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EXISTENCE AND UNIQUENESS FOR SPATIALLY
INHOMOGENEOUS COAGULATION-CONDENSATION
EQUATION WITH UNBOUNDED KERNELS

DONGHO CHAE AND PAVEL DUBOVSKII

ABSTRACT. We prove the existence and uniqueness theo-
rem for Smoluchovsky’s model with condensation in three-
dimensional space. Initial data are supposed to be small
enough.

1. Introduction. We are concerned with the space-inhomogeneous
Smoluchovsky’s equation with condensation processes taken into ac-
count.

0 0 .

Ec(w, z,t) + g(r(w)c(m, z,t)) + div, (v(z, 2)c(z, 2, t))
1
2

(11) = mK(I*y,y)C(I*y,z,t)C(y,z,t) dy

0
- C(I,Z,t)/ K(w,y)c(y,z,t) dy;
0

r,t € Rt =[0,00), z¢€ R

It describes the time evolution of particles in disperse systems. Sym-
metric nonnegative on R? function K (z,y) define intensity of merging
of particles with masses z and y. Unknown function c(z, z,t) is a dis-
tribution function for particles of the disperse system of mass x > 0 at
time ¢t € R} = [0, 00) at space point z € R3. The function v(z, 2) is a
velocity of space transfer of particles; r(z) is a scalar speed of growth
of particles due to condensation of molecules (or, more generally, clus-
ters) from outer medium, e.g., condensation of vapor on water drops in
atmospheric clouds. In physically real situations we often have r ~ %,
a>0,0< zy <z <7, where zy is a critical mass of a particle
which splits regions of its stable and unstable state; T is a conventional
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220 D. CHAE AND P. DUBOVSKII

boundary of satiation, after which the function r(z) may be considered
as bounded.

The equation (1.1) must be supplemented by an initial distribution
(1.2) c(z, z,0) = co1(x, 2) >0,
and a distribution function of condensation germs
(1.3) (0, z,t) = co2(z, t).

Applications of (1.1) can be found in many problems including chem-
istry, e.g., reacting polymers, physics (aggregation of colloidal particles,
growth of gas bubbles in solids), engineering (behavior of a fuel mixture
in engines), astrophysics (formation of stars and planets) and meteo-
rology (coagulation of drops in atmospheric clouds). Recent results for
the space homogeneous case with v = 0 and other references can be
found in [1, 13]. The results in the spatially inhomogeneous case are
much more poor than in the homogeneous one, as may be explained
by the following reasons. The formal integration of (1.1) with weight
x yields, the condensation 7 is assumed to be equal to zero,

—+oo oo
(1.4) / / zc(z, z,t) de dz = const.
—oo 0

In the space homogeneous case we obtain the more valuable equality
o0
(1.5) / zc(z,t) do = const.
0

The correlations (1.4) and (1.5) express the mass conservation law. The
large difference between the conservation laws (1.4) and (1.5) can be
seen from the integral form of the problem (1.1), (1.2) (to simplify the
exposition we take r = 0 and v = v(z)):
(1.6)

e(z, z,t) = co(z, z — v(z)t)

t 1 T
+ [ {5 [ Kemnete-pz-vo)i-9.0
ey, = 0(e)(t—5), 1) dy — el = (@)t ), )

/0°° K(z,y)c(y, z—v(z)(t—s),s) dy} ds.
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To prove existence of the solution to (1.6) we usually build a sequence
of solutions ¢, (z,2,t) of a regularized (more simple) problem. Such
a sequence should converge to a function c¢. We do not discuss now
in which topology this trend takes place. The main problem is to
prove that the function constructed ¢(z, z, t) is a solution to the original
equation (1.6). Namely, we must demonstrate the possibility to pass
to the limit as n—oco in the equation (1.6) with ¢ replaced by ¢,. The
most difficult stage is to show the admission to pass to the limit under
sign of the integral over the infinite domain

/0 " K@ y)en(y, 7 — v(@)(t — s), 5) dy.

