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DISCRETE COLLOCATION FOR A FIRST KIND
CAUCHY SINGULAR INTEGRAL EQUATION

WITH WEAKLY SINGULAR SOLUTION

HEINRICH N. MÜLTHEI AND CLAUS SCHNEIDER

ABSTRACT. A fully discrete scheme for the numerical so-
lution of a first kind Cauchy singular integral equation is ana-
lyzed. The underlying mesh may be graded in order to approx-
imate weakly singular solutions (functions behaving like |t|α,
α > 0, t ∈ [−1, 1]) as well as smooth ones on a uniform grid.
Order of convergence results are established in sup-norms and
weighted l2-norms. They exactly reflect the outcome of the
numerical computations. For the stability analyses it is shown
that the row differencing imbedded in the method just yields
a Moore-Penrose inverse in an unconventional way.

1. Introduction. This paper concerns a fully discrete numerical
method for the solution of Cauchy singular integral equations on a
smooth closed curve. The method was introduced in [4, 11] and is
closely connected to the midpoint collocation studied in [3]. These
papers provided a first step towards the analysis of nonuniform meshes
which are useful for nonsmooth solutions. Obviously, adaptive mesh
refinement will produce such grids for rapidly varying or weakly singular
solutions. But the theory did not yet cover completely these cases and
did not reflect comprehensively the order of convergence achieved with
the methods in practice. Here we will take a second step by giving
optimal error estimates even for weakly singular solutions approximated
on an appropriately graded mesh. We study in detail the equation

(1.1) Hu(t) = f(t), t ∈ [0, 2π],

with the Hilbert transform on the unit circle (cf. [6], e.g.) which is
defined for Hölder continuous functions u ∈ Cα[0, 2π], α > 0, as

Hu(t) :=
1
2π

∫ 2π

0

u(s) cot
t − s

2
ds, t ∈ [0, 2π].
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Equation (1.1) is solvable for f ∈ Cα[0, 2π] with
∫ 2π

0
f(t) dt = 0. For

uniqueness of a naturally 2π-periodic solution u a side condition is
required (see [6] or [7]). Here we will consider the point side condition
u(0) = 0. The integral side condition

∫ 2π

0
u(t) dt = 0 may be analyzed

similarly. For the connections of the model problem (1.1) with classical
boundary value problems of potential theory, with boundary integral
equations, and with the more realistic situation of a region bounded
by a curve Γ which is not the unit circle, we refer to [1], [7], and
the instructive introduction of [3]. These papers also include a lot of
references connected with the theory and practice of Cauchy singular
integral equations.

2. The numerical method. As constants vanish under H, we will
consider only the following regularized form of equation (1.1):

Hu(t) =
1
2π

∫ 2π

0

{u(s) − u(t)} cot
t − s

2
ds = f(t),

t ∈ [0, 2π].

Then it will be easier to study the remainder of a quadrature applied
to the integral. But the approximation of a Cauchy principal value can
only be hidden for the moment and will inevitably appear later. For
the discretization we define a sequence of grids by the knots

(2.2) xn
0 = 0 < xn

1 < · · · < xn
n = 2π, n ∈ N.

Then hn
i := xn

i − xn
i−1, i = 1(1)n, hn

0 := hn
n, hn

n+1 := hn
1 , are the local

stepsizes. Furthermore, we need intermediate points

tni := (1 − λn
i )xn

i−1 + λn
i xn

i , 0 < λn
i < 1, i = 1(1)n.

It is convenient to define also tn0 := tnn − 2π and tnn+1 := tn1 + 2π. With
the weights of the trapezoidal rule on the mesh

ωn
i :=

1
2
(hn

i + hn
i+1), i = 0(1)n,

we define Hn for functions un which are 2π-periodic, continuous at
xn

1 , . . . , xn
n−1, and piecewise linear on the grid, i.e., we are working in
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an n-dimensional subspace of Cα[0, 2π]:

Hnun(t) :=
1
2π

n∑
j=1

ωn
j {un(xn

j ) − un(t)} cot
t − xn

j

2
,

t ∈ [0, 2π].

Note that Hnun(xn
j ) could be defined as a one-sided limit. Hence, the

function has n− 1 jump-discontinuities in the worst case. Actually, we
have replaced Hu by its trapezoidal approximation and the function
u by a piecewise linear interpolant. Then collocation at the points tni
leads to the linear system of equations Hnun(tni ) = f(tni ), i = 1(1)n,
which can be stated explicitly without any integrals involved. This
explains why we call this method discrete collocation. Thus, we have
to analyze the system

Hnun(tni ) =
1
2π

n∑
j=1

ωn
j cot

tni − xn
j

2

· (un
j − (1 − λn

i )un
i−1 − λn

i un
i )

= fn
i := f(tni ), i = 1(1)n,

where un
i := un(xn

i ), i = 0(1)n, and therefore un
0 = un

n. With the side
conditions u(0) = u(2π) = 0, however, this gives n equations for only
n − 1 unknowns ũn := (un

1 , . . . , un
n−1)

T :

(2.3) Bn,n−1ũ
n = fn,

with
Bn,n−1 := B0

n,n−1 − S0
n,n−1,

B0
n,n−1 :=

1
2π

(
ωn

j cot
tni − xn

j

2

)
i=1(1)n,j=1(1)n−1

,

S0
n,n−1 :=

⎛⎜⎜⎜⎜⎜⎝
λn

1Sn
1 0 · · · 0

(1−λn
2 )Sn

2 λn
2Sn

2 0 · · 0
· ·

· ·
0 · · 0 (1−λn

n−1)Sn−1 λn
n−1S

n
n−1

0 · · · 0 (1−λn
n)Sn

n

⎞⎟⎟⎟⎟⎟⎠ ,
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(2.4) Sn
i :=

1
2π

n∑
j=1

ωn
j cot

tni − xn
j

2
, i = 1(1)n.

Obviously the system (2.3) could be solved with a Moore-Penrose
inverse of Bn,n−1. But we use the much simpler procedure of taking
row differences. This means was introduced by Dyn and Levin [5] for
regular systems. It was successfully applied and analyzed in detail by
Chandler [3] in the case of a nonsquare system. Formally the method
may be described by the matrix

Rn−1,n :=

⎛⎜⎜⎜⎝
−1 1 0 · · 0
0 −1 1 0 · 0

· ·
· ·

0 · · 0 −1 1

⎞⎟⎟⎟⎠ ∈ Rn−1,n,

finally leading to the equations considered in [4] and [11]:

An−1,n−1ũ
n = Rn−1,nfn,

An−1,n−1 := Rn−1,nBn,n−1,(2.5)
where

An−1,n−1 = A0
n−1,n−1 + Sn−1,n−1,

A0
n−1,n−1 = (a0

ij)i,j=1(1)n−1,

a0
ij :=

1
2π

ωn
j

(
cot

tni+1 − xn
j

2
− cot

tni − xn
j

2

)
,

i, j = 0(1)n.

The entries a0
ij which do not belong to A0

n−1,n−1 will be needed later or
they are used in the proofs of results cited in the next section. Sn−1,n−1

is a tri-diagonal matrix with

(Sn−1,n−1)ii := λn
i Sn

i − (1 − λn
i+1)S

n
i+1, i = 1(1)n − 1,

(Sn−1,n−1)i,i+1 := −λn
i+1S

n
i+1, i = 1(1)n − 2,

(Sn−1,n−1)i,i−1 := (1 − λn
i )Sn

i , i = 2(1)n − 1.

In [2, 3, 4, 11] the stability of A−1
n−1,n−1 was studied in detail. Here

we will analyze the stability of A−1
n−1,n−1Rn−1,n. Furthermore, we will
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show that this matrix actually is or is close to a Moore-Penrose inverse
of Bn,n−1 explaining the connection between a solution of (2.3) and the
solution of (2.5). But at first let us collect some properties of An−1,n−1

which will prove row differencing a numerically stable means to solve
(2.3).

