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UNIFORM CONVERGENCE ESTIMATES
FOR A COLLOCATION METHOD FOR
THE CAUCHY SINGULAR INTEGRAL EQUATION

M.R. CAPOBIANCO AND M.G. RUSSO

ABSTRACT. The authors study the convergence and the
stability of a collocation and a discrete collocation method for
Cauchy singular integral equations with weakly singular per-
turbation kernels in some weighted uniform norms. Uniform
error estimates are also given.

1. Introduction. We consider the Cauchy singular integral equa-
tion with constant coefficients

(1.1) au(z)+ 9/ ﬂdt—i—/ k(z,t)u(t) dt = f(z), |z] < 1,

™ _ltf.’,v -1

where the first integral in (1.1) is to be understood in the sense of
Cauchy principal value. Here u is the unknown solution, a and b
are given real constants such that a? + 8> = 1, b # 0, f is a Hélder
continuous function, and k is a weakly singular function of the form

H(z,t)

(1.2) Hot) = 5o

0<pu<l,

with H(z,t) € Lip,([—1,1]?), 0 < v < 1. Here Lip,(A) is the space
defined by

and equipped with the norm

lglls == llgll + Mgy,  where |[|g]| = max |g(z)|.
z€A
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It is well known that (see [18]), even if f and k are smooth functions,
the solution u can be unbounded at one or both of the points 1 and
—1. So we can search for the unknown solution u in the following form,

(1.3) u(z) = w@? (2)o(c),
where v is a smooth function and

w®(2) = (1-2)*(1+2)°.
The exponents are defined by the relations

a+ib= e, 0 <ol <1,

(1.4)
—1<a:=M— ap, B:=N+aqy <l

The integers N and M are chosen such that the inequalities (1.4) are
fulfilled. Then, the index X = —(a + 8) = —(N + M) can only take
the values —1,0,1. In this paper, we consider the cases X = 1, i.e.,
f=—-1—a,and X =0, ie., 8=—a.

Let us denote by D and K the dominant and the perturbation
operators corresponding to (1.1), i.e.,

Du(z) := aw®P) (z)v(z) + b /1 tvﬂw(a’ﬁ) (t) dt,
(1.5) ToteE

Ko(z) = / VH@D @8 1) ar.

1|t —a|m

Then equation (1.1) can be rewritten as
(1.6) Dv+ Kv = f.

Now denote by L2 = L2 (—1,1) the Hilbert space of all complex-valued
functions on (—1,1) with the scalar product

and the norm ||u||, = /(u,u),. Then (see, e.g., [16, 21]), the operator
D is a linear bounded Fredholm operator with index X acting from L2
into Lf Jw and its adjoint operator D is defined by

(17 Do) = aw=*9) (2)u(z) - / ) a8 gy a

T 1 t—x
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Moreover, if X = 0 then D is invertible and D is its inverse, i.e.,

N N

(1.8) DD=1 DD=I,

where I is the identity operator. If X = 1 then Disa right inverse
operator to D. However (see [21]), if we define the Hilbert space
L2 o:={veLZ:(v,1), =0}, then we have

DDv=v foralve Li(a,ﬁ),ov

(1.9) R
DDy =% forallve L2 . ,.

We agree that in case X = 1 we look for a solution v € Li(a,@) o- Then,

by multiplying equation (1.6) by D we obtain
(1.10) v+ DKv=Df

in both cases X = 0 and X = 1. Therefore, by recalling that each
solution v € L2, ;, of (1.10) automatically belongs to L2 . 5 , and D

is always the left inverse operator to ﬁ, equation (1.10) is equivalent
to (1.6).

If the operator DK is compact from L2, into itself, then (1.10) is called
the regularized Fredholm equation of (1.6), and then this equation
satisfies the Fredholm alternative. For these reasons, historically some
numerical methods, the so called “indirect methods”, set out to solve
(1.10) instead of equation (1.6). However it can be very difficult to know
the kernel of the operator DK analytically; and so the most efficient
numerical methods are those solving (1.6) directly (the so called “direct
methods”).

Nevertheless equation (1.10) is very important to establish if and in
what space equation (1.6) has solutions.

In fact if we can prove that the linear, bounded operator DK is
defined and compact from a named space into itself, then we automat-
ically know that in this space we can search for solutions of equation
(1.6).