Let the coagulation kernel K(z,y) be bounded. Then we ought to
demonstrate the uniform smallness of the integral “tails”

| entwz = o@)t - 9)5)ay
for all n > 1. The value of m is taken sufficiently large. As long as we
have the estimation like (1.5), then the problem can be solved by the
following well-known trick:

[ eatvz == 990y < - [Tz - @l - 9,90y

m

const
<

— 0, m — oo.
m

The correlation (1.4) does not give us such convergence and we ought
to seek other approaches. It is worthwhile to note that if the space
velocity v does not depend on x, then the strong mass conservation
law (1.5) holds and we obtain the desired trend. Namely this fact was
used by Burobin in [2] where he considered the case v(z) = const for

x > xo which reduces the problem to the space uniform situation with
the strong conservation law (1.5).

Other mathematical results for the spatially inhomogeneous equation
are as follows. Dubovskii [4] and Galkin [10] succeeded to prove
existence and uniqueness theorems for bounded coagulation kernels.
Unbounded coagulation kernels of special type were considered in [11].
The unique solvability of the problem with coagulation kernels of linear
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growth and particle fractionation taken into account was demonstrated
in [3]. Influence of the condensation processes on the evolution of a
coagulating system was studied for the space homogeneous case by
Gajewski and Zaharias in [6, 7] and by Dubovskii in [5]. Analysis of a
spatially inhomogeneous coagulation model with condensation didn’t
undertake before. We prove the existence and uniqueness theorem
for sufficiently small initial data with coagulation kernels admitting
linear growth on infinity. These kernels include the considerable class
of physically real ones.

2. Main result. Fix T" > 0 and denote Q,(7) the space of
continuous functions in R} x R® x [0, 7] with the norm

(oo}
llc]]a = sup / exp(Az) sup |c(z, z,t)| dz.
0<t<T Jo zER3

We define Q(T) = Uxso(T). Let Qf(T), Q*(T) be nonnegative
cones in corresponding spaces.

Theorem 1. Let the coagulation kernel K be a continuous, non-
negative and symmetric function, i.e., K(z,y) = K(y,z) > 0. Also
let

K(z,y) < k(x+y) wherek = const.

Let the function r(z) be nonnegative, bounded with its derivative and
have continuous second derivative. Let the following inequality hold

(2.1) div,v(z,2) +r'(z) > 6 > 0.
Suppose that functions v, co1, co2 are continuous and, in addition, co1
and cyz are nonnegative. We impose the following conditions ensuring

smallness of the initial data:

(2.2) co1(z,z) < Aexp(—azx), a>0;

(2.3) sup exp(dt)coa(z,t) < A.
0<t<T
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Let r(z) > 0 and

(2.4) R= max{sup r(), sup Ir'(x)l} <2,
RL Rl 1+a
+ =
LA kAr(0)
(2.5) 2m G- ROta)
Also let

cOl(Oa Z) = COZ(Zv 0); z € R3'

Then there exists a continuous, differentiable along characteristics of
the equation (1.1) nonnegative solution ¢ € QT (T). This solution is
unique in Q(T) the additional condition provided

div,v(z,2) +r'(z) < M(1 + ),
M = const, x € Ri, z € R3.

First, we formulate an auxiliary result.

Lemma 2.1. Let conditions of the theorem hold, and the coagulation
kernel K has a compact support. Then there exists a unique solution

c € QF(T) to the problem (1.1)—(1.3).

The proof of Lemma 2.1 is based upon replacement of the integral
with infinite upper limit in the main equation (1.1) to the integral over
a compact domain. Due to this replacement the collision operator,
which is expressed by the righthand side of the equation (1.1), maps
Q. (T) into itself.

We approximate the original unbounded kernel by a sequence { K, }22 ;
of kernels with compact supports. Each kernel from this sequence must
satisfy the conditions of the theorem. Recalling Lemma 2.1 we get a
sequence {c,, }2° ; solutions of the problem (1.1)—(1.3) with kernels K,
and the same initial data cy; and cgo.
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3. Main lemma. We make the change of variables

Cn(CU,Z,t) = (1 - T)én(xasz)v
T=1-—exp(—6t), n>1.