3. Known results. The following assumptions and results are given
in detail in [11]. But their origins are [2, 3] and a lot of discussions
with G. Chandler during the second author’s visit at the University of
Queensland.

At first we impose the following restrictions on the mesh and the tni :

(A1) there exists a μ1 ≥ 1: μ−1
1 ≤ hn

i+1/hn
i ≤ μ1, i = 1(1)n − 1,

(A2) there exists a μ2 > 0: hn
max := max{hn

i , i = 1(1)n} ≤ μ2/n,

(A3) there exists a μ3 ∈ (0, 1/2]: μ3 ≤ (tni −xn
i−1)/(xn

i −xn
i−1) ≤ 1−μ3.

For a uniform mesh, i.e., hn
i = hn

max for all i ≤ n, with midpoints tni
these conditions are trivially satisfied. For a graded mesh centered at
π, e.g., usually the following mesh points are used:

(3.6)

xn
j := π{1 − (1 − 2j/n)q}, j = 0(1)[n/2],

xn
j := π{1 + (1 − 2(n − j)/n)q}, j = [n/2] + 1(1)n,

q ≥ 1 the grading exponent.
Then (A1) (A2) are still valid as a short calculation shows (cf. [11]).
Order of consistency results for smooth functions are preserved by such
meshes for functions u being weakly singular (at π in the example) in
the following sense:

(3.7)

1. u ∈ C3
2π([0, π) ∪ (π, 2π]),

i.e., u and its derivatives are 2π-periodic,

2. u ∈ Cα[0, 2π],

3. ∃Ci > 0 : |u(i)(t)| ≤ Ci|t − π|α−i,

i = 1, 2, 3, ∀ t ∈ [0, 2π],
i.e., u is 2π-periodic and of type (α, 3, {π}), a notation introduced by
Rice in [8]. The mesh restrictions yield
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Lemma 1. Let (A1), (A2) and (A3) hold. Then

1. A0
n−1,n−1 = (a0

ij) is an M -matrix,

2. there exists a γ = γ(μ1, μ2, μ3) > 0 such that a0
ii ≥ 2γ, i = 0(1)n,

a0
i,i+1 ≤ −γ, i = 0(1)n − 1, a0

i,i−1 ≤ −γ, i = 1(1)n.

Elementary arguments show the first assertion. The second one
mainly follows from the fact that h(cothα − cothβ) ≥ 1/α − 1/β for
0 < α < β and hβ < π. In order to maintain the M -property even for
An−1,n−1 another assumption on the intermediate points is necessary:

(A4) there exists γ′ ∈ (0, γ]: ai,i−1 = a0
i,i−1 + (1 − λn

i )Sn
i < −γ′,

i = 1(1)n, and ai,i+1 = a0
i,i+1 − λn

i+1S
n
i+1 < −γ′, i = 0(1)n − 1.

Remarks. (i) (A4) obviously ensures that the sub- and super-diagonal
entries of the matrix An−1,n−1 stay negative.

(ii) Furthermore, the Sn
i , i = 1(1)n, remains uniformly bounded

with respect to i and n, which will be an important property regarding
consistency.

Note that the quantities Sn
i are defined as approximations of the

Cauchy principal values
∫ 2π

0
cot((tni − t)/2) dt = 0 by the trapezoidal

rule. The following result from [11] shows that we can find points for
which (A4) applies.

Lemma 2. For any mesh (2.2) there exists one and only one
tni ∈ (xn

i−1, x
n
i ) such that Sn

i = 0. This holds for i = 1(1)n.

The proof consists of simply studying the sign behavior of the Sn
i as

functions of tni . Such tni solving Sn
i = 0 will be called optimal in the re-

mainder of this paper. They may be computed approximately by some
Newton steps which would need an additional effort. Unfortunately, it
is not yet clear if the optimal points satisfy (A3). Fortunately, we are
able to derive convergence results for these points using another ap-
proach which does not need (A3) and its implications given in this sec-
tion. On the other hand, the midpoints obviously satisfy (A3) if (A4)
holds is still open. But the numerical results imply that the midpoints
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perform well. Hence, the theory is not yet sufficiently sophisticated.
Anyway (A4) finally leads to

Lemma 3. The mesh conditions (A1) (A4) imply that An−1,n−1 is
a strictly diagonally dominant M -matrix, i.e., An−1,n−1 is regular and
has an inverse with nonnegative entries. Therefore, Bn,n−1 has full
column rank.

Furthermore, An−1,n+1 := (ai0|An−1,n−1|ain) with ai0, ain given in
(A4) fulfills a discrete maximum principle (cf. [3]) providing the main
tool for the stability analysis given in that paper. With the second
differences matrix Tn−1,n−1 := Rn−1,nRT

n−1,n another stability result
due to G. Chandler was proved in [2]:

Theorem. Let En−1,n−1 := An−1,n−1 − γ′Tn−1,n−1, γ′ from (A4).
Under the assumptions (A1) (A4) holds

vT En−1,n−1v ≥ 0, v ∈ Rn−1.

Hence

γ′vT Tn−1,n−1v = γ′
n∑

i=1

(vi − vi−1)2

≤ vT An−1,n−1v,

v ∈ Rn−1 with v0 := vn := 0.

And the last inequality was used to derive error estimates in [4,
11]. Unfortunately, all these results from [3, 4, 11] were not entirely
satisfactory because they proved convergence of order log n/n whereas
numerical evidence shows log n/n2. Moreover, the analysis in [3]
required the solution u to have a uniformly bounded first derivative,
an assumption not needed in reality and not needed in our framework.
But the properties of An−1,n−1 collected in this section show that this
matrix is well suited for numerically solving equations (2.5) directly or
iteratively.

In the next sections we will restore the lost 1/n for optimal tni by
studying A−1

n−1,n−1Rn−1,n which seemed to be quite untractable at first
sight compared with the nice An−1,n−1.
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4. The Moore-Penrose inverse of Bn,n−1. In this section we will
show that A−1

n−1,n−1Rn,n−1 is just the Moore-Penrose inverse of Bn,n−1

with respect to an appropriate scalar product if the collocation points
tni are chosen optimally. In the other cases this matrix yields ‘nearly’
a pseudo-inverse.

Theorem. Let B ∈ Rn,n−1, rank (B) = n − 1, X ∈ Rn−1,n,
rank (X) = n − 1, kernel (B∗) = span {η}, kernel (X) = span {ρ}, and
η∗ρ = 1. Then

1. XB is regular,

2. (XB)−1X = B†(I − ρη∗).

Remarks. (i) Note that we have not considered a special scalar
product but that only the notion of ∗ and † depend on it.

(ii) If we assume the regularity of XB instead of the normalization
η∗ρ = 1, then it is easy to see that such a normalization is possible.

Proof. 1. The normalization of η∗ρ implies that ρ /∈ range (B)
which is the orthogonal complement of span {η}. Hence, range (B) ∩
kernel (X) = {0}. As B has independent columns its kernel is trivial
finally yielding the regularity of XB.

2. I−BB† is the orthogonal projection on kernel (B†) = kernel (B∗) =
span {η}. Therefore we have I − BB† = ηη† = ηη∗/η∗η. This implies
BB†(I − ρη∗) = I − ρη∗, since η∗ρ = 1. Furthermore, Xρ = 0 im-
plies that X(I − ρη∗) = X holds too. So we get X = X(I − ρη∗) =
XBB†(I − ρη∗) which completes the proof.

Two easy consequences of this theorem are

1. If kernel (B∗) = kernel (X), then (XB)−1X = B†.

2. If the equation Bu = f is solvable and XB regular, then
(XB)−1Xf = B†f because the assumptions imply that η∗f = 0.
Hence XB provides in this case just the solution u.

Clearly the theorem could be generalized in order to cover higher rank
deficiency. Then the vectors η, ρ have to be replaced by orthogonal
matrices H and P .