Several authors have considered the integral equation (1.1) and have
chosen an approximation to the unknown solution by using projection
methods like collocation, Galerkin, or quadrature procedures (cf., [7,
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8,9, 10,11, 12, 13, 15, 16, 17, 20, 21, 22] and the references given
by these authors). Several convergence results and error estimates are
obtained in L2 .

Nevertheless, if we deduce uniform error estimates from those ob-
tained in weighted L2-norm, we obtain pessimistic estimates about the
rate of convergence. For this reason, in this paper, we prove the con-
vergence and the stability of some collocation methods directly in a
weighted space C,,,,-) of continuous functions defined by

Cpirm[-1,1] := {v(z) : w'»(2)v(z) € C°([-1,1])},

p=max{0,a}, 7 =max{0,8},
—(a+pB) =x€{0,1},
and equipped with the norm

(1.11)

[0]|wior = max |v(z)w®™ (z)).
z€[—1,1]
We point out that if X = 1, i.e. p = 7 = 0, then Cy,n[—1,1] =
C°([-1,1]) and

lellwoo := llull = max u(z)]

is the usual uniform norm.

Therefore, a crucial point for our purposes is to prove that operator
DK is compact in Cy,(,,- [—1,1]. We establish this result in Lemma 4.3.
Subsequently, in the present paper, after having proved the convergence
and the stability of the collocation methods described below, we give
also the rate of convergence in both C\ .- [—1,1] and C°[—1,1].

2. The collocation method. Let {p,(w(®*?)} be the sequence of
the orthonormal polynomials in [—1, 1] with positive leading coefficient
corresponding to the weight function w(®#), where the exponents a, 3
are defined by (1.4).

Let T' = {zmi,k=1,... ,m,m = 1,2,...} be a matrix of collocation
points. The collocation method consists in approximating the unknown
solution v by a polynomial of the kind

n+x

(2.1) v () = Z ajpj(w(a’ﬁ);m),
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where a;, j =0,1,...,n+ X, are unknown constants.

In order to evaluate the coefficients a;, j = 0,1,... ,n+X, we require
that v, is the solution of equation (1.6) on the points of T, i.e.,

(2 2) Dvn(xm,k) + K'Un(xm,k) = f(mm,k)a
’ k=1,..., m=n+1.

In this way, the problem of finding a solution of (1.6) is reduced to the
solution of a linear system.

Equations (2.2) represent a linear system of m = n + 1 equations in
the n 4+ X + 1 unknowns a;, j =0,...,n + X.

For X = 0 we have n + 1 equations in n + 1 unknowns.

If X = 1 then we have n+1 equations in n+2 unknowns and therefore
we need another equation. This is usually obtained by requiring that
the approximate solution v,, belongs to Li(a,ﬁ) o» that means,

1
(2.3) / w' @) (z)v, (z)dz =0, ie. ag=0.

-1

Thus, the integral equation (1.6) is replaced by the linear system (2.2)
if X =0 and by the system (2.2), (2.3) if x = 1.
Now let L,,(T) be the interpolating Lagrange operator related to

the collocation matrix 7. Let {||L,,(T)||}m be the sequence of the
Lebesgue constants defined as follows

(2.4) 1L (T)|| := max D Nl (@)l,

where

m
T —Tm,
lm’k(x) 11;[1 T,k — Tm,i '

i#k
We will choose T such that || L, (T)|| = O(logm). Matrices that satisfy
this condition are well known: classical examples are the zeros of Jacobi
polynomials with exponents a, 3 < —1/2 and the practical abscissae
{—coskr/(m+1),k=0,...,m+1}. Moreover, in [6, 14], the authors
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showed that, beginning from the zeros of the Jacobi polynomials, it is
possible to obtain wide classes of knots satisfying the condition

| (T)|| = O(log m).

Now, we recall a fundamental property of the operator D. Let
{pn(w=*=P))} be the sequence of the orthonormal polynomials in
[-1,1] with positive leading coefficient corresponding to the weight
function w(~*=P)_ It is well known that

D(pa(w'®?))) = (=1)Mppx(w=*™?),
D(pn(w=*)) = (~1)Mppyx (w D),

where p_1 (w(~*#)) = p_; (w(*PF)) = 0, (cf. [12]). We note that in the
righthand sides of relations (2.5) the factors 27* and 2X, respectively,
appear if orthogonal polynomials instead of orthonormal ones are used.

(2.5)

In view of relation (2.5), the system (2.2) can be rewritten in the
form

n+X

(26) Z(_l)Majpij(w(imiﬂ);xm,k) + Kvn(mm,k)
j=0

:f(wm,k:)v kzl,-..,m.

