), (3.26) and (3.29),
we get for t, t′ ∈ [0, T ], with t′ < t and 1 ≤ i ≤ n,

|Siu(t) − Siu(t′)|

≤
∫ t′

0

|gi(t, s) − gi(t′, s)|fi(s, u(s)) ds+
∫ t

t′
gi(t, s)fi(s, u(s)) ds

≤
∫ t′

0

|gi(t, s) − gi(t′, s)|hMi,i(s) ds+
∫ t

t′
gi(t, s)hMi,i(s) ds

≤
(∫ t′

0

|gt
i(s) − gt′

i (s)|p ds
)1/p( ∫ T

0

[hMi,i(s)]
q ds

)1/q

+
(

sup
t∈[0,T ]

∫ t

0

[gt
i(s)]

p ds

)1/p( ∫ t

t′
[hMi,i(s)]

q ds

)1/q

−→ 0

as t → t′. A similar argument also holds for t′ > t. Now Theorem 2.3
guarantees that S is compact.

It now follows from Theorem 2.1 that S has a fixed point in D. The
proof is complete.

Remark 3.3. In Theorem 3.4, the condition (3.29) can be replaced by
the following:
(3.29)′⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

for any ri > 0 with
∫ t

0

gi(t, s)ψri,i(s) ds ≤ ri for t ∈ [0, T ], let

hri,i(t) = sup
{
fi(t, u) : |uj | ∈

[ ∫ t

0

gj(t, s)ψrj ,j(s) ds, rj

]
, 1 ≤ j ≤ n

}

and assume hri,i ∈ Lq[0, T ].
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Remark 3.4. In Theorem 3.4, the condition (3.26) can be replaced by
the following: for any t, t′ ∈ [0, T ],
(3.26)′∫ min{t,t′}

0

|gt
i(s) − gt′

i (s)|p ds+
∫ max{t,t′}

min{t,t′}
|gmax{t,t′}

i (s)|p ds −→ 0

as t→ t′.

Note that (3.26)′ implies supt∈[0,T ]

∫ t

0

[gt
i(s)]

p ds <∞ in (3.25).

Remark 3.5. If fi, 1 ≤ i ≤ n are nonsingular, i.e., fi : [0, T ]×Rn → R,
then we can have a modified Theorem 3.4 with (3.28) (3.30) replaced
by the following conditions:

⎧⎨
⎩

for any ri > 0, there exists hri,i : [0, T ] → R, hri,i(t) ≥ 0,
for a.e. t ∈ [0, T ], hri,i ∈ Lq[0, T ] s.t. ∀ |uj | ∈ [0, rj ], 1 ≤ j ≤ n,

0 ≤ θifi(t, u) ≤ hri,i(t) for a.e. t ∈ [0, T ];

there exists Mi > 0 such that for t ∈ [0, T ], Mi ≥
∫ t

0

gi(t, s)hMi,i(s) ds

≥ 0.

Moreover, the conclusion of the modified Theorem 3.4 becomes:
system (V) has a constant-sign solution u ∈ (C[0, T ])n with θiui(t) ≥ 0,
t ∈ [0, T ], 1 ≤ i ≤ n.

Theorem 3.5. Let θi ∈ {1,−1}, 1 ≤ i ≤ n be fixed, and let integers
p, q be such that 1 ≤ p ≤ q ≤ ∞ and 1/p+1/q = 1. For each 1 ≤ i ≤ n,
suppose (3.24) (3.28) hold and the following conditions are satisfied :

(3.33)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θifi(t, u) ≤ φi(t)[ρi(u) + τi(u)]for (t, u) ∈ [0, T ] × ∏n
j=1[0,∞)j ,

where φi : [0, T ] → R, φi(t) > 0 for a.e. t ∈ [0, T ],
ρi, τi :

∏n
j=1(0,∞)j → (0,∞) are continuous, if |uj | ≤ |vj |

for some j ∈ {1, 2, . . . , n},
then ρi(u1, . . . , uj , . . . , un) ≥ ρi(u1, . . . , vj , . . . , un) and
τi(u1, . . . , uj , . . . , un) ≤ τi(u1, . . . , vj , . . . , un);



132 R.P. AGARWAL, D. O’REGAN AND P.J.Y. WONG

(3.34)⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φi ∈ Lq[0, T ], and for any rj > 0, 1 ≤ j ≤ n,

φi(t)ρi

(
θ1

∫ t

0

g1(t, s)ψr1,1(s) ds, θ2
∫ t

0

g2(t, s)ψr2,2(s) ds, . . . ,

θn

∫ t

0

gn(t, s)ψrn,n(s) ds
)