DISCRETE COLLOCATION 349

In the case of a matrix B with full column rank, taking X = BT is
the obvious choice but not always the cheapest or most stable one. Also
X = (I|0)QT (Q being the orthogonal factor in the QR-decomposition
of B) is easy to understand within the theorem.

In our problem we have X = Rn−1,n and thus ρ = (1, 1, . . . , 1)T =: e.
Furthermore, we know that An−1,n−1 = Rn−1,nBn,n−1 is a regular
matrix under the mesh restrictions (A1) (A4). Thus the theorem
shows that for a solvable equation Bn,n−1ũ

n = fn the row-differencing
amazingly yields the solution of minimal length. Otherwise it provides
an approximation of B†

n,n−1f
n, the minimizer of ‖Bn,n−1ũ

n − fn‖.
Therefore, row-differencing was an excellent idea of G. Chandler’s. But
this insight does not yet facilitate the stability analysis which has still
to come. On the other hand, there are recent results (cf. [9]) about
B†

n,n−1 for the case of optimally chosen collocation points. In order to
apply them, we have to exhibit the connection between An−1,n−1 and
B†

n,n−1 in that situation.

Lemma 4. If the tni are optimal, then An−1,n−1 is regular, without
any mesh restrictions, and

A−1
n−1,n−1Rn−1,n = B†

n,n−1,

where the pseudo-inverse is formed with respect to the scalar product
induced by the vector pn with components

(4.8) pn
i :=

( n∑
μ=1

ωn
μ

2π

/
sin2

(
tni − xn

μ

2

))−1

> 0, i = 1(1)n.

Proof. The theorem can be applied because the kernel of Rn−1,n

is spanned by ρ = e, and it was shown in [9] that (pn)T ρ = 1 and
kernel (BT

n,n−1) = span {pn}. With the right scalar product being
induced now by this pn > 0, we have η = e ∈ kernel (B∗

n,n−1) and
η∗ρ = 1. Then the theorem tells us that An−1,n−1 is regular and that
A−1

n−1,n−1Rn−1,n = B†
n,n−1 because now again B†

n,n−1e = 0.

Remark. The lemma shows that row-differencing with optimal tni
finally solves the approximation problem minũn∈Rn−1 ‖Bn,n−1ũ

n−fn‖
in the pn-norm.
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Let us collect results from [9] which will be needed in the sequel.
They hold under the single restriction of optimal collocation points.

B†
n,n−1 = W̃−1

n−1

(
In−1 +

2π

ωn
n

W̃n−1ee
T

)
BT

n,n−1Pn,

where

Pn = diag (pn
1 , . . . , pn

n) and W̃n−1 = diag
(

1
2π

ωn
i

)
i=1(1)n−1

.

Just as the optimal knots tni guarantee that the trapezoidal approxi-
mations Sn

i of the Cauchy principal value

1
2π

∫ 2π

0

cot
t − x

2
dx

are exact at those points, so do the pn
i make sure that

1
2π

∫ 2π

0

cot
t − x

2
dt

is approximated exactly at least at the knots xn
0 , . . . , xn

n by the quadra-
ture with weights pn

i and knots tni .

Note that for uniform meshes we have pn
i = (1/(2π))ωn

i = 1/n leading
to simpler expressions:

B†
n,n−1 = BT

n,n−1 + e(Bn,n−1e)T = BT
n,n−1 −

1
n

e

(
cot

tnj
2

)T

j=1(1)n

.

Finally, the following form of the Moore-Penrose inverse is more suit-
able for the stability analysis in the sup-norm:
(4.9)

B†
n,n−1 =

((
cot

tnj − xn
i

2
− cot

tnj
2

)
pn

j

)
i=1(1)n−1,j=1(1)n

= diag
(

sin
xn

i

2

)(
1
/

sin
tnj − xn

i

2

)
· diag

(
pn

j

/
sin

tnj
2

)
.
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In the case of a uniform mesh with midpoint-collocation it is known
(cf. [9]) that pn = e/n, i.e., A−1

n−1,nRn−1,n is just the usual l2 Moore-
Penrose inverse.

These results obviously imply that we could compute an approxi-
mation for u by directly applying B†

n,n−1 to fn. This needs only the
optimal tni and a matrix vector multiplication. Anyway, it seems to
be useful to consider both, A−1

n−1,n−1Rn−1,n = B†
n,n−1 and An−1,n−1

for the analysis of more realistic situations where H is compactly per-
turbed. But then it is not yet quite clear which one should be used for
actually computing an approximate solution.

5. Stability. In this section we discuss the stability of the method
in a weighted l2-norm and in the sup-norm as well.

5.1. Weighted l2 estimates. If ε = B†
n,n−1τ , then it has been shown

for optimal tni in [9] that

(5.10) ‖ε‖
W̃n

≤
√

2π

ωn
n

‖τ‖Pn
,

and that the amplification factor is
√

n in the equidistant case. Further-
more, it can be seen that an amplification appears only in the direction
of the singular vector belonging to the singular value

√
2π/ωn

n whereas
all the other singular values are one. Hence, as the numerical results
will show, an amplification of the errors is hard to see; and it can hap-
pen only if the error is mainly lying in the ‘bad’ direction. In general,
not much is known about ‖τ‖Pn

. Therefore, some knowledge about pn

is useful.

Lemma 5. For i = 1(1)n, n > 1, we have

0 < pn
i < 2π sin2

(
hn

i

2

)/
hn

i =
π

2
hn

i + O((hn
i )3).



352 H.N. MÜLTHEI AND C. SCHNEIDER

Proof. Using (4.8) yields

1
pn

i

=
1
4π

n∑
μ=1

hn
μ

(
1
/

sin2

(
xn

μ−1 − tni
2

)
+ 1

/
sin2

(
xn

μ − tni
2

))

≥ 1
4π

hn
i

(
1
/

sin2

(
xn

i−1 − tni
2

)
+ 1

/
sin2

(
xn

i − tni
2

))
>

1
2π

hn
i

/
sin2

(
hn

i

2

)
,

because xn
i − tni < hn

i and tni − xn
i−1 < hn

i .

With this result, (5.10) implies

Theorem.

(5.11) ‖ε‖
W̃n

≤
√

2π

ωn
n

‖τ‖Ξn
(C + O(hn

max)),

where Ξn := diag (hn
1 , . . . , hn

n), and C is a constant not depending on
n.

In the next step we will derive a sup-norm estimate.

5.2. Sup-norm estimates. In this subsection we still assume the tni
being optimal. Let

τn
j := min{xn

j − tnj , tnj − xn
j−1}, j = 1(1)n.

Obviously, 0 < τn
j ≤ hn

j and τn
j = π/n = hn

max/2 on a uniform mesh
with midpoint collocation. Then we have, using (4.9) and scaling with
these τn

j ,
B†

n,n−1 = B̃n−1,nQn,n,

where

B̃n−1,n :=
(

2τn
j

(
cot

tnj − xn
i

2
− cot

tnj
2

))
i=1(1)n−1,j=1(1)n
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and
Qn,n := diag (pn

j /(2τn
j ))j=1(1)n.

This factorization trivially implies

‖B†
n,n−1‖∞ ≤ ‖B̃n−1,n‖∞‖Qn,n‖∞.

The following lemma shows that ‖Qn,n‖∞ is uniformly bounded.

Lemma 6. For j = 1(1)n, n > 1, the following holds:

pn
j /(2τn

j ) <
π

2
(1 + O((hn

j )2));

hence,
‖Qn,n‖∞ <

π

2
(1 + O((hn

max)
2)).

Proof. The second inequality in the proof of Lemma 5 immediately
implies

pn
j /(2τn

j ) <
2π

τn
j hn

j

(
1
/

sin2

(
xn

j−1 − tnj
2

)
+ 1

/
sin2

(
xn

j − tnj
2

))−1

<
2π

τn
j hn

j

min
{

sin2

(
xn

j−1 − tnj
2

)
, sin2

(
xn

j − tnj
2

)}
≤ 2π

τn
j hn

j

sin2

(
τn
j

2

)
≤ 2π

(
sin

(
τn
j

2

)/
τn
j

)(
sin

(
hn

j

2

)/
hn

j

)
.