2.1. The discrete collocation method. If we look at the system (2.6)
we note that “a priori” we don’t know whether the integral Kv,(z)
can be exactly evaluated or not. To avoid this problem, we choose
a suitable quadrature formula for calculating Kv,(z). Let N be the
number of knots of the quadrature formula, we call Ky the discrete
operator obtained from K applying the chosen quadrature formula.

In this way the system (2.6) becomes

Dvp (k) + Knvn(Zmk) = f(Tm,k),

2.7
27) k=1,...,m.

In this paper we will choose a product quadrature formula. More
precisely, we approximate Kv,(z) by

(2.8) Knvp(z) = Z wy,i(2)H (z,tN:)vn(tn,),
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where H is defined by (1.2), ty; are the knots of a Jacobi matrix 7,

T = {tni(w®P), w@P)(z)
= (1—2)"(1+2)’, -1 <@,B < -1/2},

1
Y R A )
’U)N,i(m) = /_1 W dt.

(2.9)

and

Here ly,; are the usual fundamental Lagrange polynomials associated
to the matrix T N is an integer such that N > 2n + X + 1. We recall
that in this case ||Ly(T)|| = O(log N).

3. The stability and the convergence of the methods. The
main results of the present paper are stated in the following three
theorems.

Theorem 3.1. Let f € Lipe([-1,1]), 0 < 8 < 1, k(z,t) =
H(I,t)/|t - LL‘|”, O<p<l- max{|oz\, ‘ﬁ|}; H(:L‘,t) € Lipu([_lalP);
0 < v < 1. Assume that the problem (1.6) has a unique solution
v € Cuin([—1,1]) for x = 0 or v € Cyppn([-1,1]) N Li(a,ﬁ),o for
X =1, and the collocation points are the knots of a given matriz T, such
that the Lebesgue constants satisfy the condition |L,,(T)| < C'logm.
Then the system of equations (2.2) and (2.3) for X = 1, or the system
(2.2) for X = 0, is uniquely solvable for all sufficiently large n and

log?n
(3.1) o= wnlle =052,

where vy, is defined by (2.1) and r = min{v, 0,1 — p — max{|al,|5|}}.

Theorem 3.2. If the pointsty,; are the knots of the matriz T given
by (2.9), with N > 2n+ X + 1 and if the assumptions of Theorem 3.1
are satisfied, then the system of equations (2.7), (2.3) for X =1, or the
system (2.7) for X = 0, is uniquely solvable for all sufficiently large n
and

log?n
(32) o= wnllen =0 E).
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where vy, is defined by (2.1) and r = min{y, 0,1 — p — max{|«a|, |5|}}.

We observe that if X = 1 the norm in (3.1) and in (3.2) is the uniform
norm; in the case X = 0, we obtain the convergence results in a weighted
norm. However, we are able to prove the uniform convergence of the
method by means of

Theorem 3.3. Let X = 0, and let the assumptions of Theorem 3.1
or of Theorem 3.2 be satisfied. Then the system (2.2) or the system
(2.7) is uniquely solvable for all sufficiently large n and

1 2
(3.3) o —val| = O =22 ),
nr 2|

where vy, is defined by (2.1), r = min(v, 0,1 — p—|a|) and r — 2]a| > 0.

4. The proofs of the main results. In order to prove the main
results of this paper presented in the previous section, some notations
and preliminary results are needed. In the following, the symbol “C”
stands for a generic constant taking different values at different places.

Lemma 4.1. Let 0 < p < 1 —max{0, —y, -0}

1 §
(1—-t)"(1+1)
= ~ 7 v 7 <1 —1.
Qﬂ(w) [1 \t—m\l‘ dt, |£l7‘_ ) '7a5>

Then ¢(x) € Lip [-1,1] with A =1 — p — max{0, —vy, —d}. Moreover,
if =1 <7, 6 <0, then p(z) € Lip1_,[a,b], 0 < p < 1, for every closed
subset [a,b] C (—1,1).

Proof. In order to prove the assertion, it is sufficient to consider
-1<79,§<0, 21 <3 € [—1,0] such that 22 —z; = h < 1/4 and the
two cases

i) -1 <=z < -1+ h, for all zo € [-1,0];
11) —1+h<zi <29 <0.