∈ Lq[0, T ];

(3.35)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

there exists Mi > 0 such that for t ∈ [0, T ],

Mi ≥
∫ t

0

gi(t, s)φi(s)
[
τi(θ1M1, θ2M2, . . . , θnMn)

+ ρi

(
θ1

∫ s

0

g1(s, x)ψM1,1(x) dx, θ2
∫ s

0

g2(s, x)ψM2,2(x) dx, . . . ,

θn

∫ s

0

gn(s, x)ψMn,n(x) dx
)]

ds ≥
∫ t

0

gi(t, s)ψMi,i(s) ds.

Then, (V ) has a constant-sign solution u ∈ (C[0, T ])n with θiui(t) > 0,
almost every t ∈ [0, T ], 1 ≤ i ≤ n.

Proof. For each 1 ≤ i ≤ n, let

hri,i(t) = φi(t)
[
τi(θ1r1, θ2r2, . . . , θnrn)+ ρi

(
θ1

∫ t

0

g1(t, s)ψr1,1(s) ds,

θ2

∫ t

0

g2(t, s)ψr2,2(s) ds, . . . , θn

∫ t

0

gn(t, s)ψrn,n(s) ds
)]
.

Then, using a similar argument as in the proof of Theorem 3.2, we
can show that (3.29) and (3.30) are satisfied, and so the conclusion is
immediate from Theorem 3.4.

As an application of Theorem 3.5, we consider a special case of system
(V), viz.,

(3.36)
ui(t) =

∫ t

0

gi(t, s)θiφi(s)[ρi(u(s)) + τi(u(s))] ds,

t ∈ [0, T ], 1 ≤ i ≤ n

where θi ∈ {1,−1}, 1 ≤ i ≤ n are fixed.
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The following result is immediate from Theorem 3.5. The proof is
similar to that of Theorem 3.3.

Theorem 3.6. Let θi ∈ {1,−1}, 1 ≤ i ≤ n be fixed, and let integers
p, q be such that 1 ≤ p ≤ q ≤ ∞ and 1/p+1/q = 1. For each 1 ≤ i ≤ n,
suppose (3.24) (3.26) hold and the following conditions are satisfied :

(3.37)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φi : [0, T ] → R, φi(t) > 0 for a.e. t ∈ [0, T ],
ρi, τi :

∏n
j=1(0,∞)j → (0,∞) are continuous,

if |uj | ≤ |vj | for some j ∈ {1, 2, . . . , n},
then ρi(u1, . . . , uj , . . . , un) ≥ ρi(u1, . . . , vj , . . . , un) and
τi(u1, . . . , uj , . . . , un) ≤ τi(u1, . . . , vj , . . . , un);

(3.38)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φi ∈ Lq[0, T ], and for any rj > 0, 1 ≤ j ≤ n,

φi(t)ρi(θ1ρ1(θ1r1, θ2r2, . . . , θnrn)
∫ t

0

g1(t, s)φ1(s) ds,

θ2ρ2(θ1r1, θ2r2, . . . , θnrn)
∫ t

0

g2(t, s)φ2(s) ds, . . . ,

θnρn(θ1r1, θ2r2, . . . , θnrn)
∫ t

0

gn(t, s)φn(s) ds) ∈ Lq[0, T ];

(3.39)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

there exists Mi > 0 such that for t ∈ [0, T ],

Mi ≥
∫ t

0

gi(t, s)φi(s)
[
τi(θ1M1, θ2M2, . . . , θnMn)

+ρi

(
θ1ρ1(θ1M1, θ2M2, . . . , θnMn)

∫ s

0

g1(s, x)φ1(x) dx,

θ2ρ2(θ1M1, θ2M2, . . . , θnMn)
∫ s

0

g2(s, x)φ2(x) dx, . . . ,

θnρn(θ1M1, θ2M2, . . . , θnMn)
∫ s

0

gn(s, x)φn(x) dx
)]

ds

≥ ρi(θ1M1, θ2M2, . . . , θnMn)
∫ t

0

gi(t, s)φi(s) ds.