Then the problem (1.1)—(1.3) takes the following form:

5o, 2,7) 4 (1) M (0(a,2), Vb, 7,7))
e

+(1-7)" r(x)a—cn(aj 2,7T)
(31) /K =YY cn( —y,Z,T)én(’y,Z,T)dy

— én(x,z,T)/ K, (z,y)én(y,2z,7)dy
0
— [div,v(z, 2) +7'(2) = 0)(1 — 1) Yén(z, 2,7)
with the initial and boundary conditions

én(z,2,0) = co1(z, 2),

(3.2) én(0,2,7) = (1 — 7) " Lega(z, ).

Lemma 3.1. Let the conditions of Theorem 1 hold and the continu-
ous function g be a solution of the equation

33)  bgr(er) + hgalenr) = ko [ gl ~vrla(nr) dy

(3.4) 9(z,0) = Aexp(—az), g(0,7) = A.
Then
(3.5) én(z, 2,7) < g(z,7),

zr€R,, zeR, 1€[0,1), n>L1

Proof. Let a point (zg, 29, 70) be the first point where the functions
¢, and g are equal:

én(anZOaTO) = g(IO,To), én(vaaT) < g(m,T),

3.6
(3:6) 0< 1< 79, 0<z<uz(r), z = z(T).
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In (3.6) z(7) and z(7) mean the values on the characteristic passing
through the point (zg, 29, 79) with z(79) = zo, 2(79) = 20. Such a
point, (zg, 20, 7o), exists thanks to the continuity of é,, g, positivity of
r and due to the expressions (2.2), (2.3) and (3.4). We integrate (3.1)
and (3.3) along characteristics and obtain

(3.7)  én(xo,20,70) < %6—1/(:0 /OIO Ky (z(s) —y,y)
én(z(s) —y, 2(8), 8)én(y, 2(s), s) dy ds
< %Jlk//om /:0 g(z(s) —y,5)9(y,s) dy ds
= 9(xo,70).
The inequality (3.7) yields the contradiction

¢n (w0, 20,70) < g(o,70)

which proves Lemma 3.1. a

By integrating (3.3) with the weight exp(Az), we obtain
(3.8) 0H (A7) — (1—7)""r(0)g(0,7)
—(1- T)_l)\/ exp(Az)r(z)g(z, ) dx
0
—(1-7)"t / exp(Az)r'(z)g(x, ) dz
0

=kH(\ 7)H\(A, 1),

A
a—\

In (3.8) and (3.9) we have used the notation

(3.9) H(X,0) = A€ [0,a),7 € [0,1).

H(\1)= /000 exp(Az)g(z, ) dz.

Taking (2.4) into account, we obtain from (3.8):

(3.10) SH, — kHH, < 270 1Ha

H.
1—7 ].—TR
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To find an estimate for the function H(A,7) we need the following
lemma.

Lemma 3.2. A solution of the differential inequality (3.10) with
the initial condition (3.9) obeys for some 0 < A < a the following
correlation

H(\,7) <F(\7), 7€[0,1), 0<A<A,
where the function F is defined as a solution to the majorant equation
Ar(0)  l1+a

(311)  SF0) ~ FO DB T) = 200 4 2T RE(O, ),
(3.12) F()0) = %, Nel0,3], relo,1),
(3.13) D> A.

Proof. We shall prove by contradiction. Consider the family of
characteristics of the problem (3.11), (3.12). Define
QMo,70) ={(\,7):0< 7 <79, 0<A<A(T)},

where A(7) is a value of A on the characteristic curve I'(Ag, 79) which
goes through the point (Mg, 79). In addition, we suppose 0 < A(0) < a.
We choose a point (Mg, 79) such that
F(Xo,70) = H(Mo,70), but HA\,7) < F(A,T)
if ()\,T) S Q()\(),To).
We point out that 79 > 0 because (3.13) holds. Let us consider the

characteristic curve I(Ag, ) of the problem (3.10), (3.9) with the
inclusion IV (Mg, 70) € Q(Ao, 70) taken into account. Then

H()\Oato)
< H()\2,0) +/F,(>\ | {Ri%—:a)}[()\(r),ﬂ + zfr_((i) dr
L R(1+a) Ar(0)
<H(,\0,0)+/ dT{liH(A(T),T)ﬂL 1 }
I'(Ao,70) -7 -7
1 R(1+a) Ar(0)
< F(Xp,0) + /1"()\0,7'0) dT{ﬁF()\(T)aT) T~ }

= F()\(),To).
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In the last expression A} and A2 are beginnings of the characteristic
curves I'(\g, 79) and I'(Ag, 70), and A} > AZ. We have used as well that
A < a and the function H increases in A. Finally, H(Xo, 70) < F(Xo, 70).
This contradiction with the hypothesis F'(A\g,79) = H(M\o,70) proves
Lemma 3.2. m|

Let us consider properties of the function F(A, 7). We make in (3.11),
(3.12) the change of variables
FA7) =1 =7)"L(AT),

(3.14) )
A€ [0,M],7€0,1).