Firstly we consider the case i). We can write
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(o) - { [ / /+ L))

(1) - (1—t)7(14t)° dt
|t— $2|“ t— I1|"
:::li—F]é-Flé—Flg—Flé.
We have
(4.2)

n= [ o |0
S/wlwdt

-1 (551 - t)“
1
=(1+ xl)l_“+5/ (1—y) ™y’ dy
0
1
< hl””‘s/ (1-y) " dy.
0
(4.3)
I /““’ 1 1
S . (1 +h—t)F  (t—a1)r

1 5 1 s
< hl”{/ (1+ z1 + hy) dy+/ (1+z1 + hy) dy]
0 (1 -y 0 yH

1 1
< ploete / (1—y) ™y’ dy+/ y'H dy]
0 0

(1—t)Y(1+1t)° dt

1
<wws] [ (1y>“y5dy+1/(1u+5>].
0

(4.4)
s [t 1 1

I3 < (1 —

3 < (1+22) /I2 o )f  (E—a)r dt
zo+h 1

ghé/ ot
o (t_l‘Q)H
h17u+6

1—p
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Since, for zo + h <t <1 and z12 € [z1,x2], we have

1 1|1 1
‘t—$2|“ ‘t—$1|” - (t—l‘g)“ (t—xl)“
wh wh

= <
(t — 1‘12)V’+1 - (t — LL‘z)’hLl ’

(45) L<(l+=z +h)5/1/2[ L 1 dt
' ' ? eath L(E— )t (t— 2

1/2

< k1 / v

o z2+h (t - x2)1+ll
> 1

< b1+ / S

=H z2+h (t - x2)1+ﬂ

— hl—,u—i—é;

(4.6) Iy < /1/2 [(t 71932)“ . 71551)“ (1—t)" dt

1 ALY
Suh/ _a-nr

1/2 (t — @)t tH
=y
< 2 uh‘
v+1

Therefore, substituting (4.2)—(4.6) into (4.1), we obtain for case i)
|o(x2) = p(a1)] < ChY#F2,

where C is a positive constant only depending on u, 7, d.

Secondly, we consider case ii) and write

(4.7)
lp(z2) —

{/ el L e L

(1—t)(1+t)dt

‘|t—$2” B |t—9?1\”

=N+ +Jds+ I3+ 1+ Is.
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Since, for —1 < ¢ < —1+ h, it holds
1 1
|t—l‘2‘p’ |t—$1‘p’

1 < 1
(xy —t)» = (A =1+t

<

we get
(4.8)

—14h 5
1+t
J1 S/ A+ dt
1 (h—=141t)»

1
= hl"‘”/ (1—y) ™"y’ dy.
0

(4.9) - 1 1
o < /1+h [(wl — ) (22— t)u] )

_hé/zl—h+1 i_; d
o RO e

h6
< Tl L 1)
hl—u—i—é
< .
L—p
(4.10) +h +h
o dt o1 dt
J3<(1+x 5[/ 4+/ EE——
s (UFa)’) | G T Grh—o

_ 204 m)hTE 2y
1—p T 1l—p
Therefore, substituting (4.4)—(4.6) and (4.8)—(4.10) in (4.7), also in case
ii) we obtain

|o(@2) = p(x1)| < CRTHH2,
where C, as before, is a positive constant only depending on u, -, d.

For all x; # x2 € [—1,0] the latter leads to

< {8|‘10||oo for |xe — z1| > 1/4,
L C(v,0,u) for |zy — 21| < 1/4,

p(z2) — p(z1)
‘1‘2 — $1‘17“+5
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and the lemma is completely proved. ]

Lemma 4.2. The operator D defined by (1.7) maps the space
Lip,[—1,1], 0 < o <1 into the space Cp,r) and is bounded.

Proof. In order to prove the assertion, it is sufficient to prove that
IDglwirm < Cllglls Vg € Lipo[~1,1].

Firstly we consider the case X = 1, that means —a,a +1 > 0 and
Cypirry = C°. Then we obtain

|Dg(x)| = |a(l — z)~*(1 +x)***g(x)

él/l(l-—®“(1+tﬂ+“ga)d4
T J)_1 t—x

(1—8)"*(1+1)'*e
< 2lg(a)|+ 2o [ LA

)
b 1u—n o(1 4 )1 +alg(t) - g(x)
+E[1 T .

