JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 8, Number 2, Spring 1996

ON THE ROBIN PROBLEM FOR
THE EQUATIONS OF THIN PLATES

PETER SCHIAVONE

ABSTRACT. The boundary integral equation method is
used to investigate the Robin problem in a theory of bend-
ing of thin plates. Difficulties arising from the application
of classical techniques from three-dimensional elasticity are
overcome with the use of a modified single layer potential. In
addition, the exterior problem is solved in a class of matrix-
functions allowing for the possibility of divergence at infinity.

1. Introduction. The use of integral equation methods in elasticity
is well-documented (see, for example, [3] and [2]). In particular,
Dirichlet and Neumann problems for the equations of bending of thin
plates with transverse shear deformation, have been solved in [1]. Here,
solutions are sought in special classes of finite energy matrix-functions
in order to overcome the difficulties associated with the application of
classical techniques from three-dimensional elasticity. These difficulties
can be attributed to the rapid growth at infinity of the matrix of
fundamental solutions associated with the plate equations.

In this paper we consider a Robin problem in the same theory of thin
plates. Here, a specific linear combination of stresses and displacements
is prescribed on the boundary of the plate. Classical techniques [4]
again fail to accommodate both the interior and exterior problems.
We overcome these difficulties with the use of a modified single layer
potential and results developed in [1].

2. Preliminaries. In what follows, Greek and Latin suffixes take the
values 1, 2 and 1, 2, 3, respectively, we sum over repeated indices M, xr,
is the space of (m x n)-matrices, E,, is the identity element in M, xn, @
superscript T' denotes matrix transposition and (...) o, = 9(...)/0z4.
Also, if X is a space of scalar functions and v a matrix v € X means
that every component of v belongs to X.
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We consider a homogeneous and isotropic plate occupying the region
S x [~ho/2,ho/2], where S C R? is a domain bounded by a closed
C?-curve 0S and hy = const < diam S is the plate’s thickness. The
equilibrium equations in the case of bending in the absence of body
forces and moments and forces and moments acting on the forces, can
be written in the form [1]

(1) L(0z)u(z) =0

where = = (x, ) is a generic point in S, u = (uy,uz,u3)T a vector
characterizing the displacements, L(0xz) = L(0/0x1, 0/0xz2) the matrix
partial differential operator defined by

L(&1,&2)

R2uA + h2(A4-p)€3 — p h2(A+p) &1 €2 —p€1
h?(A+p)éiéo R2pA + h2(A+p)e3 —n —pée |,
,ufl ,ufz uA

A and p are the elastic coefficients of the material, h*> = h3/12, and
A = £,n- Together with L, we consider the boundary stress operator
T'(0z) given by

T(gla 52)
h?(A+2p)n1€1 + h?unss h%pnaéy + h*Aniés 0
= h*Ana&t + h*puni &y h?uni€y + h*(A+2p)naés 0 ,

puny pun2 pnaéa

where n = (ny,n2)7 is the unit outward normal to 95.

With the assumption that A+ > 0, ¢ > 0, it is clear that the
operator L is elliptic and the internal energy density E(u,u) is positive
[1]. Further, E(u,u) = 0 if and only if

(2) u(z) = (ki, ko, —k1z1 — kowa + k3) 7,

where k; are arbitrary constants. This is the most general rigid
displacement compatible with this plate theory. If we write

1 0 0
F=1] 0 1 0],
—T1 —X9 1
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then any vector of the form (2) can be written as F'k where k € M3y
is constant and arbitrary. Further, it is clear that LF = 0 in R? and
that TF =0 on 0S.

If u € C?(S) N CY(S) is a solution of (1) in S, we have the following
Betti formula:

(3) 2/SE(u,u) da:/as u! Tuds.

Let St be the finite domain enclosed by 85 and S~ = R?\(ST U d5S).
Later it will be necessary to make use of the Betti formulas in S~ but
for solutions of (1) which include a rigid displacement vector. In [1] it
was shown that we can in fact obtain such an extension of (3) provided
we restrict the behavior of u at infinity as follows.