Hence,
(3.15) 6L, (A7) — k(1 — 1) "L\, 7)Lx(A, 7) = Ar(0)(1 — 7)1,

D

(3.16) L(A0) = —,

A€ 0,A],7€[0,1).

In the expression (3.14) the notation n = R(1 + a)§ ! is introduced.
The characteristic equation of the problem (3.15), (3.16) has the form

(3.17) % =k 1 - 1)L\, T).

As far as on each characteristic

LA 7) = + / Ar(0)5=1(1 — 7)Y dr,

CL*)\O

then from (3.17) we obtain

% = k& H1-7)" (a f))\o — Ar(0)6tp7 (1 — 1) — 1]>
Hence,
Akr(0)r
A(r) = Ao
(3.18) o%

Mo A D
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Let us ascertain whether the characteristics (3.18) with starting points
A} and A2 can intersect. If they intersect then

2kD
5(1—mn)

Ao = NG

1_ 42 _ _
Ao = Ao (@ \)a—x)

1= (=)

whence
1-(1-7)""=6k'D  a—Ap)(a—A)(1—n).

Consequently, the characteristic curves of the problem (3.15), (3.16)
have no intersection, if

da? l1+a
.1 D<—|(1-
(3.19) < . ( R 5 >

and the initial conditions are sufficiently small:

kD
2 Y .
(3.20) 0< A, Ag<a S_R+a)

The inequality (3.19) brings us the correlation

)

21 .
(3.21) R<l+a

We should reveal now when the problem (3.15), (3.16) has smooth
solution for small A > 0 for all 7 € [0,1). This condition holds if
characteristics have no intersection and A(1) > 0. On 7 = 1 we obtain
from (3.18)

kAr(0) kD
Ao — — > 0.
P2(1—n)  s1-n)e—)
Hence,
kA kA
(3.22) "0 L8 oy A0 e

252(1—n) 2 262(1—n) ' 2
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where

(3.23) C= \/(%(_O)n) + g) - ﬁ(ﬁlar(ﬂ)&‘l + D).

To obtain suitable Ag > 0 we ought to have concordance between (3.20)
and (3.22). Hence, the following correlation has to take place

kAr(0) 2% Cca- kA

(3.24) 20— " 2 S

We have changed D in (3.20) into A thanks to (3.13). Hence, (3.24)
holds, provided

kA kAr(0)

(3.25) > T B

It is easy to see that the subradicand expression in (3.23) is positive if
the stronger inequality than (3.25) is true:

kA N kAr(0)
6(1—mn) 621 —n)

The inequality (3.26) ensures the correctness of (3.20) and (3.24) and
holds thanks to the condition (2.5) of Theorem 1. Consequently, for
0 < 7 <1 and small enough A > 0, there exists a continuous function
F(\,7), and the supremum supy,«; F(A, 7) covers the integrals

(3.26) a>?2

oo
sup / exp(Az) sup c,(z, z,t) dz
te[0,00) JO zER3

uniformly with respect to n > 1 for sufficiently small A > 0. Conse-

quently, we have proved the following lemma.

Lemma 3.3 (Main). Let the conditions of Theorem 1 hold. Then
there exist positive constants A and E such that

sup [leallr < E < o0, n>1.
0<A<A
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4. Proof of existence.

Lemma 4.1. Let the conditions of the theorem hold. Then the
sequence {c,}22, is uniformly bounded and equicontinuous on each
compact in RL x R* x [0,T).

The proof is similar to the proof of the analogous lemma in [8].

