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THE SOLUTION IN A CLASS OF
SINGULAR FUNCTIONS OF CAUCHY
TYPE BISINGULAR INTEGRAL EQUATIONS

D. ELLIOTT, I.LK. LIFANOV AND G.S. LITVINCHUK

ABSTRACT. We first give the solution, in a class of singular
functions, of a one-dimensional singular integral equation with
Cauchy integral, arising from a problem in two-dimensional
aerodynamics. The analysis is then extended to the solution
of a bisingular Cauchy singular integral equation arising from
three-dimensional airfoil theory.

1. Introduction. Traditionally, the theory of singular integral equa-
tions with Cauchy kernel has been constructed under the assumption
that the unknown function is absolutely integrable. See, for exam-
ple, the texts by Muskhelishvili [7] or Gakhov [4]. Such theory has
immediate application in the mathematical theories of elasticity and
hydrodynamics. But airfoil control problems lead to the necessity of
introducing an ejection external stream emanating from a point or a
line on the airfoil which can be modeled by the introduction of a source
into the airfoil; see Belotserkovsky and Lifanov [2] and Woolard [9].
In the simplest case, this modeling leads to the necessity of solving
a singular integral equation with Cauchy kernel on an interval, with
the solution having a non-integrable singularity of the form 1/z near
x = 0. The so-called method of discrete vortices has been applied by
Lifanov, Mikhailov and Titsky [6] for the case of incompressible flow
past an airfoil, with a slit in the airfoil possessing a source. An explicit
analytic solution to this problem is not known but Bisplinghoff, Ashley
and Halfman [3] have shown that in the case of a rectangular wing, the
problem is reduced to that of solving a bisingular integral equation of
the first kind with Cauchy integrals taken over the Cartesian product of
two finite intervals. We shall show that, in a special case, it is possible
to write down explicitly all the solutions that are absolutely integrable.
In addition, we shall also give analytic solutions of this equation having
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a non-integrable singularity of the form 1/(z — ¢) at some point ¢ in
(—1,1). We might note in passing that such singular solutions in the
one-dimensional case have been used by Zakharov, Lifanov and Lifanov
[10] for diffraction problems of electromagnetic waves.

Let an airfoil L be described by a plane simple curve z = z(t),
y = y(t), t € [0,]] in the zy plane. We shall assume that L is
either an arc or a closed contour with z'(¢), y'(t) satisfying the Holder
condition H(a), 0 < a < 1, on L (see below, (2.3)). Furthermore,
it will be assumed that, at any point M(t) = M(z(t),y(t)) on L,
rhp = (@) +y2 ()2 £ 0 for 0 <t <.

Now let the airfoil be immersed in a steady incompressible flow with
free stream velocity Up. The surface of the airfoil will be modeled by a
vortex sheet whose density at the point M (t) of L is given by ~(t), see
[1] and [2]. It is known that the velocity V(Mp) at a point M, arising
from the vorticity layer on L is defined by

—

7 (Mo) = / B(to, t)y(t) ds
(1.1) X

2

/ y(t(ht)i B x(to,t)J’y(t) dS,

2
"M M,

where s denotes the arc length along L. Here

z(to, t) := z(to) — z(t),
y(to, t) := y(to) — y(t),
Mo ¢ L and rag, = [Tarag| i= |2(to, t)i+ ylto, t)]]-

As ty approaches the curve L, then

(12)  VE(Mo) = £(1/2)y(to)(to) + / B(to, D) () ds,

where 7(¢¢) is the unit tangent at the point My and the sign = is chosen
according to whether we approach L from the direction of the outward
or inward normal, respectively. Equation (1.2) shows that the normal
component of velocity, fipg, -V (M) where iy, = (iy/ (tg)—jx'(to))/rgwo
is the outward drawn unit normal at My, is continuous as we pass
through the curve L. Therefore, the condition of no flow across the
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airfoil, i.e., the sum of the normal components of the free stream and
of the vorticity layer at the point My of L, gives

(1.3) /w(to,t) gy (t) ds = —To(Mo) - fuag,,
L

My € L. If we assume that the parameter ¢ coincides with the arc
length s of L, then (1.3) can be written as

(1.4) i/Lx’(to)w(to,t)+y'(t0)y(to,t)7(t) gt = —To(Mo) - .