Let A be the class of vectors u € M3y in S~ which, as r = |z| — oo,
admit an asymptotic expansion of the form
u1(r,0) = v~ ag sin 6 + 2a1 cos§ — agsin 30 + (az — a1) cos 36]
+772[(2a3 + a4) sin 20 + a5 cos 20 — 3as sin 40 + 2ag cos 46
+773[2a7 sin 30 + 2ag cos 30 + 3(ag — ay) sin 50
+ 3(a10 — ag) sin560] + O(r— %),
uz(r,0) = r~'[2asin @ + ag cos § + (az — a1) sin 30 + ag cos 36]
+772[(2a6 + as) sin 20 — a4 cos 20 + 3ag sin 40 + 2a3 cos 46
+773[2a10 sin 30 — 2ag cos 30 + 3(a1o — ag) sin 56
+ 3(a7 — ag) cos 58] + O(r*),
ug(r,0) = —(a1 + a2) Inr — [a; + ag + apsin 26 + (a; — az) cos 26]
+ 77 (a3 + a4)sinf + (a5 + ag) cos § — az sin 30 + ag cos 36)]
+ 77 2[a11 sin 20 + a1z cos 20 + (ag — ay) sin 46
+ (a10 — ag) cos 46] + O(r~2),
where ag, ..., a1 are arbitrary constants. Consider also the class
A ={u:u=u*+Fk}
where k € M3y, is constant and u € A. Then, for u € C%(S™) N

C1(S )N .A* asolution of (1) in S—,

(4) 2/7 E(u,u) da = 7/65 ul'Tuds.
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3. Boundary value problems. Let P, R € M3y be prescribed on
0S. We consider the following interior and exterior Robin problems:

(M+) Find u € C2(St)NCY(S") satisfying (1) in ST and
(5) T(0z)u(z) + o(x)u(z) = P(x), x € 0S.

(M~) Find u € C?>(S7)NCYS )N A* satisfying (1) in S~ and
(6) T(0z)u(z) — o(z)u(z) = R(z), xz € 0S.

Here 0 € M3«3 is a prescribed positive definite matrix.

Using standard arguments [4] and (3) in the case of (M ™) and (4) in
the case of (M ™), it is clear that (M ™) and (M ™) have at most one
solution.

4. Elastic potentials. The matrix of fundamental solutions for the
operator L is given by [1]

D(z,y) = L*(0x)t(z, y),
where
t(x,y) = a[(4h® + [z — y[*) In|z — y| 4+ 4B° Ko (b~ |z — y])],

L*(&) is the adjoint of L(), Koy the modified Bessel function of order
zero and a = [8wh?p?(X\ + 2p)]7!. This choice of matrix of funda-
mental solutions seems natural, since D(z,y) is computed by means of
Galerkin’s method. We consider the single layer potential defined by

(Vo)(z) = | D(z,y)9(y)ds(y),
oS

where ¢ € M3y is the unknown density and the operator p on
continuous matrix functions defined by

Py = FTy ds
oS

where 1) € M3y on 0S. From [1] we have the following properties of
V:
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Theorem 1. (a) If ¢ € C(9S5), then
(i) V¢ is analytic and satisfies (1) in ST US™.
(ii) V¢ e C»*(R?) for any o € (0,1).
(iil) V¢ € A if and only if pp = 0.
(b) If ¢ € C%2(8S), a € (0,1), then
(i) The direct value Vo of V$ on 0S exists and the functions

Vie) = (Vo)lg+,  V (9)=(VP)lg-,

are of class Clvo‘(§+) and C12(S ), respectively.

(i) The extensions of TV (p) and TV ~(¢) to S and S~ respec-
tively, are given by

TV(x) T e S+7
TVH(z)=(TV)"(2) =
(z) = (TV)"(2) %¢(m)+(TV)o(w) z €08,
TV (z) re s,

TV (2) =(TV) (2) =
@ = = Ly s v aeos,

where

(TV)o(z) = / T(02)D(x, y)(y) ds(y),

aS

the integral being understood as principal value.