Then, (3.36) has a constant-sign solution u ∈ (C[0, T ])n with θiui(t) >
0, almost every t ∈ [0, 1], 1 ≤ i ≤ n.
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System (F )∞. We shall now study the system of Fredholm integral
equations (F )∞, where the nonlinearities fi, 1 ≤ i ≤ n may be
singular at uj = 0, j ∈ {1, 2, . . . , n} and may also be singular in the
independent variable at some set Ω ⊂ [0,∞) with measure zero. Let the
Banach space B = {u | u ∈ (BC[0,∞))n} be equipped with the norm
‖u‖ = max1≤i≤n supt∈[0,∞) |ui(t)|. Note that BC[0,∞) is the space of
bounded continuous functions on [0,∞). Let Cl[0,∞) be defined as in
(2.1). We are interested to obtain a solution of (F )∞ in (Cl[0,∞))n.

Theorem 3.7. Let θi ∈ {1,−1}, 1 ≤ i ≤ n be fixed, and let integers
p, q be such that 1 ≤ p ≤ q ≤ ∞ and 1/p+1/q = 1. For each 1 ≤ i ≤ n,
suppose the following conditions are satisfied :

(3.40)
{
gt

i(s) ≡ gi(t, s) ≥ 0 for all t ∈ [0,∞), a.e. s ∈ [0,∞) and
gt

i(s) > 0 for a.e. t ∈ [0,∞), a.e. s ∈ [0,∞);

(3.41)
{
gt

i(s) ∈ Lp[0,∞) for all t ∈ [0,∞) and
the map t→ gt

i is continuous from [0,∞) to Lp[0,∞);

(3.42){
there exists g̃i ∈ Lp[0, 1) s.t. gt

i → g̃i in Lp[0,∞) as t→ ∞,

i.e., limt→∞ ‖gt
i − g̃i‖p = 0;

(3.43){
fi : [0,∞) × (R \ {0})n → R with t→ fi(t, u) measurable
∀u ∈ (R \ {0})n and u→ fi(t, u) continuous for a.e. t ∈ (0,∞);

(3.44)

⎧⎪⎪⎨
⎪⎪⎩

for any ri > 0, there exists ψri,i : [0,∞) → R,

ψri,i(t) > 0 for a.e. t ∈ [0,∞), ψri,i ∈ Lq[0,∞)
such that for all |uj | ∈ (0, rj ], 1 ≤ j ≤ n,

θifi(t, u) ≥ ψri,i(t) for a.e. t ∈ [0,∞);
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(3.45)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

for any ri > 0 with
∫ ∞

0

gi(t, s)ψri,i(s) ds ≤ ri for t ∈ [0,∞),

∃hri,i : [0,∞) → R, hri,i(t) ≥ 0 for a.e. t ∈ [0,∞),

hri,i ∈ Lq[0,∞) s.t. ∀ |uj | ∈
[ ∫ ∞

0

gj(t, s)ψrj,j(s) ds, rj

]
, 1 ≤ j ≤ n,

θifi(t, u) ≤ hri,i(t) for a.e. t ∈ [0,∞);

(3.46)

⎧⎨
⎩

there exists Mi > 0 such that for t ∈ [0,∞),

Mi ≥
∫ ∞

0

gi(t, s)hMi,i(s) ds ≥
∫ ∞

0

gi(t, s)ψMi,i(s) ds.

Then, (F )∞ has a constant-sign solution u ∈ (Cl[0,∞))n with θiui(t) >
0, almost every t ∈ [0,∞), 1 ≤ i ≤ n.

Proof. To begin, we define

D =
{
u ∈ (Cl[0,∞))n

∣∣∣
∫ ∞

0

gi(t, s)hMi,i(s) ds ≥ θiui(t)

≥
∫ ∞

0

gi(t, s)ψMi,i(s) ds for t ∈ [0,∞), 1 ≤ i ≤ n

}
.

Clearly, D is a closed subset of (Cl[0,∞))n as (Cl[0,∞))n is a closed
subspace of (BC[0,∞))n. Let the operator S : D → (BC[0,∞))n be
defined by

(3.47) Su(t) = (S1u(t), S2u(t), . . . , Snu(t)), t ∈ [0,∞)

where

(3.48) Siu(t) =
∫ ∞

0

gi(t, s)fi(s, u(s)) ds, t ∈ [0,∞), 1 ≤ i ≤ n.

It is clear that a fixed point of the operator S is a solution of system
(F )∞. Indeed, a fixed point of S obtained in D will be a constant-sign
solution of system (F )∞.
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First we shall show that S maps D into D. Let u ∈ D. Using a
similar argument as in the proof of Theorem 3.1, we obtain

ψMi,i(t) ≤ θifi(t, u) ≤ hMi,i(t), a.e. t ∈ [0,∞), 1 ≤ i ≤ n,

and so

(3.49)

∫ ∞

0

gi(t, s)ψMi,i(s) ds ≤ θiSiu(t) ≤
∫ ∞

0

gi(t, s)hMi,i(s) ds,

t ∈ [0,∞), 1 ≤ i ≤ n.