The estimate for ‖B̃n−1,n‖∞ will be given in the next proof, finally
yielding

Theorem. For optimally chosen points tni , the following holds:

(5.12) ‖B†
n,n−1‖∞ = O(| log hn

min|).
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If hn
min = O(n−s) for some s > 0 (for a uniform mesh we have s = 1,

for the graded mesh (3.6) s = q), then

(5.13) ‖B†
n,n−1‖∞ = O(log n).

Proof. It remains to bound properly B̃n−1,n. It is no restriction to
consider only knots xn

i ≤ π. Define

gn
i (t) :=

{
cot((xn

i − t)/2) + cot(t/2), 0 < t < xn
i ,

cot((t − xn
i )/2) − cot(t/2), xn

i < t < 2π.

Then

(|B̃n−1,n|e)i =
n∑

j=1

2τn
j gn

i (tnj ).

The gn
i are convex functions. Hence we have the inequalities

2τn
j gn

i (tnj ) ≤
∫ tn

j +τn
j

tn
j
−τn

j

gn
i (t) dt.

But the bounds do not help much close to the poles at 0, xn
i and 2π.

Therefore we extract the corresponding terms and replace the others
by the integrals over an eventually enlarged region. Hence we achieve
for sufficiently large n the estimate

(|B̃n−1,n|e)i ≤ 2rn
i + Ii,

where

rn
i := τn

1 gn
i (tn1 ) + τn

i gn
i (tni ) + τn

i+1g
n
i (tni+1) + τn

n gn
i (tnn),

Ii :=
∫ tn

i−1+τn
i−1

tn
2 −τn

2

gn
i (t) dt +

∫ tn
n−1+τn

n−1

tn
i+2−τn

i+2

gn
i (t) dt.
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Formulas for the integrals are readily available yielding

Ii

2
= log

[
sin

xn
i − tn2 + τn

2

2
sin

tni−1 + τn
i−1

2

· sin tni+2 − τn
i+2

2
sin

tnn−1 + τn
n−1 − xn

i

2

]
− log

[
sin

tn2 − τn
2

2
sin

xn
i − tni−1 − τn

i−1

2

· sin tni+2 − τn
i+2 − xn

i

2
sin

tnn−1 + τn
n−1

2

]
< − log

[
sin

tn2 − τn
2

2
sin

xn
i − tni−1 − τn

i−1

2

· sin tni+2 − τn
i+2 − xn

i

2
sin

tnn−1 + τn
n−1

2

]
< − log

[
sin

hn
1

2
sin

hn
i

2
sin

hn
i+1

2
sin

hn
n

2

]
.

This result immediately implies that

Ii < −2 log
[

sin
hn

1

2
sin2

(
hn

min

2

)
sin

hn
n

2

]
= O(− log hn

min),

where hn
min := min{hn

1 , . . . , hn
n}. Note that, for i < 3 and i > n − 3

one of the integrals in the definitions of Ii should not be present. The
resulting modifications in the estimates are easily done. But we still
have to show that the rn

i are uniformly bounded with respect to i and
n. It holds, e.g.,

τn
1 gn

i (tn1 ) = τn
1

(
cot

xn
i − tn1

2
+ cot

tn1
2

)
≤ 2τn

1 cot
τn
1

2
≤ const.,

τn
i gn

i (tni ) = τn
i

(
cot

xn
i − tni

2
+ cot

tni
2

)
≤ 2τn

i cot
τn
i

2
≤ const.

In the same way the remaining terms in rn
i may be handled, thus

completing the proof.
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Remark. It can be shown for a uniform mesh with similar techniques
that

‖B†
n,n−1‖∞ =

2π

n
sin

xn
m

2

n∑
j=1

1
/(

sin
tnj
2

∣∣∣∣ sin
xn

m − tnj
2

∣∣∣∣)

= O
(

4 log
[

sin
tnm
2

sin
tnm+1

2

/
sin2(tn1 )

])
= O(log n),

where m := [n/2]. To see this, (|B̃n−1,n|e)i = (|B†
n,n−1e|)i has to be

understood also as a trapezoidal rule, after excluding some terms once
again; then convexity implies that the Ii provide a lower bound which
is of the same order as the upper one.

Note that all of these results hold without any mesh restrictions.
But in order to achieve convergence we need the consistency results
which hold for smooth functions already on a uniform mesh whereas
the weakly singular solutions need the graded mesh.

6. Consistency for weakly singular solutions. For smooth
solutions consistency is no problem at all, and the order 2 may be
derived easily. For solutions u ∈ C3[0, 2π] the same result has been
proved in [11] assuming that the mesh conditions (A1) (A4) hold. At
first glance it seems to be quite clear that the appropriate grading
of the mesh should yield consistency of order two also for weakly
singular solutions. But for actually proving this result we need some
unpleasant estimates and technical details. Therefore we will state the
theorem giving the order of consistency in a first subsection. Then
some technical lemmas will be collected preparing the proof which will
be completed in the last subsection.

6.1. The consistency theorem.

Theorem. Let u be weakly singular in the sense of (3.7) and the
mesh graded according to (3.6). If the assumptions (A3) and (A4) hold
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FIGURE 1.

for the collocation points tni or if the tni are optimally chosen, then√√√√ n∑
i=1

hn
i (Hu(tni ) −Hnu(tni ))2

=

⎧⎪⎨⎪⎩
O(1/nqα+q/2), 1 ≤ q < 2/(α + 1/2),

O(
√

log n/n2), q = 2/(α + 1/2),

O(1/n2), q > 2/(α + 1/2),

and

n
max
i=1

|Hu(tni ) −Hnu(tni )| =

⎧⎨⎩
O(1/nqα), 1 ≤ q < 2/α,
O(log n/n2), q = 2/α,
O(1/n2), q > 2/α.

Here Hnu(tni ) means that Hn is applied to a piecewise linear function
which coincides with u at the mesh points xn

j and is then evaluated at
the collocation points tni .

Figure 1 displays the regions of different orders for the two different
norms considered in the theorem. The logarithmic terms appear on the
boundary curves.

Remark. For solutions being 2π-periodic and of type (α, r + 1, {π}),
r > 2, it may be interesting to study quadrature rules yielding an order
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r. Then the stability results do still hold, and studying consistency
will obviously become more complicated, but only in the notations
and technical details, finally leading to an n−r for q > r/(α + 1/2),
etc. Nonoptimal points tni then clearly require also higher order
interpolation.

The main problems for the proof are introduced by the behavior of u
at π and by the fact that we need some knowledge about the location
of the optimal collocation points relative to the mesh points.

6.2. Technical lemmas. We start with two lemmas about the location
of the optimal tni replacing the assumption (A3).

Lemma 7. If the mesh (2.2) is symmetrical with respect to π,
then the optimal knots tni are also symmetrical with respect to π. If
n = 2m + 1, then tnm+1 = π and

S(t) :=
n∑

j=1

ωn
j cot

t − xn
j

2
= ωn

n cot
t

2

+ sin t
m∑

j=1

ωn
j

/(
sin

t − xn
j

2
sin

t + xn
j

2

)
.

Proof. Symmetry of the mesh, the identity S(t) = −S(2π − t),
and tni ∈ (xn

i−1, x
n
i ) prove the first assertions. Furthermore, this

symmetry and some manipulations with trigonometric identities yield
the representation of S showing once more explicitly that tnm+1 = π.

Therefore, assumption (A3) holds at least for i = m + 1 and n =
2m + 1:

tnm+1 − xn
m = xn

m+1 − tnm+1 = hn
m+1/2.

A similar estimate can be deduced for i = m.