5. [Existence theorems. Existence results for the problems
analogous to (M™T) and (M) in three-dimensional elasticity rely
implicitly on the regularity of the corresponding single layer potential
at infinity. In the case of bending thin plates, however, it is clear from
Theorem 1(a)(iii) that regularity at infinity of the single layer potential
requires additional conditions on the density ¢. These, of course, may
not be readily available.

To overcome this difficulty we modify the form of solution. Consider
the problem (M ™). Seek the solution in the form

(7) u(x) = V(¢ - Fk)(z) + (Fk)(z), weST,
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where k € M3 is a specific matrix of constants given by

—1
_ T T
(8) k—</85F Fds) /BSF b ds,

which ensures that V(¢ — Fk) € A by Theorem 1(a)(iii). It is clear
that f as F TFds € Msys is positive definite and hence invertible for
any closed C2-curve 0S.

The boundary condition (5) leads to the following system of singular
integral equations on 95:

(TV4)( ~ FR)(@) + o(2)[V*(6 — FK)(2) + Fk(2)] = P(z).
Using Theorem 1 (b)(ii) we can write this in the form

S (6 FR)H(TV0)(6) ~ (TVo)(FR) +o (Voo Vo(FR) + FK] = P,
(M*) 260 +(TV) (@) +o(@)Vo(e) +h(@k = P(z), o € S,

where h(z) € M3ys is given by

@) = (a(0) - 3B ) Fa) ~ [ T(00)D(@)F5) (o)

—o(z) [ D(z,y)F(y)ds(y).
oS

We denote by (M) the corresponding homogeneous system.

Theorem 2. The Fredholm alternative holds for (M™) and its
adjoint in the dual system (C%*(8S),C%*(8S)), a € (0,1), with
bilinear form (¢,¢) = [55 ¢" ¥ ds.

Proof. Using results from [1], the index of the singular integral
operator from (M™) is zero so that the operator is quasi-Fredholm
and the Fredholm alternative applies [5]. o
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We can now prove the main result concerning solvability of the
problem (MT).

Theorem 3. The problem (M™) has a unique solution for any
P € C%*(8S). The solution can be represented in the form (7) with
¢ € C%(0S) given by (M) and k given by (8).

Proof. Consider a solution ¢g € C%%(dS) of the homogeneous system
(M{). Then
u(z) = V(b — FR)() + Fh(z)

satisfies the homogeneous problem (M,"). By the uniqueness result for
(M), we now have that

u(z) =0, reSt.

Using Theorem 1 (a)(ii), u*(z) = u(z) = u=(z) = 0, z € S. Also,
with k given by (8), u € A*. Hence, u satisfies a homogeneous exterior
Dirichlet problem for (1) which implies that [1]

u(z) =0, zeS .

Hence, k = 0 and (Tw)™ — (T'u)~ = ¢y = 0 so that (M{) has only the
trivial solution in C%(8S). From the Fredholm alternative (Theorem
2) and results on the mapping properties of the integral operators
from (M) [1], we deduce that (M) is always uniquely solvable with
solution ¢ € C%*(9S9) for a prescribed P € C"*(dS). To complete
the proof, we remark that from Theorem 1, with ¢ € C®%(dS) from
(M), u(z) given by (7) satisfies all the requirements of (M ™).

In the case of (M ™) we seek the solution in the form
9) ulw) = V(¢ FR)(&) + Fh(z), weS

with k again given by (8). As above, we obtain the following system of
singular integral equations for ¢:

(M) —36() +(TVo) (@)~ o()Vola) +m(a)k = R(z),  « € 05,
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where

m(z) = —h(z) - 2 /@ _T(@n)D(e. )P () ds(s).

As in Theorem 2, the Fredholm alternative holds for (M™) and its
adjoint in the dual system (C%%(9S),C%%(dS)), a € (0,1), with the
same bilinear form. Hence, proceeding as in the proof of Theorem 3,
we can prove the following result for problem (M ). u]

Theorem 4. The problem (M~) has a unique solution for any
R € C%*(8S). The solution is given by (9) with ¢ € C**(dS) from
(M™).
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