2
2 MM,

Equation (1.4) is a singular integral equation of the first kind, with
Cauchy kernel when L is an arc and Hilbert kernel if L is a contour.

Suppose now that at a point Mg (z(tg), y(tg)) of L (which is not an
end-point if L is an arc) there is a device of external flow ejection on
the upper side of the airfoil which does not perturb the velocities on
the lower sides of the airfoil. We shall model the ejection device by a
source of intensity @, see [5]. Thus, on the upper side of the airfoil, the
velocity field in the neighborhood of Mg will be defined by a source and
have a singularity, but on the lower side the field has no singularities.
Again, the surface of the airfoil is modeled by a vorticity layer when
we have a free stream and a source on the airfoil. The condition of no
flow across the airfoil, cf. equation (1.3), now gives

(1.5) / B(to,t) - fuagy(8) dt = —T - fragy — Vo - fanty
L

for My € L, My # Mg where

— Q A1
Vah) = 22 e
(1 6) MMgq
Vo (Mo - s — Q Y (to)z(tg,to) — 2'(to)y(tq, to)
Q( 0)'nMo_%' T%\/IM :
oMQ

Using the result of [1], it is possible to show that the function VQ -,
has no singularity at the point Mg and moreover it belongs to the class
H(a) on [0,1] if 2" (t) and y"(t) € H(«).
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Let us now consider the class of functions necessary to solve equation
(1.5). Since the free stream and normal component of velocity from
the source do not have singularities on both sides of the airfoil, on the
lower side of the airfoil the function

(1.7) D(t) = V() - Far () + Vo t) - Fau(t)
cannot have a singularity. From (1.6), it follows that the function
Vo(t) - 7 has, at the point Mg, a singularity of the form 1/(t — tg).

Hence the function V= -7y has the same singularity. It may be shown,
see [5] and [7], that in a neighborhood of the point tg we have

(1.8) Vo(t) - 7ar = % ' th—t ot
(1.9) V() #urlt) = _@ " %
/ ZOu 1) 0210 1) iy
L TMMO

As mentioned above, if 2”(t), ¥"(¢t) € H(a) on [0,1], then the kernel
in (1.9) is smooth and belongs to H(«) also. The same is true of the
function D(tg,t). Therefore, if we choose the function +(¢) so that in
a neighborhood of the point ¢¢ it has the form

Q 1
T tg—t

(1.10) (t) = + (1),
where 7 is smooth, then (1.7) follows on the strength of equations (1.8)
and (1.9).

From all of this we conclude that, for the solution of the physical
problem with ejection of the external flow at a point {p on the upper
side of the airfoil, we must solve equation (1.5) in the class of functions
given by (1.10).

2. One-dimensional singular integral equations of the first
kind on a finite interval. Let us first recall the solutions of the
airfoil equation

(2.1) 1/ 7(€) dg = f(z), ze€(-1,1),

; -1 E*x
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where the Cauchy principal value integral is defined by

[ ([ )

provided that the integral exists. Furthermore, we shall assume that f
is Holder continuous of Holder index o, 0 < a < 1, on [—1,1]. That is,
for any x1,z2 € [—1, 1], we have

(2.3) |f(z1) = f(@2)] < Llzy — 22|,

where L is a constant independent of z; and z3. We write f € H(«).
We have the following situations:

1. Suppose 7 is bounded at both end-points £1. Such solutions are
said to be of index —1 and are given by

_ (=2t f(€) g
R e =)
provided that f is such that

bfe)de
(2:5) [ o

2. Suppose 7 is bounded at one end and unbounded at the other
although absolutely integrable there. Such solutions are said to be of
index 0 and are given by either