By recalling that for every weight function w("% (z) = (1—z)7(1+z)?%,
v,6 > —1, we have (see [5, Theorem 2.1])

( 5 . .
(4.11) ‘/ w dt‘ < Cw(®in{0,7},min{0,5}) (m)’

and setting My (o) = sup, |9(t) — g(z)|/|t — z|?, we obtain

Dy(a)| < Clg(o) + 2My(0) [ =

LA
< Clligllos + My(o)]
= Cllgllo-

Consider now the case X = 0. Without loss of generality, we can assume
a > 0; the case a < 0 can be treated similarly. Then in this case we
have C\, .-y = Cpy(ar0) and

ﬁg(x) =a(l—z)"%(1+2)%(z)
O (T

™ J_1 t—x
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Thus, using relation (4.11) and recalling that g € Lip ,[—1, 1], this leads
to

(1~ 2)* D(a)| < 2alg()] + "=

L [ama-nane
/ |

-1 t—x

< 2%g(a)| + L= D)
y /11 (1-— t):(xl 1) N b(1 ;x)“

y /1 lg(t) — g(2)|(1 — )~ (1 + )« »
1 It — 2]
b(1 — 2)*M,(0)

< Clg(@) + =)

X/“(l—ﬂ%1+w“ﬁ

1 |t—$|1_o—

b(1 — )™My (o)

™

= Clg(z)| + T.

Now, we write

T 1 —
1—t) (1 +¢t)~
-1 T |t - $| 7
Let us start by considering the case 0 < x < 1. In this case, it follows
that 1 —t > 1 — z. Therefore

P N O
1 < (1-— @ _
1< (- /71 t—zl-o

dt < C(1—z)

On the other hand, using the linear transformation 1 — ¢ = (1 — )y,
we get

1 —
(1-¢)~«
< A
L<C| g
1y
I, d
( ) 0o (I—y)t=e Y
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Thus,
I<C(l-z)~¢

and, for 0 < z <1, it holds
(4.12) (1= 2)*Dg(2)| < C[llgllee + My(o)] = Cligllo-

Now consider the case —1 < z < 0. By this condition we deduce

1—-¢t>1and
z dt
IlgC/ — < C.
1 (@ —t)te

Using the same linear transformation as before we obtain
(1- t o
IQ<C t dt<C(1—x) .
—x)

Therefore, relation (4.12) holds also in the case —1 < = < 0, and the
lemma is completely proved. u]

Lemma 4.3. Let w(z) = w®P(z) = (1 — 2)*(1 + )%, -1 <
a,f < 1, —(a+ B) € {0,1}, and consider the kernel k(z,t) =
H(z,t)/|t — z|*, H(z,t) € Lip,([-1,1]?). Then the operator K :
Cwn — Lips([-1,1]) s continuous, where o = min{r,1 — p —
max{|a|,|8|}} f 0 < u < 1 — max{|al|,|B|}. Moreover, if the last
condition on p s fulfilled, the linear integral operator DK defined by
(1.5) and (1.7) maps the space Cy,.m [—1,1] into itself and is compact.

Proof. Let us recall that —(a + 8) € {0,1}, ie., 8 = -1 — q,
-1 <aB<0forx=1and 8 =—afor X =0. Set £ = min{0, a},
¢ = min{0, 8}. Then, summing and subtracting H(y,t)/|t — z|* leads
to

[Kg(z) — Kg(y)|
< 0||g|ww{ / 1 [lH@vt)—H(y,m

|t — x|

1

T IH ‘|t P~

] w9 (t) dt}.



CAUCHY SINGULAR INTEGRAL EQUATION 35

Now, recalling that H(z,t) € Lip ,([—1, 1]?) and taking Lemma 4.1 into
account, we have
(4.13)

[Kg(z) ~ Kg(y)| < Cllgllyon {le—yl” + oy #mext0mo=Ehy

< Cllgllween & —y[7,

where 0 = min{r,1 — p — max{—¢,—€}},if 0 < p < 1 — max{—¢, —£}.
Recalling that |Kg(z)| < C||g||we.r, hence the operator K maps the
space C\,,,-) into the space Lip,, and it is bounded. Since the space
Lip, is compactly embedded in Lips for 0 < & < o, the operator
K : Cyp+ — Lips is compact. Moreover, by Lemma 4.2, we deduce
that the operator D maps the space Lip 5 into C,,,-) and is bounded.

Thus, the operator DK maps the space C,, .- into itself and is
compact as the product of a bounded operator and a compact operator.
The lemma is completely proved. a

Let L,,(f) be the Lagrange interpolating polynomial of a bounded
function f with respect to the knots z,, . of a given matrix T' =
{Tmp.k=1,... ,mym=1,2...}1ie.