It also follows from (3.49) and (3.46) that

(3.50)

|Siu(t)| ≤
∫ ∞

0

gi(t, s)hMi,i(s) ds ≤Mi, t ∈ [0,∞), 1 ≤ i ≤ n,

i.e., Siu, 1 ≤ i ≤ n are bounded. Moreover, Siu ∈ C[0,∞), 1 ≤ i ≤ n
since if t, t′ ∈ [0,∞), then (3.41) and (3.45) provide

(3.51)
|Siu(t) − Siu(t′)|

≤
∫ ∞

0

|gi(t, s) − gi(t′, s)|hMi,i(s) ds

≤
( ∫ ∞

0

|gt
i(s) − gt′

i (s)|p ds
)1/p( ∫ ∞

0

[hMi,i(s)]
q ds

)1/q

−→ 0

as t → t′. It remains to show that limt→∞ Siu(t), 1 ≤ i ≤ n exist.
Applying (3.42), we get for 1 ≤ i ≤ n,

∫ ∞

0

|[gt
i(s) − g̃i(s)]fi(s, u(s))| ds

≤
∫ ∞

0

|gt
i(s) − g̃i(s)|hMi,i(s) ds

≤
( ∫ ∞

0

|gt
i(s) − g̃i(s)|p ds

)1/p( ∫ ∞

0

[hMi,i(s)]
q ds

)1/q

−→ 0

as t→ ∞. Hence, it follows that
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(3.52)
lim

t→∞Siu(t) = lim
t→∞

∫ ∞

0

gt
i(s)fi(s, u(s)) ds

=
∫ ∞

0

g̃i(s)fi(s, u(s)) ds, 1 ≤ i ≤ n.

This completes the proof of S : D → D.

Next, using a similar argument as in the proof of Theorem 3.1, we
see that S : D → D is continuous.

Finally, we shall show that S : D → D is compact. Let u ∈ D. Then,
clearly, from (3.50)

(3.53)
sup

t∈[0,∞)

|Siu(t)| ≤ sup
t∈[0,∞)

∫ ∞

0

gi(t, s)hMi,i(s) ds ≤Mi,

1 ≤ i ≤ n,

or ‖Su‖ ≤ max1≤i≤nMi. Further, we have (3.51) as t → t′. Also,
for each 1 ≤ i ≤ n, from (3.52) it follows that, given εi > 0, there
exists Ti > 0 such that |Siu(t) − Siu(∞)| < εi for any t ≥ Ti. Now,
Theorem 2.4 guarantees that S is compact.

Hence, it follows from Theorem 2.1 that S has a fixed point in D.
This completes the proof.

Remark 3.6. In Theorem 3.7, the condition (3.45) can be replaced by
the following:

(3.45)′⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

for any ri > 0 with
∫ ∞

0

gi(t, s)ψri,i(s) ds ≤ ri for t ∈ [0,∞), let

hri,i(t) = sup{fi(t, u) : |uj | ∈
[ ∫ ∞

0

gj(t, s)ψrj ,j(s) ds, rj

]
,

1 ≤ j ≤ n} and assume hri,i ∈ Lq[0,∞).

Remark 3.7. If fi, 1 ≤ i ≤ n are nonsingular, i.e., fi : [0,∞)×Rn →
R, then we can have a variant of Theorem 3.7 with (3.44) (3.46)
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replaced by the following conditions:

⎧⎪⎪⎨
⎪⎪⎩

for any ri > 0, there exists hri,i : [0,∞) → R,

hri,i(t) ≥ 0 for a.e. t ∈ [0,∞),
hri,i ∈ Lq[0,∞) such that for all |uj | ∈ [0, rj ], 1 ≤ j ≤ n,

0 ≤ θifi(t, u) ≤ hri,i(t) for a.e. t ∈ [0,∞);

there existsMi > 0 such that for t ∈ [0,∞),Mi ≥
∫ ∞

0

gi(t, s)hMi,i(s) ds

≥ 0.

Moreover, the conclusion of the modified Theorem 3.7 becomes: sys-
tem (F )∞ has a constant-sign solution u ∈ (Cl[0,∞))n with θiui(t) ≥ 0,
t ∈ [0,∞), 1 ≤ i ≤ n.