-1 L) e

or

(2.7) ’y(x):—l<1+x)l/2/1 <1—€>1/2f(£)d£

m\l—2z L \1+¢ E—x’

depending upon whether 7 is to be bounded at +1 or —1, respectively.
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3. Suppose 7 is unbounded at both end-points but absolutely inte-
grable. Such solutions are said to be of index 1 and are given by

1 1 [H(1-€)'2f(€) de
7(37)__(1_1,2)1/2;/_1 E—=x
A

(1 — x2)1/2’

(2.8)
+

where A is an arbitrary constant. The value of A may be determined
by imposing a further condition such as, for example,

/1 +(€) de = Ay.

—1

Remark 2.1. Suppose that the righthand side of (2.1) depends on a
further param eter so that it is given by f(z,y) where —1 < y < 1.
If f(x,y) is Holder continuous, of index a, on I? := [—1,1] x [-1,1],
then all the previous results remain valid provided that the constant A
in (2.8) is replaced by A(y). Note that f(z,y) is Hélder continuous of
Hélder index o, 0 < a < 1, on 2 if

|f(z1,91) = f(@2,92)] < L{|z1 — 22|* + [y1 — y2|*}

for some L independent of x1,y1,z2 and yo.

Let g be a given point of (—1,1). We shall now look for all solutions
of equation (2.1) which are of the form

(2.9) V(z) = ¢(z) + ¢(x)/(q — ),

for z € (—1,9) U (g, 1), where ¢ and 1 are in the class H* of Muskhel-
ishvili [7, p. 238]. Such functions are Holder continuous on every closed
interval of (—1,1) and absolutely integrable at the endpoints +1 (see
also Okada and Elliott [8]). In the remainder of this paper, we shall
denote by H, the class of functions of the form given by equation (2.9).

Theorem 2.1. Suppose f € H(a), 0 < a <1, on [-1,1]. Solutions
of (2.1) in the class Hy(a), -1 < ¢ < 1, 0 < a < 1, are given as
follows.
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1. If v us bounded at both endpoints £1,

a2 jede
W@ =—— / (- €)1~ )
(2.10) e .
G LR 7 S
-z rl 0-epr

2. If v is bounded at one endpoint and unbounded at the other,
although absolutely integrable there, then either

L1—a\"* ' 146\ f(e) de
y(m):_;<l+$> /—1<1§> -

2.11
24 A(l—w>1/2 1
T 1+ (g —=z)’
L 1+a\Y e\ Y2 f(e) de
= 202" (159
(2.12) m\1l—2x /,1 14+¢ E—=z

L A(lta V2o
m\l-z (g —z)’

where A is an arbitrary constant.

3. If v is unbounded at both endpoints but absolutely integrable in a
neighborhood of each endpoint, then

1 Lt (1-€3)25(6) de
V&) =———5qm =
(2.13) (1_2?/ ”/} ;_x
_l’_

T1=20)12 71— (g—2)’

where A and B are arbitrary constants.

Proof. It is readily verified in each case that the solution satisfies
equation (2.1) and the additional conditions imposed at the endpoints.
O
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We note that we may obtain a unique solution for v by imposing one
additional condition on the solution in case 2) such as

1
(2.14) / v(z)dz = Ay

-1

and, in case 3) a pair of conditions such as

1 1
(2.15) / v(z)dx = B; and / zy(z) dz = Bo.

—1 —1

Remark 2.2. If, in equation (2.1) instead of f(z) we have f(z,y)
where y is looked upon as a parameter in the interval [—1,1], then in
equations (2.11)—(2.13) we replace the arbitrary constants A and B by
A(y) and B(y) respectively.