Lm(fa I) = Zlm,k(x)f(xm,k)a
k=1

where
T T — T
lmk(x) = _ k=1,...,m.
™ ( ) 11;[1 T,k — Tm,i
i#k
Let us introduce the remainder term of Lagrange interpolation
(4.14) R (f;2) = f(z) = Lin(f3 7).

The following result can be found in [2].

Lemma 4.4. Let T = {zmir,k=1,... ,mym=1,2...} be a given
matriz of knots. Then for every function f € CP*7([—1,1]),p > 0,0 <
o <1, we have

logm
mpto

(4.15) ID(Rn () lwtorrs < C NF Pl 1L (T,
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where D is the operator defined by (1.7), p and T are defined by
(1.11), [|Lim(T)|| is defined by (2.4) and R,,(f) denotes the Lagrange
interpolation error (4.14).

Proof of Theorem 3.1. Start with the observation that Dwv,, ac-
cording to (2.5), is a polynomial of degree at most n. Thus, since
degree(L,,(f)) = m — 1 = n, the discrete system (2.1) is equivalent to
the operator equation

(4.16) Dv, + Kv, = fm, m=n+1,

where

fm(z) = Ly, f(z) == Zlmk(x)f(xmk)

=1
Applying D to (4.16) and remembering (1.8) and (1.9), we write
(4.17) (I + DK,))v, = Dfy.

Now we can show that the inverse operators (I + DK,,) ! exist and
are uniformly bounded in C, - [—1,1]. Indeed, we note that we can
write

I+ DK,, =1+ DK + D(K,, — K).

Lemma 4.3 and the assumptions of Theorem 3.1 show that the operator
I + DK has a bounded inverse in the space Cyeiry[—1,1]. Thus, it re-
mains to prove that the operator D(K,,, — K ), acting from C (.- [—1,1]
into itself, satisfies the condition

|D(Km — )|y =o0(1),  m — oo.
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By (4.15) we have, for o sufficiently small,
[(D(Kp = K)o = [[D(Bin (K)o
logm
<C HKUHGFHLm(T)H

(4.18) 1og M. || Lyn (T
<C Hv”w(“"')w

log2 m

< C ]| tem , M — 00.

mO'
Hence, (see, for example, [1, Theorem 5]) the operator (I + DK,,) "
exists and is uniformly bounded. More precisely,
(4.19) [|(I + DEun) lwiom
|(I+DE) M|yt
- L= l(T+DE) o [[D (K = K| toim)

As a consequence of (4.19) we conclude that (4.17) has a unique solution
v, and

vallwen < 1+ DEw) Ml wiom [[1D frnllwer < C,

i.e., the stability of the method. Subtracting (4.17) from (1.10), we find
that
(I + DK)(v —vy,) = D(f = fm) + D(K,, — K)v,,.

Hence
|[v—vn]lweem
< ClID(f = fr)llwtorr + 1D (K = K)vn][winn]-

Finally, estimate (3.1) follows again by (4.15) and (4.18) for o =
min{f,v,1 — p — max{—¢e, —£}} (cf. Lemma 4.3). Hence the theorem
is completely proved. a

Lemma 4.5. Let K be the operator defined by (1.5), where H(z,t) €
Lip,([—1,1]?) and Ky is the operator defined by (2.8) with the matriz
of the knots T given by (2.9). Then for every v, € Py, we have

C
(4.20) (K = En)oall < Cllvnlfuween,
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where N > 2n + X + 1.

Proof. Firstly, we consider the case X = 1. We have to prove that

C
(K — Kn)vnlloo < FHUTLHOO

Now, we recall (see, for example, [4]) that for any function H(z,t) €
Lip,([—1,1]?) and for any positive integer M, there exists an algebraic
polynomial Qs (z,t) of degree M in = and t separately, such that

C
|H(a:,t)—QM(a:,t)|§W, —1<zt<l1.
Thus, if we fix M = N —n — X — 1, then Qp(z,t)v,(t) € Py with
respect to the variable ¢t and so, since the degree of exactness of the
chosen quadrature formula is at least N — 1, we have

(4.21)
! - xr
(K — Kn)va(a)| < / [H(z,£) ~ Qua(z, )

-1 |t — x|

o ()@ 1) dit

+

Z wn,i(z)[H (2, tni) — Qur (@, tni)|vn(tn,i)