Using a similar argument as in the proof of Theorem 3.2, we obtain
the following result.

Theorem 3.8. Let θi ∈ {1,−1}, 1 ≤ i ≤ n be fixed and integers p, q
be such that 1 ≤ p ≤ q ≤ ∞ and 1/p + 1/q = 1. For each 1 ≤ i ≤ n,
suppose (3.40) (3.44) hold and the following conditions are satisfied :

(3.54)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θifi(t, u) ≤ φi(t)[ρi(u) + τi(u)]
for (t, u) ∈ [0,∞) × ∏n

j=1[0,∞)j ,where
φi : [0,∞) → R, φi(t) > 0 for a.e. t ∈ [0,∞),
ρi, τi :

∏n
j=1(0,∞)j → (0,∞) are continuous,

if |uj | ≤ |vj | for some j ∈ {1, 2, . . . , n},
then ρi(u1, . . . , uj , . . . , un) ≥ ρi(u1, . . . , vj , . . . , un) and
τi(u1, . . . , uj , . . . , un) ≤ τi(u1, . . . , vj , . . . , un);

(3.55)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φi ∈ Lq[0,∞), and for any rj > 0, 1 ≤ j ≤ n,

φi(t)ρi

(
θ1

∫ ∞

0

g1(t, s)ψr1,1(s) ds, θ2
∫ ∞

0

g2(t, s)ψr2,2(s) ds, . . . ,

θn

∫ ∞

0

gn(t, s)ψrn,n(s) ds
)

∈ Lq[0,∞);
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(3.56)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

there exists Mi > 0 such that for t ∈ [0,∞),

Mi ≥
∫ ∞

0

gi(t, s)φi(s)
[
τi(θ1M1, θ2M2, . . . , θnMn)

+ ρi

(
θ1

∫ ∞
0
g1(s, x)ψM1,1(x) dx, θ2

∫ ∞

0

g2(s, x)ψM2,2(x) dx, . . . ,

θn

∫ ∞

0

gn(s, x)ψMn,n(x) ds
)]

dx

≥
∫ ∞

0

gi(t, s)ψMi,i(s) ds.

Then, (F )∞ has a constant-sign solution u ∈ (Cl[0,∞))n with θiui(t) >
0, almost every t ∈ [0,∞), 1 ≤ i ≤ n.

As an application of Theorem 3.8, we consider a special case of system
(F )∞, viz.,

(3.57)
ui(t) =

∫ ∞

0

gi(t, s)θiφi(s)[ρi(u(s)) + τi(u(s))] ds,

t ∈ [0,∞), 1 ≤ i ≤ n,

where θi ∈ {1,−1}, 1 ≤ i ≤ n are fixed. A similar argument as in the
proof of Theorem 3.3 yields the following result.

Theorem 3.9. Let θi ∈ {1,−1}, 1 ≤ i ≤ n be fixed and integers p, q
be such that 1 ≤ p ≤ q ≤ ∞ and 1/p + 1/q = 1. For each 1 ≤ i ≤ n,
suppose (3.40) (3.42) hold and the following conditions are satisfied :

(3.58)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φi : [0,∞) → R, φi(t) > 0 for a.e. t ∈ [0,∞),
ρi, τi :

∏n
j=1(0,∞)j → (0,∞)are continuous,

if |uj | ≤ |vj | for some j ∈ {1, 2, . . . , n},
then ρi(u1, . . . , uj , . . . , un) ≥ ρi(u1, . . . , vj , . . . , un) and
τi(u1, . . . , uj , . . . , un) ≤ τi(u1, . . . , vj , . . . , un);
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(3.59)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φi ∈ Lq[0,∞), and for any rj > 0, 1 ≤ j ≤ n,

φi(t)ρi

(
θ1ρ1(θ1r1, θ2r2, . . . , θnrn)

∫ ∞

0

g1(t, s)φ1(s) ds,

θ2ρ2(θ1r1, θ2r2, . . . , θnrn)
∫ ∞

0

g2(t, s)φ2(s) ds, . . . ,

θnρn(θ1r1, θ2r2, . . . , θnrn)
∫ ∞

0

gn(t, s)φn(s) ds
)

∈ Lq[0,∞);

(3.60)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

there exists Mi > 0 such that for t ∈ [0,∞),

Mi ≥
∫ ∞

0

gi(t, s)φi(s)
[
τi(θ1M1, θ2M2, . . . , θnMn)

+ρi(θ1ρ1(θ1M1, θ2M2, . . . , θnMn)
∫ ∞

0

g1(s, x)φ1(x) dx,

θ2ρ2(θ1M1, θ2M2, . . . , θnMn)
∫ ∞

0

g2(s, x)φ2(x) dx, . . . ,

θnρn(θ1M1, θ2M2, . . . , θnMn)
∫ ∞

0

gn(s, x)φn(x) dx)
]
ds

≥ ρi(θ1M1, θ2M2, . . . , θnMn)
∫ ∞

0

gi(t, s)φi(s) ds.