3. Bisingular integral equations of the first kind on the
square. Let us consider now the problem of flow past a rectangular
wing. Bisplinghoff et al. [3, Section 5.5] have shown that the flow of
an inviscid, incompressible fluid can be reduced to the solution of the
bisingular integral equation of the first kind given by

L2 ) _
L[ I e dean = 1o

where (z,y) € I? := (—=1,1) x (=1,1). An analytical solution of this
equation is not known so that it has to be solved by approximate
methods. For a rectangular wing of large span, Bisplinghoff et al. [3,
Section 5.5] have shown that (3.1) can be replaced by

(3.2) / / 5" dé dn = f(z,y),

(E—z)(n—y)

(z,y) € I¢, which is amenable to analytic solution. Indeed, one of
us (IKL) has given all the solutions of this equation in the class of
absolutely integrable functions on IZ when f is Hélder continuous on
I?, see [1] and [2]. The purpose of this paper is to consider analytic

c
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solutions of (3.2) in a wider class of functions. This will correspond
to the so-called ejection problem when there is only one singularity
(source) in one coordinate direction.

To be more specific, suppose g, where —1 < ¢ < 1 is a given point on
the Oz axis, and let H;(z,y) denote the class of functions which may
be written in the form

o(z,y) +¥(z,v)/(q — z)

where ¢, are Holder continuous on all compact regions of I but are
absolutely integrable over IZ. We shall now given analytic solutions
of (3.2) under varying conditions but in order to avoid the problem
of having to pick out a unique solution, we shall impose additional
conditions so that a unique solution is always obtained.

Theorem 3.1. Suppose f is Holder continuous on I2. A solution of
equation (3.2) which is bounded along the lines x = +1, y = 1 in the
class Hy(z,y) on I? is unique and is given by

(1 _ 1.2)1/2(1 _ y2)1/2

T2

_/1 /1 f(& n) d€dn
—1 o (L= )21 =) l2(E — 2)(n — y)

v(z,y) =

(3-3) (1 _ $2)1/2(1 _ y2)1/2
- m(q — )
/ L(l/ £(&,m) di >
(=2 \m Sy (A=) 2 —y))’
provided that
Yo fm)dn

Proof. We can write (3.2) as

(3.5) %/_2%(% /_11 w> = f(z,y),
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which can be rewritten as

b (x,m)
(3.6) ) B dn = f(z,y),
where
(3.7 b= 1 [ HEDE

Recalling Remark 2.1, we can consider (3.6) as a one-dimensional
singular integral equation for ¢ with a parameter z. From (2.4) and
(2.5), we have

B e N )
(3.8) Y(z,y) = pn /,1 (L —n)12(n—y)’

provided that

which is, of course, (3.4). That ¢ is Holder continuous on I? follows
from arguments similar to those given in Muskhelishvili [7, Section 32].
Returning to (3.7) we consider ¢ as known (with “parameter” n) and we
can solve it for 7 in the class of functions H; (z,y) using Theorem 2.1,
case 1). From equation (2.10), we obtain

_p2)/2 1
Rt ) / (€, m) de

7T (1-&)2 (6 - =)
(a2 1 [t g mde
L

qg—z T (1—¢2)1/2

(3.10)

Substituting for ¢ in this equation and using (3.8), we recover (3.3).

We shall now show that the result of solving (3.2) will be the same if
we rewrite it as

(3.11) / 9(¢,y) de § ) d£ = f(z,y),
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say, where

1
(3.12) s = [ T

/1 (&) dn

Solving equation (3.11) in the class H;(z,y), using equation (2.10) of
theorem 2.1 gives

_ =)t f(&y)de
(313) o(z,y) = T /_1 (1—€2)1/2(¢ — )
L (A=at) 1 / JlEy) e
q— T J_1 (1_52)1/2-

With ¢ given by (3.13), we now solve equation (3.12) for v, assuming
that 7 is bounded at both endpoints. From (2.4) we again obtain (3.3),
but (2.5) gives this solution subject to the condition that

b dy O S e S ((X))3
(3:14) / (1—772)1/2{ - / (1-€)12( )

+u—ﬁW?1/1ﬂam%}:Q

q—c T

L
for all z € [-1,1]. Now (3.14) can be written in the form

(3.15) —F(z)+A/(g—x)=0, forallze (—-1,1), z#gq,
where
e dé L f(Em)dn
(316)  Flo)=7 /_1 (1-&)12(6 —2) </—1 (1- 772)1/2>’
and
11 n)ded