Loaw(@h)(t)
w
< = Qurllelivall [ T 2

1|t -zl

1 w(eP)
4] [ Il ) - Quiz el 4D

. (=
2l
<
=0
1 w(®P) (¢
[ nalte,) ~ Qute O
Ienll-
= —_— I.
C e +

Since we consider 0 < p < 1 — max{|«/,|8|}, it is always possible to
choose a p > 1 such that p(pu + max{|al,|8]}) < 1. Then, if ¢ is the
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conjugate of p, i.e., ¢ = p/p — 1, by applying the Holder inequality we

obtain
1 q 1/q
|f y
-1

1 ,(@B)P 1/p
L [t—zleP

< C|ILN[(H = Qu)vn]llq-
Now, the necessary and sufficient condition for the uniform bounded-
ness of Ly : C° — L, is [cf., for example, 19] 1/\/w(5‘:5) (z)V1— 22 €
L4, and this condition is surely satisfied under the assumptions made
on &, 3, and p. Consequently, we obtain

Ly[H(z,.) — Qu(, . )vn](t)

Un oo
(1.2 1< OIH -~ Qul wellvnlloo < 2]
and inequality (4.20) follows for X = 1 by relations (4.21) and (4.22),
recalling that M = N—n—X—1with N > 2n+X+1. Thecase X =0
can be treated in a similar way, and Lemma 4.5 is completely proved.
O

Proof of Theorem 3.2. Recalling the definition of Ky in (2.8), we

define
K, =L,Ky.
So, looking at the proof of Theorem 3.1, we observe that the crucial
point to prove the stability and the convergence of the discrete col-
location method is, like in the continuous case, the evaluation of the
quantity .
HD(K - Km)Hw(pn')-

First of all, we can write
DK =K )t < IDE =Kl wtorrs + 1D(K =K )l utorr
= |[[D(K = K)o + ||1D L (K —=EN)|| o) -

Hence, since the first term at the righthand side has been investigated
in the proof of Theorem 3.1, it remains to estimate the quantity

. DLy (K — KN)vpl|woom
IDLn(K — Kn)llyiom = sup 2L Jonllwion
Vn€Pnix [V |wee.m
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Now, by Corollary 2.7 in [3], we obtain

DLy (K = K)o < Clogml|Lin(K — Kn)|
< Clogm|[Ln(D)]| [|K — K|
< Clog?m||K — Ky]|.

Therefore, applying Lemma 4.5, we have

R log®n
(423)  IDLn(E — Kn)vallutor < O lonl o
and, consequently, by (4.18) and (4.23),
log2 n

||D(K _Fm)vnHw(Pn') < C

[[Vn |l s

(4.24)

nr
an S Pn+X

where 7 = min{v, , 1 — p—max{|a|, ||} }. Now, with the help of (4.24)
we can show that the operators I + DK, are invertible in P,y and
that

(4.25) 1(Z + DK ) vnlluptoirs 2 Cullvnl e

for all v,, € P4 and for all sufficiently large n, where C is a positive
constant, i.e. the stability of the method.

Moreover, by inequalities (4.15), (4.24) and (4.25), we obtain

[v = vnllwterr < CID(F = fi)llwte
+ DK — K)vn|lpirm]

loe’n  log’n
sc( B n | los |vn||w<p,f))

nf? nr
<o (14 B,
> nr Cl m||w(e:T)
2
SClog n'
nr

Thus, Theorem 3.2 is completely proved. ]
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Finally, using a diatic decomposition and the Remez inequality, we
can prove the result of Theorem 3.3 (see [2, Theorem 3.2] for more
details).

5. Numerical examples. In this section we apply the method
described in Section 2 to some test equations of the type (1.6). In all
of the examples the chosen collocation matrix 71" is

T ={2p, (@), j=1,...,m, w(z)=(1-2)"(1+2z)" %}

Moreover, T is the matrix of the Chebyshev knots of the first kind.

In all of the treated examples we don’t know the analytical solution
of (1.6). The tables show the approximate solution vy, (z) for increasing
values of n € N, evaluated on the equispaced points z; = j/5,
j=0,...,4.

Ezample 1.

1t () 1 bt t
—/ v(f) dt+/ W) gy,

T _1\/1—t2t_x -1 1—t2‘t—$‘

Here we have the index X = 1, a = 8 = —1/2, f(z) € Lip{[-1,1],
H(z,t) € Lip1([-1,1]?) and p = 0.4. Therefore, Theorem 3.1 shows a
theoretical uniform convergence rate O(log? n/n%!).