By standard diagonal process we choose from the sequence {c,}52
a subsequence {c,’}7_;, which converges on each compact to a con-
tinuous function ¢ > 0. Such a subsequence exists due to Lemma 4.1.
As the corollary of Lemma 3.3 we have as well

sup |lc|[x < E.
0<A<A

Lemma 3.3 allows us to pass to limit in equation (1.1) written in the
integral form. Actually, this lemma ensures that “tails” of integrals f:lo
tend to zero uniformly with respect to n as m—oo. Consequently, the
function c satisfies the integral equation

c(z, z,t) = co1(x(0), 2(0))

A R0 v

(4.1) — Y, 2(s), 5)cy, 2(s), 5) dy
= [r'(2(s)) + divzv(z(s), 2(s))le(2(s), 2(s), 5)

— ez / K(z(s),y)c(y, (5),s)dy}ds,

where I'(z, z,t) is the part s < ¢ of the characteristic going through
the point (z, z,t). In (4.1) we assume that the characteristic begins at
the coordinate axis ¢ = 0. As long as the characteristic begins at the
coordinate axis * = 0 then the expression (4.1) will be unsufficiently
changed. Direct differentiation (4.1) persuades us that the function ¢
has continuous derivatives along characteristics. Existence of a solution
¢ € Q1 (T) has been proved.

5. Proof of uniqueness. We prove uniqueness by contradiction.
Suppose that there are two solutions to the problem (1.1)—(1.3) ¢, ¢z €
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Q(T). We make the substitution

=1+ w)_ldi(w), 1=1,2,

and denote
u(wat) = Ssup |d1(m,z,t) - d2($7zat)|a
zER3
Y(z,t) = sup |di(z, z,t) + da(z, 2, t)|.
zER3

From the equation (1.1) written in the integral form, we obtain
(5.2)

1 z(s)
u(zg, to) §/ {—k/ (1 + z(zo, to, s))
F(Z‘o,to) 2 0
u( (x07t05 - Y,Ss )¢( 7S)dy

+k(1+l‘(l‘0,t0,s)) ( x07t07 y S / TP Y,s dy
+ k(L + 2o, o, )220, to, 5), ) / uly, ) dy

+M(1 —l—w)u(w(wo,tg,s),s)} ds, zo€RL, 0<ty<T.

Here I'(zg,tp) is an orthogonal projection of the curve I'(zy, 2,t) on
the plane (z,t); z(zo,to, s) is a current value of the variable x on the
curve I'(zg,tp) which depends on the parameter s < t;. We should
point out that I'(z, t) is an integral curve of the equation

(3.5) dz/dt = r(z).

Lemma 5.1. Let a nonnegative function u(z,t) be a solution to
the integral inequality (5.2). Then there exists such a continuous
differentiable (by both arguments) function f(x,t) that

(5.4) u(z,t) < f(z,t), z€R,, 0<t<T,

(5.5) f(z,0) = £(0,t) =0



232 D. CHAE AND P. DUBOVSKII

and the function f satisfies the following differential inequality

i @0+ (@) 51wt < Gk +0) [ o =000 0)dy

R+ @) (2, ) /0 by, ) dy
+h(L+2)(e) | " w0 dy

+ M(1+2)f(x,t).

Proof. Let us denote the righthand side of the inequality (5.2) as
f(zo,to) and the contents of the braces {.} under the main integral in
(5.2) as w(z(s),s). Then for derivatives of the function f we obtain

(5.7)

%too,to) — w(ao,to) +/0t° w!, (0, to, 5), 8)z), (0, to, ) ds,
(5.8)

%;;to) N /Ot" wy (2 (20, to, 8), )4, (0, T, 5) ds.

Our nearest goal is to estimate the derivative x; (xo,%0,s). Integration
of the equation (5.3) yields

tO — 5= Q(xo) - Q($($07t07 5))7
where Q(z) is the primitive function to [r(z)]~!. Hence,
(5.9) (20, to,5) = Q1 (Q(w0) — to + s).