In order that (3.15) be satisfied, it follows that we must have both
F(z) =0o0n (—1,1) and A = 0. In order to have F(z) =0 on (—1,1),
it follows that

s [ e
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say, for some constant B. In that case (3.17) implies that

(3.19) O—B/ 1752 e

so that B = 0. Thus, we obtain condition (3.4), and the theorem is
proved. a

Theorem 3.2. The solution of equation (3.2), together with the
condition

(3.20) [ aen [ eIy,

in the class Hy(x,y) on I§, which is bounded along the lines x = 1,
y=1 and y = —1 and absolutely integrable along x = —1 is given by

2(a,y) =L (1 B )/

s 1+=x
/ / <1+£>”2 J(& m) de dn
(L=n)12( —z)(n—y)
(3.21) __G:Li) 2@ (qyz;”
_/1 m) + [T (1 +€) /(1 — €)' f(€,n) de] dn
-1 (1—mn )1/2(77*31) ’

provided that the conditions

1
(3.22) / (1—n*)""2f(z,m)dn =0,
-1
for all x € [-1,1] and
1
(3.23) [ a-w i aman=o,

-1

are satisfied.
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Proof. Let us rewrite equations (3.2) and (3.20) in the form

(3.24) l/1 ﬂG /1 M) = f(=z,y),

mJoan—y\rJ_, &—=

and

(3.25) %/_11 nd—ny</_117(€,n) dé) = A1(y),

respectively. By considering these equations as equations in y with x
as a parameter and recalling that we are looking for a solution bounded

along y = +1 and y = —1, we obtain, upon using equations (2.4) and
(2.5),
0 L tyGy)de =y Y flzm)dn
(3.26) — — =— BRIy TS
mJa §-w m 1 (=) —y)

provided that (3.22) is satisfied. Again, since (3.23) is satisfied,

! _ =)t A(mdy
(3.27) /lv(ﬁ,y)di— - /_1 (L=n?)12(n—-y)

Consider equation (3.26). By considering this to be of the form (2.1)
with parameter y, we have, from (2.11), when solving it in the class
Hy(z,y), that

H(ay) = 77?22)1/2 (1 ¥ z>l/2
1/2
(3.28) : K 11 /11 <if§> i n;; (521(72 daj;y(n -
Ay

y(1—z\'? 1
T 14z qg—zT
But, from this equation, upon using

1t 1—e\'? ae




250 D. ELLIOTT, LLK. LIFANOV AND G.S. LITVINCHUK

for all z € (—1,1), we find

1 _2\1/2
[ Ateas=a@) + S

-1

a0 L) (L i)«

From (3.27), we see that this gives the unknown function A(y) in terms
of the given function A; and we obtain, on using (3.28), the result
(3.21).

Again, as in the proof of the preceding theorem, it can be shown that
we obtain the same solution if we interchange the order of repeated
integration in (3.24) and (3.25). The details are omitted. O

We conclude this section with one further result. Other results,
depending upon the boundedness or unboundedness of the solution
along the boundaries * = &1, y = 41, may be derived similarly but we
shall omit them.

Theorem 3.3. The solution of equation (3.2), subject to the condi-
tion

(3.31) %/_11 (/_11 %) dn = C(x)

in the class H;(x,y) on I§, which is bounded along x = +1 and
unbounded, but absolutely integrable, along y = £1 is given by

e w)V24(E,m) de d
v(z,y) = I,y 1/271'2/ / 1*52 1/2 €—2z)(n—y)
( 2)1/2 1/21”(5 77) dg dn

(1 1/2
0—1/2'_/ e

-z’ 1 /1 C(¢)d¢
(q—2)(1—y2)/2m2 |y (1—€)1/2

(3.32)

+
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Proof. Use equations (2.8) and (2.10) as in the proof of the preceding
theorem. The details are omitted. o
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