TABLE 1.

.0 2 4 .6 .8

8 |.222416 | .125122 | .100299 | .182530 | .306456
16 | .217407 | 7.78D-02 | .108325 | .175603 | .295979
32 | .215288 | 8.03D-02 | .102773 | .175817 | .295163
64 | .214315 | 7.83D-02 | .101328 | .174817 | .295044
128 | .213851 | 7.78D-02 | .100957 | .174743 | .295017
256 | .213625 | 7.77D-02 | .100888 | .174680 | .294992
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FEzxzample 2.

S

— o)1 - 2) AL+ a)

7\/5 ()
27 71t_$

+/1 COVIE+ Ly aagy o gy ),

It — 2|01

(1) Y414 t)=3/*at

—_

Here we have the index X = 1, a = —1/4, 8 = -3/4, f(z) €
Lip[-1,1], H(z,t) € Lip/2([-1, 1)) and p = 0.1. Therefore, Theo-
rem 3.1 shows a theoretical uniform convergence rate O((log? n)/n3/2%).

TABLE 2.

.0 2 4 .6 .8

8 |.156210 | .129685 | -8.92D-02 | -.480442 | -.959195
16 | .187110 | .154458 | -.108509 | -.464751 | -.945530
32 | .205937 | .144728 | -.103742 | -.464301 | -.945431
64 | .216437 | .146925 | -.102718 | -.464098 | -.944134
128 | .221979 | .147423 | -.102532 | -.464102 | -.944034
256 | .224820 | .147540 | -.102531 | -.464048 | -.943899

Ezample 3. We have also tested the proposed method choosing the
known functions H(z,t) and f(z) more than Lipschitz continuous. In
such cases we observed that the rate of convergence increases a little
bit in comparison with the previous examples.

However, if we choose H(z,t) = H(z—t) € CP™([-1,1]?) withp > 1
and such that H®(0) =0,i=0,...,p— 1 and f(z) € CP*([~1,1)),
then, obviously, the rate of convergence of the proposed method grows
up as p increases.

For example, if we consider the following integral equation

1t t 1 ! t) sin®(z—t
—/ v(t) dt v(t) sin’(z 04) dt = sin®(z),
) 1V1I-t2t—= _1vV1—¢t2 |t — x|
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we obtain the results given in Table 3.

TABLE 3.
2 .6
8 | -1.D-02 -8.D-02
16 | -1.797641D-02 -8.063693D-02
32 | -1.79764112139D-02 -8.06369367789D-02
64 | -1.797641121391844D-02 | -8.06369367789800D-02
128 | -1.7976411213918447D-02 | -8.0636936778980053D-02

Conclusion. At first we note that, if k is defined as in (1.2), the
representation

h(z,t) — h(z, z)

(6.1) bz, t) = =2 —

holds, where h(z,t) = (t — z)|t — z|7*H(z,t) € LipA([-1,1]*) with
A = min(1 — u,v) (see, e.g., [18]). Moreover, we recall that in [15], the
authors consider a quadrature method for the integral equation (1.1)
and obtain the following result.

Theorem 6.1. Assume X = 0 and |a] < 1/2 or X = 1 and
1< a<0,heCP(-1,1)?) (recall (6.1)), and f € CPTA([-1,1]),
where p > 0 and 0 < X\ < 1. If the problem (1.1) has a unique solution
u=wv, v €L forx=0o0rve Li)(a,ﬁ) o Jor X =1, then the system
of equations, relative to the quadrature m;athod, is uniquely solvable for
all sufficiently large m and

logm
o= vz = 02555 ).

where

o) = 3 P03

k
= (2 — 2k )pm (w; )

1s the Lagrange interpolating polynomial corresponding to the solution
of the system of equations relative to the quadrature method.
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Moreover, if p+ A > v := max{a, 8} + 1 then v € C[-1,1] and

—1<z<1 mp+A—v

(6.2) max_|o(z) — vm(z)] = O(M>.

Further, if p+ X > 1/2, then v is continuous on any closed subset
A cC(-1,1) and

logm
max lv(z) — v (z)] = O<W>.

If we look at estimate (6.2) we recognize that for p = 0 and X = 0, this
relation cannot give uniform convergence for the quadrature method
proposed in [15].

On the contrary, estimate (3.3) for the collocation methods gives us
uniform convergence for p = 0 if r — 2|a| > 0.
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