Then, (3.57) has a constant-sign solution u ∈ (Cl[0,∞))n with θiui(t) >
0, almost every t ∈ [0,∞), 1 ≤ i ≤ n.

In Theorems 3.7 3.9, we require solutions of (F )∞ to lie in (Cl[0,∞))n.
We shall now seek solutions of (F )∞ in (C[0,∞))n. Since C[0,∞) is
a Fréchet space, we shall apply the Schauder-Tychonoff fixed point
theorem (Theorem 2.2) instead of the Schauder fixed point theorem
(Theorem 2.1).

Theorem 3.10. Let θi ∈ {1,−1}, 1 ≤ i ≤ n be fixed, and let
integers p, q be such that 1 ≤ p ≤ q ≤ ∞ and 1/p+ 1/q = 1. For each
1 ≤ i ≤ n, suppose (3.40), (3.41) and (3.43) (3.46) are satisfied. Then,
(F )∞ has a constant-sign solution u ∈ (BC[0,∞))n with θiui(t) > 0,
almost every t ∈ [0, 1), 1 ≤ i ≤ n.
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Proof. To begin, we define

D =
{
u ∈ (C[0,∞))n | u ∈ (BC[0,∞))n and∫ ∞

0

gi(t, s)hMi,i(s) ds ≥ θiui(t) ≥
∫ ∞

0

gi(t, s)ψMi,i(s) ds

for t ∈ [0,∞), 1 ≤ i ≤ n
}
.

Clearly, D is a closed (Note (3.46)) convex subset of the Fréchet space
(C[0,∞))n. Let the operator S : D → (C[0,∞))n be defined by (3.47)
and (3.48). As seen from (3.49) (3.51), we have S : D → D.

Next, S : D → D is compact since we have (3.53) for u ∈ D which
gives ‖Su‖ ≤ max1≤i≤nMi, and we already have (3.51) as t→ t′.

Finally, we shall show that S : D → D is continuous. Let {um} be
a sequence in D and um → u in (C[0,∞))n, i.e., um

i → ui in C[0,∞),
1 ≤ i ≤ n. Then, for each 1 ≤ i ≤ n, um

i → ui in C[0, k] for each
k ∈ Z+, and um

i converges pointwise to ui on [0,∞). Fix k ∈ Z+. Using
a similar argument as in the proof of Theorem 3.1, we see that for each
1 ≤ i ≤ n, Siu

m(t) → Siu(t) for each t ∈ [0,∞), and Siu
m → Siu in

C[0, k]. Since this is true for each k ∈ Z+, it follows that Siu
m → Siu

in C[0,∞). Hence, S : D → D is continuous.

We now conclude from Theorem 2.2 that S has a fixed point in D.

Remark 3.8. Remarks 3.6 and 3.7 (with (Cl[0,∞))n replaced by
(BC[0,∞))n) also hold for Theorem 3.10.

A similar argument as in Theorems 3.8 and 3.9 give the following
results.

Theorem 3.11. Let θi ∈ {1,−1}, 1 ≤ i ≤ n be fixed, and let
integers p, q be such that 1 ≤ p ≤ q ≤ ∞ and 1/p + 1/q = 1. For
each 1 ≤ i ≤ n, suppose (3.40), (3.41), (3.43), (3.44) and (3.54) (3.56)
hold. Then, (F )∞ has a constant-sign solution u ∈ (BC[0,∞))n with
θiui(t) > 0, almost every t ∈ [0,∞), 1 ≤ i ≤ n.
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Theorem 3.12. Let θi ∈ {1,−1}, 1 ≤ i ≤ n be fixed, and let
integers p, q be such that 1 ≤ p ≤ q ≤ ∞ and 1/p+ 1/q = 1. For each
1 ≤ i ≤ n, suppose (3.40), (3.41) and (3.58) (3.60) hold. Then, (3.57)
has a constant-sign solution u ∈ (BC[0,∞))n with θiui(t) > 0, almost
every t ∈ [0,∞), 1 ≤ i ≤ n.
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