Lemma 8. If n = 2m + 1 and the tnm, tnm+1, tnm+2 are optimal on
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a graded mesh (3.6), then there exists a constant C ∈ (0, 1) such that
xn

m − tnm ≥ Chn
m and tnm+2 − xn

m+1 ≥ Chn
m+2 for all m ∈ N.

Proof. Fix m and assume that tnm ≥ xn
m − hn

m/2 (otherwise C = 1/2
is good enough). As S(tnm) = 0, we have

1
/

sin
xn

m − tnm
2

= sin
xn

m + tnm
2

/
ωn

m

[
ωn

n cot
tnm
2

/
sin tnm

+
m−1∑
j=1

ωn
j

/(
sin

tnm − xn
j

2
sin

tnm + xn
j

2

)]
.

Note that all terms in the brackets are positive. Now we will derive
bounds for the terms appearing on the righthand side of the equation.
For sufficiently large m the following holds:

sin
xn

m + tnm
2

= sin
π − xn

m + π − tnm
2

= sin
hn

m+1 + xn
m − tnm

2

< sin
hn

m+1 + hn
m

2
;

hence,

sin
xn

m + tnm
2

/
ωn

m ≤ 2
hn

m+1 + hn
m

sin
hn

m+1 + hn
m

2
≤ 1 + ε0.

Furthermore, for m large enough, the following holds:

cot
tnm
2

/
sin tnm = cos

tnm
2

/(
sin tnm sin

tnm
2

)
= sin

π − tnm
2

/(
sin(π − tnm) sin

tnm
2

)
≤ 1

2
(1 + ε1).

By the assumption on tnm, we have for j ≤ m − 1

sin
tnm − xn

j

2
≥ sin

xn
m−1 + hn

m/2 − xn
j

2
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and

sin
tnm + xn

j

2
≥ sin

xn
m + xn

j

2

as far as (tnm + xn
1 )/2 > π/2 which is true for large n. Collecting the

results we obtain

1
/

sin
xn

m − tnm
2

< (1+ε0)
[
1+ε1

2
ωn

n+
m−1∑
j=1

ωn
j

/(
sin

xn
m−1 − xn

j +hn
m/2

2
sin

xn
m+xn

j

2

)]
.

Note that the bound does not depend on tnm. With the estimate

1
xn

m − tnm

/(
sin

xn
m − tnm

2
1

xn
m − tnm

)
=

2
xn

m − tnm

1
1 + O(xn

m − tnm)

>
2 − ε2

xn
m − tnm

with 0 < ε2 � 1, m sufficiently large,

and the inequality sin x ≥ 2x/π for 0 ≤ x ≤ π/2, we finally achieve

1
xn

m − tnm
< c1h

n
1 + c2

m−1∑
j=1

hn
j+1

(xn
m−1 − xn

j + hn
m/2)(π − xn

j + hn
m/2)

,

where (A1) was applied. For the sum, let us call it σm, the following
holds:

σm ≤ 2q

π
nq

m−1∑
j=1

(n − 2j)q−1

((n − 2j)q − (3q + 1)/2)((n − 2j)q + 1)

<
2q

π
nq

m−1∑
j=1

1
(n − 2j)((n − 2j)q − (3q + 1)/2)

=
2q

π
nq

m−1∑
j=1

1
(2j + 1)((2j + 1)q − (3q + 1)/2)

< c3n
q,
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because the sum is convergent for q ≥ 1. Hence, we arrive at the
estimate

1
xn

m − tnm
< c1h

n
1 + c4n

q ≤ c5n
q = 1/(c6h

n
m)

with the definition of hn
m. Thus xn

m − tnm > c6h
n
m where necessarily

0 < c6 < 1. Symmetry implies the result for tnm+2.

The next lemma will help to bound sharply the influence of a singular
u′′′.

Lemma 9. If 2 > α > 0, then there exists a C = C(α) such that

(6.14)
∣∣∣∣ ∫ t

x

(t − τ )2|π − τ |α−3 dτ
/

(t − x)3
∣∣∣∣

≤ C|π − x|α−2

{
|π−x|−1, x ≤ t ≤ π or π ≤ t ≤ x,

|π−t|−1, t ≤ x < π or π < x ≤ t.

Proof. It follows from [10, p. 20] that∣∣∣∣ ∫ t

x

(t − τ )2|π − τ |α−3 dτ
/

(t − x)3
∣∣∣∣

=
1
3

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|π−x|α−3

2F1(3−α, 1, 4, (t−x)/(π−x)), x ≤ t ≤ π

or π ≤ t ≤ x,

|π−t|α−3
2F1(3−α, 3, 4, (x−t)/(π−t)), t ≤ x < π

or π < x ≤ t,

where 2F1 denotes the hypergeometric function which is well defined
with the given parameters for |t−x|/|π−x| ≤ 1 and |x− t|/|π− t| < 1,
respectively. For α < 2, the following transformation (cf. [10, p. 10])
shows the behavior of the second 2F1-function:

2F1

(
3 − α, 3, 4,

x − t

π − t

)
=

(
π − x

π − t

)α−2

2F1

(
1 + α, 1, 4,

x − t

π − t

)
.

Now the 2F1-function on the righthand side is uniformly bounded with
respect to x and t as far as |x − t|/|π − t| ≤ 1.
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Remark. In the confluent case α = 2, there appears a logarithmic
singularity in 2F1(1, 3, 4, (x − t)/(π − t)) as (x − t)/(π − t) → 1.

With these results we are prepared to prove the consistency results
of the theorem.

6.3. Consistency proof. We have to study

Hu(tni ) −Hnu(tni ) = Qn(tni ) + In(tni )

with the remainder of the quadrature

Qn(tni ) :=
1
2π

( ∫ 2π

0

u(x) − u(tni )
tan((tni − x)/2)

dx −
n∑

j=1

ωn
j

u(xn
j ) − u(tni )

tan((tni − xn
j )/2)

)

and the error of the interpolation weighted with the Sn
i (cf. (2.4)):

In(tni ) := (un(tni ) − u(tni ))Sn
i , i = 1(1)n.

un denotes the piecewise linear interpolant of u at the grid points xn
j ,

j = 0(1)n. Obviously, all the In(tni ) vanish for the optimal tni another
advantage of these collocation points. For nonoptimal knots the Sn

i do
not generally vanish, although the assumption (A4) ensures that they
are uniformly bounded. Therefore, the interpolation error appears and
has to be studied.

Lemma 10. If u is of type (α, 3, {π}) and un its piecewise linear
interpolant at the knots xn

j , j = 0(1)n, of a graded mesh with grading
exponent q, then√√√√ n∑

i=1

hn
i (u(tni ) − un(tni ))2 =

⎧⎨⎩
O(1/nqα+q/2), 1 ≤ q < 2/(α + 1/2),
O(

√
log n/n2), q = 2/(α + 1/2),

O(1/n2), q > 2/(α + 1/2),

and
n

max
i=1

|u(tni ) − un(tni )| =
{O(1/nqα), 1 ≤ q ≤ 2/α,
O(1/n2), q ≥ 2/α.
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Proof.

n∑
i=1

hn
i (u(tni ) − un(tni ))2 ≤ D1(hn

m+1)
2α+1

+ D2

m∑
i=1

(hn
i+1)

5(π − xn
i )2α−4

≤ D3

n2qα+q

(
1 +

m∑
i=1

(n − 2i)2qα+q−5

)
,

if n = 2m+1. Minor modifications are necessary for even n. This result
is slightly better than the rough estimate given in [8] for the L2-norm.
For the sup-norm there is [8] just the right reference.