Here the function Q! is the inverse function to Q. Utilizing the
rule for differentiating of the inverse function and taking into account
Q'(z) = [r(z)]~!, we obtain

(5.10) i (xo,to, s) = —r(x(zo, to, 5)).
Similarly from (5.9) we conclude

r(z(zo, to, 8)) ‘

(5.11) (w0, to,s) = (o)
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By substituting the expressions (5.10) and (5.11) into (5.7), (5.8) and
utilizing the inequality (5.2) and definition of function f, we establish
(5.4). This proves Lemma 5.1.

Lemma 5.2. Let v(A,t) be a real continuous function having con-
tinuous partial derivatives vy and vyy on

D={0<A<)X, 0<t<T}

Assume that a(X), B\ t), y1(At), yv2(At), 01(\t) and O2(A,t) are
real and continuous on D, have their continuous partial derivatives in
A and the functions v, vy, B,71,72 are nonnegative. Suppose that the
following inequalities hold on D:

(5.12) v(\t) < a()) + /0 BO s)ua (A, s)
+ ’Yl()‘a S)’U(/\, S) + 01(/\7 S)] dSa

(5.13) va(A8) < an(N) + /0 {%[6()\,3)1})\()\,8)

+ 7 (A 8)u(A,8) + 01(A, 9)]

+ y2(A, 8)u(A, 8) + 02( A, s)} ds.

Let
Co = Sup a«, c1 = sup f3,
0<A< A0 D
co = S%P(ﬂ’Yz +m), 3= s%p(ﬁﬁz + 01).
Then

v(A,t) < cpexp(eat) + Z—3(exp(62t) -1
2
i any region R C D:
R={(\t):0<t<t'<T';M—cit <A< Ag—ct,0< A < Ao}

where T" = min{ (A1 /¢1), T}.
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Proof. Let us denote w(A\,t) the righthand side of the inequality
(5.12). By differentiating in ¢ and X, we obtain from (5.12) and (5.13):

wy = Buy +71v + 01

(5.14) < B(wx + y2u + 02) + y1v + 64
< Bwx + (By2 + m)w + (802 + 61).
Hence, for the derivative along characteristic d\/dt = —f we obtain
from (5.14)
w
(5.15) < (By2 + m)w + (B0 + 61).

dt
Let us denote
u(t) = ¢y exp(eat) + (E3/ca)(exp(eat) — 1)

with ¢y > cg, ¢z > c3. Obviously, w(0) > w(X,0) for all A € [0, Ag]. Let
(A, £) be the first point on a characteristic curve where w = u. Then in
the point (), )

d(u — w) <0

a ~

and, consequently,
(5.16) wy — Bwy > up = cow + C3.
Comparing (5.16) with (5.15) we obtain the contradiction

(By2 + m)w + (BO2 4 61) > cow + c3 > (By2 +71)w + (862 + 01).

This proves Lemma 5.2. It is worth pointing out that the majorant
function u(t) can decrease in t if ¢3 < 0 and cpea + ¢3 < 0. We should
emphasize also that Lemma 5.2 was formulated without proof in [9]
on §; = 03 = 2 = 0 and additional assumptions on nonnegativity of
functions in (5.12), (5.13).

Proof of Theorem 1. Let us integrate (5.6) in = with weight exp(\z)
and zexp(Az), 0 < A < A. Then for

G 1) = /0 ” exp(ra) £z, £) da,

U\t = /000 exp(Az)y(z,t) dx
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we obtain the following correlations with (5.5) taken into account
G\t < (gk{/()\, £+ M) Gr(\ 1)
5 -
+ [ik(q’ + U +R2+A)+ M] G(\t),
0 3
Gae(M\t) < E3 §k\ll()\, t)+ M )GaA(A2)

+ Ek(\y +Uy\) 4+ RE2+ N+ M] G(“))-

Thanks to (5.5) and Lemma 5.2 we obtain

(5.17) /0 ” exp(Aa) f () = 0

in the region R defined in Lemma 5.2. Since f(z,t) is continuous,
f(z,t) =0for 0 <t <t,0 <z < oco. Consequently, the integral
(5.17) is equal to zero not only in R but for all 0 < A < \o<t<t.
Applying the same reasonings to the interval [, 2¢'] we conclude that
f(z,t) =0for 0 <t <2t,0 <z < oo, and, continuing this process,
we establish that f(z,t) = 0. Utilizing (5.4) completes the proof of
Theorem 1. ]
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