Hence the remainder of the quadrature alone yields all the difficulties.
Unfortunately, the proof for its bounds given in [11] is not quite
complete. Therefore we still have to derive consistency of order two.
But we reproduce some of the useful results from [11]. In order to avoid
a lot of notational inconveniences, we consider only the case of odd n.
Now we have to look closer at the remainder Qn(tni ) of the quadrature.
Define

Φ(t, x) := (u(x) − u(t)) cot
t − x

2
,

x, t ∈ [0, π) ∪ (π, 2π],

for a weakly singular u. Then

Qn(tni ) =
2m+1∑
j=1

en
ji =

1
12

2m+1∑
j=1

j �=m+1

(hn
j )3Φxx(tni , ζn

j ) + en
m+1,i,

with ζn
j ∈ [xn

j−1, x
n
j ] and

en
ji :=

∫ xn
j

xn
j−1

Φ(tni , x) dx − hn
j

2
[Φ(tni , xn

j−1) + Φ(tni , xn
j )],

i, j = 1(1)n.

At first we bound the term en
m+1,i.
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Lemma 11. If the mesh and the knots tni are symmetrical with
respect to π and if n = 2m + 1, then there exists a C = C(α) such that

|en
m+1,i| ≤ C(hn

m+1)
α+1

(
1

|xn
m − tni |

+
1

|xn
m+1 − tni |

)
, i = 1(1)n.

Proof.

en
m+1,i =

∫ xn
m+1

xn
m

[
Φ(tni , x) − 1

2
(Φ(tni , xn

m) + Φ(tni , xn
m+1))

]
dx

=: I1i + I2i,

where

I1i :=
∫ π

xn
m

[Φ(tni , x) − Φ(tni , xn
m)] dx,

I2i := en
m+1,i − I1i.

We will only show how to bound I1i. Then it will be clear how to
bound the other term.

I1i =
∫ π

xn
m

[
(u(x) − u(tni ))

(
cot

tni − x

2
− cot

tni − xn
m

2

)
− cot

tni − xn
m

2
(u(xn

m) − u(x))
]

dx

=
[ ∫ π

xn
m

(u(x) − u(tni )) sin
x − xn

m

2

/
sin

tni − x

2
dx

− cos
tni − xn

m

2

∫ π

xn
m

(u(xn
m) − u(x)) dx

]/
sin

tni − xn
m

2
.

If x ∈ [xn
m, π], then x − tni < π obviously holds for i = 1(1)m.

Furthermore, tni −x ≤ tnn−1−xn
m = 2π−tn2 −xn

m = (1/2)hn
m+1+π−tn2 <

π for i = m + 1(1)n − 1. Only tnn − x could be slightly larger than π,
namely, tnn−x ≤ 2π−xn

m = (1/2)hn
m+1 +π. Then, using sin z ≥ (2/π)z

for z ∈ [0, π/2], we have

1
/∣∣∣∣ sin

tni − x

2

∣∣∣∣ ≤ π
/
|tni − x|, i = 1(1)n − 1.
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And, for i = n ≥ n0(ε0), such an equality holds too if π is replaced by
π + ε0, 0 < ε0 � 1. Hence,

I1i ≤ C1

[ ∫ π

xn
m

(x−xn
m)|x−tni |α−1 dx +

∫ π

xn
m

(x−xn
m)α dx

]/
|tni −xn

m|

≤ C1

[
1
α

(π−xn
m)

∣∣∣∣|π−tni |α−|xn
m−tni |α

∣∣∣∣+ 1
α+1

(π−xn
m)α+1

]/
|tni −xn

m|

≤ C2

|tni − xn
m| (π − xn

m)α+1

≤ C3

|tni − xn
m| (h

n
m+1)

α+1.

Similarly the following bound is achieved

I2i ≤ C4(hn
m+1)

α+1(1/|tni − xn
m| + 1/|tni − xn

m+1|).

Remark. If the knots tni are even optimally chosen or satisfy (A3),
then this lemma implies

(6.15)

|en
m+1,i| ≤ C

⎧⎪⎨⎪⎩
(hn

m+1)
α+1/|π − xn

i |, i < m + 1,

(hn
m+1)α, i = m + 1,

(hn
m+1)

α+1/|π − xn
i−1|, i > m + 1,

≤ C∗

nqα

⎧⎪⎨⎪⎩
(n − 2i)−q, i < m + 1,

1, i = m + 1,

(2(i − 1) − n)−q, i > m + 1,
=: βn

i (q, α),

a bound which will be used later. Hence, for a graded mesh, the
following holds.

|en
m+1,i| ≤ C(hn

m+1)
α = O(1/nqα), i = 1(1)n.
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Proof. If i < m, then

xn
m − tni ≥ xn

m − xn
i = π − xn

i − hn
m+1/2

≥ (π − xn
i )

(
1 − 1

2
hn

m+1

π − xn
m−1

)
= (π − xn

i )
(

1 − 1
2

hn
m+1

hn
m + hn

m+1/2

)
≥ (π − xn

i )
(

1 − 1
1 + 2/μ1

)
> 0

with μ1 from (A1). If i = m, then Lemma 8 or (A3) implies that

xn
m − tnm ≥ Chn

m = C(π − xn
m)2hn

m/hn
m+1 ≥ C

μ1
(π − xn

m).

The remaining cases are shown similarly.

Now we have to study Φxx. If x = π and x = t, then

Φxx(t, x) =
−1
2

[
cos

t − x

2
(u(t) − u(x)) − 2u′(x) sin

t − x

2

− 2u′′(x) cos
t − x

2
sin2

(
t − x

2

)]/
sin3

(
t − x

2

)
.

For smooth u, it is quite easy to derive estimates for Φxx which becomes
a slightly more delicate matter in the weakly singular case. Symmetry
allows us to assume that 0 ≤ x < π or even x ≤ xn

m = π − hn
m+1/2

because we will treat the interval [xn
m, xn

m+1] separately. Nevertheless,
t may vary all over [0, 2π]. But if t ∈ (π, 2π], then the periodicity of
u yields u(t) = u(t∗) where t∗ := t − 2π ∈ (−π, 0]. And the identity
Φxx(t, x) = Φxx(t∗, x) follows. Hence, u(t) − u(x) or u(t∗) − u(x),
respectively, can be expanded because the singularity at π is avoided.
Consider the case 0 ≤ x, t < π at first. If |x − t| ≥ ε > 0 for some
ε � 1, ε fixed, then

|Φxx(t, x)| ≤ C0(|u′(x)| + |u′′(x)|)
≤ C1(|π − x|α−1 + |π − x|α−2),
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where C0, C1 depend on ‖u‖∞ and ε. If |x − t| < ε, then expanding
Φxx yields

|Φxx(t, x)| ≤ C2

(
|u′(x)| + |u′′(x)| +

∣∣∣∣ ∫ t

x

(t−τ )2u′′′(τ ) dτ

∣∣∣∣/|t−x|3
)

.

Continuity arguments assure that all the inequalities even hold for
t = π. The same reasoning holds if t > π. But in this case we have to
replace t by t∗. Therefore, the following bound is achieved with (6.14)
for 0 ≤ t ≤ π,

|Φxx(t, x)| ≤ C3

{
(π − x)α−1 + (π − x)α−2

+
∣∣∣∣ ∫ t

x

(t − τ )2(π − τ )α−3 dτ

∣∣∣∣/|t − x|3
}

≤ C4(π − x)α−2

{
(π − x)−1, 0 ≤ x ≤ t ≤ π,

(π − t)−1, 0 ≤ t ≤ x < π.

If π < t ≤ 2π, then we have, with t∗ := t − 2π ∈ (−π, 0] and (6.14),

|Φxx(t, x)| = |Φxx(t∗, x)|
≤ C5

{
(π − x)α−1 + (π − x)α−2

+
∫ 0

t∗
(τ − t∗)2(π + τ )α−3 dτ

/
|t∗ − x|3

+
∫ x

0

(τ − t∗)2(π − τ )α−3 dτ
/
|t∗ − x|3

}
≤ C6

{
(π − x)α−2 +

∫ −t∗

−x

(−t∗ − τ )2(π − τ )α−3 dτ
/
|t∗ − x|3

−
∫ t∗

x

(t∗ − τ )2(π − τ )α−3 dτ
/
|t∗ − x|3

}
≤ C7{(π − x)α−2 + (π + x)α−3 + (π − x)α−2(3π − t)−1}
≤ C8(π − x)α−2.

Hence, for such x and t, Φxx behaves like the second derivative of u.
Now we are in a position to bound

1
12

2m+1∑
j=1

j �=m+1

(hn
j )3Φxx(tni , ζn

j ) =
2m+1∑
j=1

j �=m+1

en
ji, i = 1(1)n.
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Symmetry allows us to consider only |∑m
j=1 en

ji|. But then we have
to study the cases i ≤ m, i = m + 1 and i ≥ m + 2 separately. Let
i ≤ m. Without loss of generality, we assume that tni ≤ ζn

i . Otherwise
we would have to discuss the sums from 1 to i and from i+1 to m with
the same final result. Therefore, we get∣∣∣∣ m∑

j=1

en
ji

∣∣∣∣ ≤ C9

i−1∑
j=1

(hn
j )3(π − ζn

j )α−3 +
C9

|π − tni |
m∑

j=i

(hn
j )3(π − ζn

j )α−2.

With hn
j ≤ μ1h

n
j+1, it follows∣∣∣∣ m∑

j=1

en
ji

∣∣∣∣ ≤ C10

i−1∑
j=1

(hn
j+1)

3(π − xn
j )α−3

+
C10

|π − tni |
m∑

j=i

(hn
j+1)

3(π − xn
j )α−2

≤ C11

nqα

i−1∑
j=1

(n − 2j)qα−3

+
C11

nqα(n − 2i)q

m∑
j=i

(n − 2j)qα+q−3

=
C11

n2

[
1
n

i−1∑
j=1

(
n−2j

n

)qα−3]

+
C11

n2

(
n

n−2i

)q[ 1
n

m∑
j=i

(
n−2j

n

)qα+q−3]
.

The quadrature rules in the brackets are bounded by the integrals
over convex or concave, monotone functions. Hence we can keep on
estimating, for i = 1(1)m, by

C12

nqα

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(n − 2i)−q if qα + q < 2,

(n − 2i)−q log((n − 2i)e) if qα + q = 2,

(n − 2i)qα−2 if qα + q > 2 > qα,

| log((n − 2i)/n)| if 2 = qα,

nqα−2 if 2 < qα

=: bn
i (q, α).
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If i = m + 1, then we have ζn
j < tnm+1 = π, and thus∣∣∣∣ m∑

j=1

en
j,m+1

∣∣∣∣ ≤ C13

m∑
j=1

(hn
j+1)

3(π − xn
j )α−3

≤ C14

nqα

m∑
j=1

(n − 2j)qα−3

≤ C15

⎧⎪⎨⎪⎩
n−qα if qα < 2,

log n/n2 if qα = 2,

n−2 if qα > 2
=: bn

m+1(q, α).

If i > m + 1, then tni > π > xn
j for j = 1(1)m. Thus, |Φxx(tni , xn

j )| ≤
C8(π − xn

j )α−2 yielding∣∣∣∣ m∑
j=1

en
ji

∣∣∣∣ ≤ C16

m∑
j=1

(hn
j+1)

3(π − xn
j )α−2

≤ C17

n2

[
1
n

m∑
j=1

(
n − 2j

n

)qα+q−3]

≤ C18

⎧⎪⎨⎪⎩
n−qα−q if qα + q < 2,

log n/n2 if qα + q = 2,

n−2 if qα + q > 2
=: bn

i (q, α).

These bounds, (6.15), and symmetry finally lead to an estimate for
i = 1(1)n:∣∣∣∣ n∑

j=1

en
ji

∣∣∣∣ ≤ ∣∣∣∣ m∑
j=1

en
ji

∣∣∣∣ + |en
m+1,i| +

∣∣∣∣ n∑
j=m+2

en
ji

∣∣∣∣
≤ bn

i (q, α) + βn
i (q, α) + bn

n−i+1(q, α) =: bn
i (q, α).

Comparing all the bounds immediately yields that

βn
i (q, α) ≤ const. (bn

i (q, α) + bn
n−i+1(q, α))
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and, secondly, that bn
i (q, α) + bn

n−i+1(q, α) is dominated by the terms
depending on i if i = m + 1 and qα ≤ 2. Therefore, we have

bn
i (q, α) ≤ C19

{
bn
i (q, α) if i < m + 1,

bn
n−i+1(q, α) if i > m + 1,

and

bn
m+1(q, α) ≤ C19

⎧⎨⎩
1/nqα if qα < 2,
log n/n2 if qα = 2,
1/n2 if qα > 2.

Thus, we have derived the order of consistency in the sup-norm. For
the weighted sum of the squared bounds, it follows

√√√√√ n∑
i=1

hn
i

⎛⎝ n∑
j=1

en
ji

⎞⎠2

≤ C20

√√√√2
m∑

i=1

hn
i+1(b

n
i (q, α))2 + hn

m+1(bn
m+1(q, α))2

≤ C21

√√√√ 1
n

m∑
i=1

(
1 − 2i

n

)q−1

(bn
i (q, α))2 + (1/nq)(bn

m+1(q, α))2

≤ C22

⎧⎪⎨⎪⎩
n−q(α+1/2) if q(α + 1/2) < 2,

n−2
√

log n if q(α + 1/2) = 2,

n−2 if q(α + 1/2) > 2.

The last inequality is obtained again by comparing quadrature rules
with appropriate integrals. As an example, we will only show the case
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qα + q > 2 > qα. Then

1
n

m∑
i=1

(
1 − 2i

n

)q−1

(bn
i (q, α))2

≤ C2
19

n

m∑
i=1

(
1 − 2i

n

)q−1

(n − 2i)2qα−4/n2qα

=
C2

19

n4

[
1
n

m∑
i=1

(
1 − 2i

n

)2qα+q−5]

≤ const.

⎧⎪⎨⎪⎩
n−2q(α+1/2), q(α + 1/2) < 2,

n−4 log n, q(α + 1/2) = 2,

n−4, q(α + 1/2) > 2.

Hence, the order of consistency is established for the weighted norm
too. Actually, all of these results hold also for nonoptimal knots as far
as the mesh restrictions (A1) (A3) and (A4), which bounds the weights
of the interpolation error, apply. Therefore, the consistency result is
completely proved.

7. Convergence. Here we simply have to collect and to combine
results from the previous sections.

Let u be the solution of the continuous equation, ũn the solution of
the discrete collocation with optimal tni . Then

(u(xn
i ) − ũn

i )i=1(1)n−1 = B†
n,n−1(Hnu(tni ) −Hu(tni ))i=1(1)n.

Here we have used Hu = f and u(2π) = u(xn
n) = 0. Now the

consistency theorem and the stability results (5.11) (5.13) yield, as
usual, convergence and the order of convergence:

Theorem. Let u be 2π-periodic, of type (α, 3, {π}), and a solution
of the integral equation Hu = f with the side conditions u(0) = 0. Let
ũn be the solution of the discrete collocation with optimal tni on a mesh
(3.6) with grading exponent q ≥ 1. If q > 2/(α + 1/2), then

‖ur − ũn‖
W̃n

≤
√

2π

ωn
n

n−2(C + O(hn
max)) =

√
nO

(
1
n2

)
,
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ur being the restriction of u to the gridpoints xn
i . If q > 2/α, then

‖ur − ũn‖∞ = O((hn
max)

2| log hn
min|) = O

(
log n

n2

)
.

With the piecewise linear polynomial un defined by its values ũn
i at the

knots xn
i , this result implies with an interpolation argument that

sup{|u(t) − un(t)|, 0 ≤ t ≤ 2π} = O
(

log n

n2

)
.

In the theorem we have separated the
√

n term indicating that it only
appears in the worst case.

Remark. If the grading exponent is too small, then the order drops
down according to the consistency results. The error bounds hold too
on a uniform grid with midpoint collocation for u ∈ C3[0, 2π]. Clearly,
for a smooth and 2π periodic solution we then even have an exponential
decay of the remainder as always when applying the trapezium rule to
such functions.

Remark. A similar analysis for the integral side condition
∫ 2π

0
u(t) dt =

0 (discretized by the trapezoidal rule, too) instead of u(0) = u(2π) = 0,
leads to an analogous error estimate but without the

√
n for the

weighted norm (cf. [9]).

If the tni are not optimal, but if (A3) and (A4) hold, then the
consistency results are still valid. In order to study the influence of
the collocation points on the stability, we will compare the matrix
An−1,n−1 of the optimal points with the matrix belonging to the tni ,
namely A(τ )n−1,n−1 where τ := {tn1 , . . . , tnn}. If ũn is the solution of
the system A(τ )n−1,n−1ũ

n = Rn−1,nfn, then

(u(xn
i ) − ũn

i )i=1(1)n−1 = A(τ )−1
n−1,n−1An−1,n−1A

−1
n−1,n−1Rn−1,n

· (B(τ )n,n−1u(xn
i )i=1(1)n−1 − fn)

= (A(τ )−1
n−1,n−1An−1,n−1)B

†
n,n−1(Hnu(tni )

−Hu(tni ))i=1(1)n.
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Therefore the convergence theorem remains true for tni satisfying (A3)
and (A4), and furthermore

(7.16) ‖A(τ )−1
n−1,n−1An−1,n−1‖ = O(1).

For knots tni not satisfying (7.16) we still have consistency (assuming
the conditions (A3) and (A4)) but our stability results do not apply.
However, all numerical computations indicate that the estimates given
in the previous theorem are valid at the easily available midpoints
tni even for graded meshes. Unfortunately, neither (7.16) nor (A4)
have been proven for them up to now. Hence, there remains an open
problem.

8. Numerical results. The numerical results given in [3] and
[11] clearly displayed a better order of convergence than the theoretical
results of these papers, thus motivating our research. Now these results
perfectly fit into the theory, as far as the optimal points are concerned.
Therefore, it suffices to show only some additional numbers in order to
ascertain this statement.

Our computations were performed with the test functions

(8.17) u(s) = R{(eis + 1)α} − 2α, s ∈ [0, 2π] and α > 0.

Obviously, they are 2π-periodic, of type (α,∞, {π}), and satisfy the
point side condition u(0) = 0. If α = 1/2, e.g., then

u(s) =
√

2 · | cos(s/2)|
· max

{
cos

(
s

4

)
, sin

(
s

4

)}
−
√

2, s ∈ [0, 2π].

The righthand side f of the equation Hu = f is given by

f(t) = I{(eit + 1)α}, t ∈ [0, 2π].

We computed the approximations ũn and the norms of the absolute
errors ‖ur − ũn‖

W̃n
, ‖ur − ũn‖∞ for some n and for different grading

exponents q. Here ur denotes again the restriction of u to the mesh. In
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TABLE 1. Trapezoidal rule.

Function (8.17), α = 1/2

Mesh graded with q

tni = midpoints, i = 1(1)n

q n ‖ur − ũn‖
W̃n

OCE

W̃n

OCY

W̃n

‖ur − ũn‖∞ OCE∞ OCY∞

1 4 1.810 − 1 3.510 − 1

8 8.710 − 2 1.02 0.90 2.510 − 1 0.52 0.47

16 4.310 − 2 1.01 0.96 1.710 − 1 0.51 0.50

32 2.110 − 2 1.01 0.98 1.210 − 1 0.51 0.50

64 1.110 − 2 1.00 0.99 8.610 − 2 0.50 0.50

2 4 1.310 − 1 3.410 − 1

8 3.910 − 2 *2.00 *1.99 1.910 − 1 0.84 0.94

16 1.110 − 2 *2.04 *2.03 9.910 − 2 0.94 1.00

32 3.010 − 3 *2.03 *2.02 5.110 − 2 0.97 1.00

64 8.110 − 4 *2.02 *2.02 2.510 − 2 0.99 1.00

4 4 1.810 − 1 4.510 − 1

8 6.010 − 2 1.55 1.72 2.510 − 1 *1.43 1.94

16 1.610 − 2 1.86 2.01 1.010 − 1 *1.74 2.00

32 4.010 − 3 2.03 2.07 3.410 − 2 *1.88 2.00

64 9.610 − 4 2.08 2.07 1.110 − 2 *1.93 2.00

6 4 2.510 − 1 5.010 − 1

8 9.810 − 2 1.37 1.37 3.410 − 1 0.57 2.72

16 3.010 − 2 1.69 1.90 1.410 − 1 1.29 2.20

32 7.910 − 3 1.94 2.03 4.210 − 2 1.71 2.08

64 1.910 − 3 2.06 2.08 1.110 − 2 1.90 2.05

order to estimate the order of convergence and the order of consistency,
respectively, we use the quantities

OCE
∗ :=

log ‖ur − ũn1‖∗ − log ‖ur − ũn2‖∗
log(n2) − log(n1)

, n1 < n2,

and the analogously defined OCY
∗ for the two norms studied in this pa-

per. Unfortunately, these quantities are not very significant if the error
behaves like (log n)β/nγ . In order to estimate the γ it is quite conve-
nient to modify them by subtracting β log(log n1/ log n2)/ log(n2/n1).
An ∗ indicates such modifications in the tables. They appear for the



DISCRETE COLLOCATION 375

TABLE 2. Simpson’s rule with the inversion formula (4.9).

Function (8.17), α = 1/2

Mesh graded with q

tni = optimal points, i = 1(1)n

q n ‖ur − ũn‖
W̃n

OCE

W̃n

‖ur − ũn‖∞ OCE∞

2 8 2.710 − 2 1.310 − 1

16 6.710 − 3 2.00 6.510 − 2 1.00

32 1.710 − 3 2.00 3.310 − 2 1.00

64 4.210 − 4 2.00 1.610 − 2 1.00

128 1.010 − 4 2.00 8.210 − 3 1.00

4 8 2.310 − 2 1.510 − 1

16 2.710 − 3 *3.32 4.510 − 2 1.71

32 2.310 − 4 *3.68 1.210 − 2 1.93

64 1.810 − 5 *3.82 3.010 − 3 1.98

128 1.310 − 6 *3.89 7.510 − 4 2.00

8 8 7.410 − 2 2.510 − 1

16 1.310 − 2 2.50 1.010 − 1 *1.71

32 1.110 − 3 3.56 1.510 − 2 *3.06

64 7.610 − 5 3.86 1.610 − 3 *3.53

128 4.910 − 6 3.95 1.510 − 4 *3.63

weighted norm with β = 1/2 if q(α + 1/2) = 2 and for the sup-norm
with β = 1 if qα = 2.

Table 1 gives all these numbers for the midpoints tni and the weights
ωn

j of the trapezoidal rule. It is really amazing how exactly the different
orders show up already at relatively small n. Also, the modified OCY

∗
or OCE

∗ are quite close to the proven exponent γ = 2. Furthermore, the
convergence results show that the

√
n does not appear in the weighted

l2-norm and that the log n of the sup-norm can only be seen in the
case qα = 2. But then consistency seems not to be spoiled by another
log n at least in our specially structured examples. Computations
with the optimal points tni yield nearly the same results. Also, the
explicit inversion formulas behave quite similarly. In order to apply
them, we need the optimal points. But one Newton step, starting with
the midpoints, is sufficient to achieve good results. It can be seen in
all cases that the absolute errors begin to increase if the grading is
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stronger than necessary for an optimal order. Hence, overgrading is
quite useless.

In Table 2 we want to illustrate that Simpson’s rule, for example,
really leads to an improvement and to order-4 results. Here the optimal
points were approximated with three Newton steps and then we applied
the explicit inversion formulas with Simpson’s weights ωn

j . Notice that
the midpoints are no longer optimal on a uniform mesh. The results
with the ∗ seem to indicate some more logarithms. But that leads to
another open problem.
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